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Abstract: With the debut of AlphaFold2, we now can get a highly-accurate view of a reasonable
equilibrium tertiary structure of a protein molecule. Yet, a single-structure view is insufficient and
does not account for the high structural plasticity of protein molecules. Obtaining a multi-structure
view of a protein molecule continues to be an outstanding challenge in computational structural
biology. In tandem with methods formulated under the umbrella of stochastic optimization, we
are now seeing rapid advances in the capabilities of methods based on deep learning. In recent
work, we advance the capability of these models to learn from experimentally-available tertiary
structures of protein molecules of varying lengths. In this work, we elucidate the important role of
the composition of the training dataset on the neural network’s ability to learn key local and distal
patterns in tertiary structures. To make such patterns visible to the network, we utilize a contact
map-based representation of protein tertiary structure. We show interesting relationships between
data size, quality, and composition on the ability of latent variable models to learn key patterns of
tertiary structure. In addition, we present a disentangled latent variable model which improves
upon the state-of-the-art variable autoencoder-based model in key, physically-realistic structural
patterns. We believe this work opens up further avenