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Abstract: Diabetic kidney disease (DKD) is a severe irreversible complication of diabetes mellitus that
further disturbs glucose metabolism. Identifying metabolic changes in the blood may provide early
insight into DKD pathogenesis. This study aims to determine blood biomarkers differentiating DKD
from non-diabetic kidney disease in the Emirati population utilizing the LC-MS/MS platform. Blood
samples were collected from hemodialysis subjects with and without diabetes to detect indicators
of pathological changes using an untargeted metabolomics approach. Metabolic profiles were
analyzed based on clinically confirmed diabetic status and current HbA1c values. Five differentially
significant metabolites were identified based on the clinically confirmed diabetic status, including
hydroxyprogesterone and 3,4-Dihydroxymandelic acid. Similarly, we identified seven metabolites
with apparent differences between Dialysis Diabetic (DD) and Dialysis non-Diabetic (DND) groups,
including isovalerylglycine based on HbA1c values. Likewise, the top three metabolic pathways,
including Tyrosine metabolism, were identified following the clinically confirmed diabetic status.
As a result, nine different metabolites were enriched in the identified metabolic pathways, such
as 3,4-Dihydroxymandelic acid. As a result, eleven different metabolites were enriched, including
Glycerol. This study provides an insight into blood metabolic changes related to DKD that may lead
to more effective management strategies.

Keywords: diabetic kidney disease; hemodialysis; LC-MS/MS; untargeted metabolomics

1. Introduction

Diabetes Mellitus (DM) is a chronic metabolic disorder disease with ever-increasing
prevalence among middle eastern populations. The hallmark of diabetes, hyperglycemia,
is harmful to many organ systems, primarily the cardiovascular, ophthalmic, and renal
systems. These long-term complications substantially worsen quality of life [1]. In 2019, the
International Diabetes Foundation (IDF) estimated 4.2 million deaths among adults world-
wide due to diabetes and its complications, including chronic kidney disease (CKD) [2].
CKD has become a primary worldwide health concern due to the high mortality rate [3,4].
Individuals with CKD are five to ten times more susceptible to premature death than
to progress to end-stage renal disease (ESRD) [5]. Individuals with ESRD will routinely
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undergo hemodialysis to compensate for the failing kidney function. DM is a leading cause
of ESRD [6,7]. Inversely, the renal function progressive decline and CKD-related sequelae
also disturb glucose metabolism [8]. This association has been of long-standing interest.
Cardiovascular mortality and progression to ESRD are the two significant unmet medical
needs in patients with CKD and DM. Diabetic patients undergoing hemodialysis have a
lower survival rate than non-diabetic patients with ESRD due to other renal diseases [9,10].
Hemodialysis is a frequent procedure to compensate for the failing kidney function, re-
sulting in a constant shift in the metabolic profile. For example, a recent study found
that almost one-third of diabetic hemodialysis patients might face impulsive solutions of
hyperglycemia with glycated hemoglobin (HbA1c) levels less than 6% [11]. This uncertain
biological plausibility and these unspecified medical consequences are a phenomenon
called “Burnt-Out Diabetes” [12]. Furthermore, several glucose-lower agents and their
active metabolites are metabolized in the kidneys and emitted, requiring dosage correction
or avoidance in hemodialysis patients [12]. Therefore, diabetic nephropathy under routine
hemodialysis will encounter hyperglycemia and hypoglycemia via multifactorial processes
relating to kidney dysfunction, the uremic environment, and hemodialysis [12–16]. The
quest for predictive and surrogate endpoint biomarkers for advanced DKD has received
significant interest [7]. Nevertheless, there are no novel biomarkers in the clinical or trial
set [17]. Several studies have shown potential biomarkers of DKD. The primary metabo-
lites were products of lipid metabolism (such as esterified and nonesterified fatty acids,
carnitines, phospholipids), branch-chain amino acid and aromatic amino acid metabolism,
carnitine, and tryptophan metabolism, nucleotide metabolism (purine, pyrimidine), and
the tricarboxylic acid cycle or uraemic solutes [17–20]. Moreover, mitochondrial function
and fatty acid oxidation play a crucial part in the DKD progress [21,22]. These studies
demonstrated substantial variations in the metabolomic profiles, perhaps due to differences
in geography, ethnicity, sample selection, and analytical platform. Little is known about
the metabolomic profile of DKD under hemodialysis from the middle eastern populations.
Therefore, this study explores the metabolomic profile of diabetic and non-diabetic United
Arab Emirates (UAE) citizens (known as Emirati) undergoing hemodialysis to uncover the
potential novel biomarkers in this population. However, diabetic medication intake for
dialysis patients is expected to have effects on their metabolic profiling. Therefore, we also
analyzed the data based on the available HbA1c values. Metabolomics utilizes quantifi-
able metabolites from specimens to obtain helpful information on the physiological state.
Chronic diseases occur from the impact of multiple factors, such as genetics, lifestyle, and
environment. Comparing the metabolite concentration levels in phenotypically recognized
populations, e.g., diseased and control subjects, might support identifying pathways and
biological activities linked with a specific disease. Metabolism refers to the biochemical
interactions within an organ system to maintain essential processes. Metabolomics is a
rapidly emerging area of translational research with promising abilities to identify bio-
chemical compounds that can serve as the early diagnostic, therapeutic, and prognostic
value of chronic diseases such as diabetes mellitus. A metabolomics experiment involves
targeted metabolomics and untargeted metabolomics approaches [23]. The untargeted
metabolomics approach is the qualitative or semiquantitative analysis of the feasible pri-
mary number of metabolites from different biological and chemical classes in a physical
specimen [24]. Recently, the investigation of DKD via metabolomics has been of primary
interest [21,25]. Despite the increased interest in metabolomics in DKD patients [26,27],
more studies need to be conducted in such a manner. Specifically, studies on diabetics
under hemodialysis have been rare. This study explores the blood metabolic profile for
UAE Dialysis patients with diabetes and without diabetes.

2. Materials and Methods
2.1. Ethics Statement

Hospital Ethics and Research Committee, a local research ethics committee at the
University Hospital Sharjah, UAE, approved the study protocol (REF number: UHS-HERC-
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012-10062019). All volunteers were supplied with an information sheet explaining study
objectives, design, and confidentiality. Written informed consent was obtained from all
participants of the study.

2.2. Study Design

We conducted a single-site cross-sectional study, and all available patients were re-
cruited. However, the sample size is constrained by the available resources, such as indi-
viduals’ willingness to participate and the cost of sample analysis. Therefore, 36 subjects
from Emirati citizens who were treated at University Hospital Sharjah were selected.

2.3. Sample Collection and Preparation

A measure of 4 mL of blood was then collected from each subject into a sterile container.
The fresh blood samples were spun down in a centrifuge and the extracted plasma was
collected and frozen at −80 ◦C for long-term storage until further metabolomics analysis.
The blood was never frozen as it would make it difficult to recover the plasma. All samples
were collected daily (between 8 and 10 am) pre-dialysis while fasting. An aliquot of plasma
sample was placed into a microcentrifuge tube and cold methanol was added into the
sample at 3:1 v/v (i.e., 30 µL sample, add 90 µL cold methanol). The mixture was vortexed
and sat at−20 ◦C for two hrs. Next, the samples were centrifuged at 20,817× g for 15 min at
4 ◦C. Then, the supernatant was transferred to a new microcentrifuge tube. Three times the
original sample volume was transferred (i.e., for 30 µL sample, add 90 µL cold methanol,
then transfer 90 µL supernatant). The sample was dried using a Speed vac at 30–40 ◦C.
The dried sample was stored in a −80 ◦C freezer for further use or dissolved in solvent
for LCMS analysis. Dissolved samples are preferably in the starting solvent (0.1% formic
acid) where volume is three times the original plasma volume. For example, when 30 µL
serum/plasma has been used, the supernatant is dissolved in 90 µL 0.1% formic acid. The
vials were placed in the autosampler.

2.4. Analytical Analysis: Liquid Chromatography-Mass Spectrometry (LC-MS/MS)

TimsTOF Mass Spectrometer (BRUKER, Karlsruhe, Germany) and Metaboscape soft-
ware version 4 were employed to separate and detect the cell metabolites. It was equipped
with a trapped quadrupole time-of-flight mass spectrometer and comprised a Solvent
delivery systems pump (ELUTE UHPLC Pump HPG 1300), Autosampler (ELUTE UH-
PLC), Thermostat column compartment (ELUTE UHPLC), Computer System, Windows
10 Enterprise 2016 LTSB, Data Management Software, Bruker Compass HyStar 5.0 SR1
Patch1 (5.0.37.1), Compass 3.1 for otofSeries, and otofControl Version 6.0. Metabolites were
analyzed in auto MS/MS positive scan mode within the range of 20–1300 m/z utilizing
electrospray ionization (ESI). The ESI source was 10 L/min, and the drying temperature
was equal to 220 ◦C. The capillary voltage of the ESI was 4500 V with 2.2 bar nebulizer
pressure. The collision energy was set at 7 eV and end Plate Offset as 500 V. A HAMILTON®

Intensity Solo 2 C18 column (100 µm × 2.1 mm × 1.8 µm) was utilized for the separation
of metabolites, and Sodium Formate was used as a calibrant for the external calibration
step. Solvent A (Water +0.1% FA) and solvent B (Acetonitrile + 0.1% FA) were used in
gradient elution mode for metabolite analysis. Metabolites were analyzed in auto MS/MS
positive scan mode within the range of 20–1300 m/z utilizing electrospray ionization (ESI).
The ESI source with dry nitrogen gas was 10 L/min and the drying temperature equal to
220 ◦C. The capillary voltage of the ESI was 4500 V with 2.2 bar nebulizer pressure. For
MS2 acquisition, the collision energy was set at 20 eV and end Plate Offset as 500 V. A
Hamilton® Intensity Solo 2 C18 column (100 mm × 2.1 mm × 1.8 µm) was utilized for
the separation of metabolites, and sodium formate was used as a calibrant for external
calibration step. For metabolite analysis, solvent A (Water + 0.1% FA) and solvent B (Ace-
tonitrile + 0.1% FA) were used in gradient elution mode. The gradient program used a
flow rate of 0.250 mL/min with 99A:1.0B from 0.00–2.00 min, 99A:1.0B to 1.0A:99B from
2.00–17.00 min, 1.0A:99B from 17.00–20.00 min, 1.0A:99B to 99A:1.0B from 20.00–20.10 min,
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flow rate of 0.350 mL/min with 99A:1.0B from 20.10–28.50 min, flow rate of 0.250 mL/min,
with 99A:1.0B from 28.50–30 min giving a total run time of 30 min with a maximum pres-
sure of 14,993 pounds per square inch (PSI). The autosampler temperature was set at 8 ◦C
and the column oven temperature at 35 ◦C. A total volume of 10 µL was injected into the
QTOF MS. The flow rate was set as (0.250–0.350 mL/min) for 30 min in gradient mode with
a maximum pressure of 14,993 psi. The elute autosampler temperature was set at 8 ◦C, and
the column oven temperature was set to 35 ◦C. A total volume of 10 µL was injected into the
QTOF MS. LC total ion chromatograms (TIC) and fragmentation patterns of the metabolites
were identified by MetaboScape® version 4.0 (Bruker-Daltonics, Billerica, MA, USA) and
MS/MS library search based on the Bruker HMDB Metabolite Library 2.0 (Bruker Daltonics,
Billerica, MA, USA). The latter library provides more than 6000 MS/MS spectra for more
than 800 compounds selected from the Human Metabolome Database (HMDB) [28]. Data
processing: Processing and statistical analyses were performed using MetaboScape® 4.0
software (Bruker Daltonics, Billerica, MA, USA). Bucketing in T-ReX 2D/3D workflow,
the parameters set for molecular feature detection were as follows: minimum intensity
threshold equal to 1000 counts along with minimum peak length of 7 spectra for peak
detection, using peak area for feature quantitation. The mass recalibration was performed
within a retention time range between 0–0.3 min. Only those features present in at least 3 of
12 samples (per cell type) were considered. On the other hand, the MS/MS import method
was set to be performed by average. The parameters for data bucketing were assigned as
follows: Retention time range started at 0.3 min and ended at 25 min, while mass range
started at 50 m/z and ended at 1000 m/z. Each sample was run in duplicate LC-MS/MS
analysis as described above.

2.5. Statistical Analysis

R software version 4.0.5 was used for the statistical analysis [29]. Data were analyzed
in a duplicate technique. Data were cleaned to exclude which concentration values were
missing or below the detection limit. The average for each sample was obtained. Data
were standardized, and normalization was performed through Logarithmic transformation.
Metabolic profiles were analyzed based on (1) clinically confirmed diabetic status and
(2) current HbA1c values to account for the disease control status.

Differential metabolites between the 11 DD and 25 DND patients were detected
using Principal Component Analysis (PCA) and Wilcoxon rank-sum test (known as Mann–
Whitney U-test). In addition, the False Discovery Rate (FDR) method was applied to adjust
for the multiple comparisons problem. The criteria of differential metabolite determination
are as follows: q value (FDR adjusted p-value) < 0.05. In all statistical tests, a significance
level of 0.05 was used.

The metabolomics experiment usually results in a high number of significant metabo-
lites. Therefore, we focused on the over-represented subsets in the outcomes to ease
interpretation. Pathway analysis is to reduce dimensionality and simplify functional under-
standing. The Pathway Analysis module for pathway enrichment and topological analysis
in the MetaboAnalyst platform [30] was utilized for identified pathways analysis.

3. Results
3.1. Clinical Data of Patients

We enrolled 36 subjects who were being treated at University Hospital Sharjah,
UAE. There were 20 females aged between 56 and 85 (average: 69.9 ± 8.16 years; me-
dian: 69 years), and 16 males aged between 34 and 90 (average: 73.68± 13.07 years; median:
74 years). Out of the 36 participants, 11 were hemodialysis diabetic patients (6 females,
5 males), and 25 were non-diabetic hemodialysis patients (14 females, 11 males). The
classification for patients is based on the clinically confirmed diabetic status according to
WHO diagnostic criteria for diabetes (fasting plasma glucose ≥7.0 mmol/L (126 mg/dL)
or 2 h. plasma glucose ≥11.1 mmol/L (200 mg/dL)). However, we will classify the pa-
tients based on their most recent HbA1c values for further analysis. The patients were
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elderly with renal complications of diabetes. Our data show that most known diabetic
hemodialysis patients have their diabetes controlled (72.3%). Surprisingly, about 32.0% of
the known non-diabetic hemodialysis patients did not control their blood glucose. There is
no statistically significant difference in age, gender, HbA1c, cholesterol total, and blood Hb
between DD and DND groups (p > 0.05).

3.2. Differential Metabolite Screening

Using the LC-MS-MS technique and HMDB database [28], 142 metabolites were
detected and identified. These detected and identified metabolites were documented. In
addition, we used the MetaboAnalyst platform to examine the patterns of features. The
top 50 metabolites based on the differences in averages between DD and DND groups
are displayed as a heatmap in Figure 1. Heatmap in Figure 1 shows detected metabolites
among DD and DND groups. The color gradient demonstrates concentration levels for
each metabolite in each sample. Heatmap in Figure 1 indicates no apparent differences
in the concentration of the metabolites among the two groups. Potential differences exist
between some metabolites by initial visualization inspection, such as Alpha-Aspartyl-Lys
and Cis-Aconitic Acid (Figure 1). However, robust and advanced statistical tools should
test these “potential” metabolites.
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Figure 1. Heatmap of the 50 selected metabolites among the DD and DND patients (clinically
confirmed diabetic status). The columns represent samples, the rows represent metabolites, and the
relative content of the metabolites is displayed by color. The heatmap shows detected metabolites
among DD and DND groups.
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Heatmaps of the complete list of metabolites shown based on the clinically confirmed
diabetic status and HbA1c values grouping scenarios are provided as Figure S1.

3.3. Multivariate Statistical Analysis

As stated previously, statistical analysis was performed based on (1) clinically con-
firmed diabetic status, (2) HbA1c values. Plots of the top two principal components (PCs)
following the PCA analysis of the 142 identified metabolites under the two scenarios con-
sidered are shown in Figure 2. Figure 2A shows a PCA plot following known diabetic
status for patients grouping. The plot in Figure 2A depicts that the blood components of
the DD group and DND group did not have apparent clustering indicating almost similar
metabolic profiles among the two groups. Therefore, the latest available HbA1c values for
both groups were used for further PCA analysis. Figure 2B shows the PCA plot following
participants’ grouping based on their latest HbA1c value (controlled if HbA1c value is
less than 6.4% and uncontrolled otherwise). Figure 2B illustrates an improved separation
among the controlled and uncontrolled groups. Participants with uncontrolled blood
glucose tend to have lower values of PC2 compared to the participants with controlled
blood glucose.
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3.4. Discrepancy Metabolite Analysis

Wilcoxon rank-sum test as a robust non-parametric testing procedure was used to
examine the differential metabolites among participants groups under the two analysis
scenarios as discussed previously. First, we conducted the Wilcoxon rank-sum test for all
142 detected metabolites using clinically confirmed diabetic status. Then, FDR adjusted
p-values were obtained. Out of the 142 metabolites, five metabolites significantly had differ-
ent concentrations among the DD and DND groups. Boxplot of these metabolites intensities
are shown in Figure 3A with adjusted p-values of Elaidic acid (p = 0.036), Phosphorylcholine
(p = 0.036), and Phthalic acid (p = 0.036), the levels of 11a-Hydroxyprogesterone (p = 0.036),
and 3,4-Dihydroxymandelic acid (p = 0.036).
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Analysis was repeated according to the latest HbA1c values as controlled or uncon-
trolled. Boxplots of the identified significant metabolites according to the HbA1c values
are shown in Figure 3B. These boxplots show significant difference in the levels of An-
drostenedione (p = 0.042), Delta-hexanolactone (p = 0.042), 2-Furoylglycine (p = 0.042),
Maltitol (p = 0.045), Vitamin D3 (p = 0.045), and Indolelactic acid (p = 0.049) and the levels
of Isovalerylglycine (p = 0.049).

We have applied an rpart decision tree to evaluate the results in both cases. The
performance measures for the clinical confirmed diabetes data are 77% accuracy, 60%
sensitivity, and 90% specificity. However, the HbA1c data performance measures are 81%
accuracy, 67% sensitivity, and 88% specificity. Figure 4 shows the tree plot for two cases.
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3.5. Analysis of Metabolic Pathways

To understand the metabolic pathways involved in the development of diabetes,
we used the MetaboAnalyst platform to perform pathway enrichment and topologi-
cal analysis of differential metabolites in blood [30]. First, we examined the pathway
analysis for the clinically confirmed diabetic status. Based on the identified metabo-
lites in our data, the metaboAnalyst platform detected 46 metabolic pathways, as ex-
hibited in Figure 5A. According to the -log(p) value and pathway impact score, the top
three metabolic pathways were selected, which are: Tyrosine metabolism, Linoleic acid
metabolism, and Caffeine metabolism. Metabolic pathway analysis results show nine differ-
ent metabolites enriched in these three metabolic pathways: Linoleic acid, Glycerophospho-
choline, Paraxanthine, Caffeine, 3,4-Dihydroxymandelic acid, 3,4-Dihydroxyphenylglycol,
3,4-Dihydroxybenzeneacetic acid, DL-Dopa, and L-Tyrosine, as shown in Table 1. A
Wilcoxon rank-sum test was used to analyze the differential metabolites enriched in the iden-
tified pathways. The levels of Tyrosine metabolism-related metabolite 3,4-Dihydroxymandelic
acid (p = 0.028) are noticeably different in both groups. However, there was no significant
difference in the levels of other metabolites between the DD group and the DND group.
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lism 1.7512 0.69231 Paraxanthine, Caffeine map00232 

Figure 5. (A) Metabolic pathway analysis of clinically confirmed diabetic status; (B) metabolic
pathway analysis based on latest HbA1c values. Each bubble in the bubble diagram represents a
metabolic pathway. Color gradient and circle size indicate the significance of the pathway ranked by
p-value (yellow: higher p-values and red: lower p-values) and pathway impact score (the larger the
circle, the higher the pathway impact score). The top three metabolic pathways were identified by
name according to the -log(p) value and pathway impact score.

The same approach was applied considering the grouping of participants based on
the latest HbA1c values. In this case, 46 metabolic pathways were screened by the Metabo-
Analyst platform. Figure 5B shows the top six selected metabolic pathways based on
-log(p) value and pathway impact score, which are: Citrate cycle, Glycerolipid metabolism,
Vitamin B6 metabolism, Caffeine metabolism, Phenylalanine, tyrosine, tryptophan biosyn-
thesis, and Linoleic acid metabolism. Metabolic pathway analysis results indicated 11 differ-
ent metabolites enriched in these six metabolic pathways: Cis-Aconitic acid, Glycerol, Pyri-
doxal 5′-phosphate, Pyridoxal, 4-Pyridoxic acid, Caffeine, Paraxanthine, L-Phenylalanine,
L-Tyrosine, Linoleic acid, and Glycerophosphocholine, as shown in Table 1. A Wilcoxon
rank-sum test was used to analyze the differential metabolites enriched in the identified
metabolism pathways. The levels of glycerolipid metabolism-related metabolite Glycerol
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(p = 0.050) were significantly different among the controlled and uncontrolled groups.
However, there was no significant difference in the levels of other metabolites between the
two groups.

Table 1. Analysis of the top metabolic pathways based on clinically confirmed diabetic status and
latest HbA1c values.

Name -Log(p) Impact Compounds Pathway

Clinically confirmed
diabetic status

Linoleic
acid metabolism 0.30064 1.0 Linoleic acid,

Glycerophosphocholine hsa00591

Caffeine metabolism 1.7512 0.69231 Paraxanthine, Caffeine map00232

Tyrosine metabolism 1.7414 0.27636

3,4-Dihydroxymandelic acid,
3,4-Dihydroxyphenylglycol,
3,4-Dihydroxybenzeneacetic
acid, DL-Dopa, L-Tyrosine

map00350

Latest HbA1c values

Citrate cycle 1.5898 0.05003 Cis-Aconitic acid hsa00020

Glycerolipid metabolism 1.1213 0.23676 Glycerol hsa00561

Vitamin B6 metabolism 0.67539 0.68759 Pyridoxal 5′-phosphate,
Pyridoxal, 4-Pyridoxic acid hsa00750

Linoleic acid
metabolism 0.08917 1.0 Linoleic acid,

Glycerophosphocholine hsa00591

Caffeine metabolism 0.37079 0.69231 Paraxanthine, Caffeine hsa00232

Phenylalanine,
tyrosine, and

tryptophan biosynthesis
0.19682 1 L-Phenylalanine, L-Tyrosine, hsa00400

4. Discussion

This study used LC-MS/MS to examine blood metabolites of DD and DND Emirati
patients. LC-MS/MS provides a state-of-the-art quantitative determination of biological
compounds with high specificity, sensitivity, and throughput [31]. The analysis is two-
fold: (1) the analysis based on clinically confirmed diabetic status; (2) the analysis based
on the available HbA1c values. We detected and identified 142 metabolites among the
DD and DND groups. Initial results using PCA of clinically confirmed diabetic status
showed that DD and DND of the plasma components could not have apparent clustering.
Therefore, we further performed PCA using HbA1c values. The results showed that the
uncontrolled group could be clearly distinguished from the controlled group, indicating that
the controlled and uncontrolled groups’ plasma metabolites are different. Subsequently,
the Wilcoxon rank-sum test and metabolic pathway analysis of 142 metabolites were
performed. Differential metabolites analysis based on the clinically confirmed diabetic
status between both groups showed enrichment of Hydroxyprogesterone (p = 0.036) and
was consistent with previous publications related to androgenic metabolism, oxidative
stress, and adipocyte accumulation among the DD group [32,33]. Therefore, the inability
to metabolize androstenedione to testosterone and accumulation in blood among the DD
group could be correlated with DKD, and thereby, a useful biomarker. Moreover, we
detected an alteration in norepinephrine derivative, 3,4-Dihydroxymandelic acid (p = 0.036)
turnover and metabolism among the DD group and consistent another diabetic sequela such
as diabetic cardiomyopathy [34]. Similarly, we identified higher levels of isovalerylglycine
(p = 0.049) among the uncontrolled group based on HbA1c values. Interestingly and
consistent with a previous study that concluded a higher clearance rate among DKD
compared to vascular causes of kidney disease [35]. Vitamin D is an essential regulator
of calcium and phosphate homeostasis. Surprisingly, despite the expected decline in
kidney function, including 1α-hydroxylation (a necessary step in vitamin D metabolism),
we detected an increase in vitamin D3 (p = 0.045) among the controlled group based on
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HbA1c values [36]. Perhaps due to compensatory mechanisms by other organs such as
the gastrointestinal system, a previous study showed a protective role against creatinine
degradation among individuals with diabetes with high HbA1c values [37]. Furthermore,
plasma metabolites of the Glycerolipid metabolism pathways such as Glycerol (p = 0.05)
were increased in the uncontrolled group based on HbA1c values. Interestingly, a previous
study concluded that altered tissue lipid metabolism is involved in the pathogenesis of
toxin-induced nephropathy and can be used as an early screening biomarker [38].

Last, mitochondrial dysfunction is one of the mechanisms contributing to the incidence
and development of DKD [39–41]. Mitochondrial dysfunction is associated with kidney
disease in non-diabetic contexts, and increasing evidence indicates that dysfunctional renal
mitochondria are pathological mediators of DKD [40]. In addition, studies revealed that
fatty acid metabolism disorders contribute to developing DKD in T2DM patients [42]. For
example, previous western studies concluded that the lower intake of polyunsaturated fatty
acids, primarily linolenic and linoleic acid, is associated with CKD in T2DM patients [43,44].
Our study found that the DD group decreased elaidic acid (p = 0.036). Therefore, targeting
key enzymes for such metabolites may be a promising avenue in treating DKD, especially
advanced-stage DKD such as ESRD.

We acknowledge the limitation of the small number of patients enrolled in this study.
In addition, this one-site pilot study requires a follow-up with a larger cohort to validate our
findings further. Furthermore, some of the identified metabolites, such as caffeine, can be
further attributed to other factors such as diet and medication-the need for further validation.

In conclusion, metabolomics is an emerging technology with an essential role in un-
derstanding health and disease conditions as metabolic biomarkers have translational
potential to improve disease diagnosis and therapeutic targets. Herein, we identified for
the first-time potential biomarkers, such as isovalerylglycine, elaidic acid, hydroxyproges-
terone, 3,4-Dihydroxymandelic acid, and glycerolipid metabolites such as Glycerol for early
detection of DKD based on robust metabolomics modeling between diabetic hemodialysis
and non-diabetic hemodialysis patients in the UAE population.
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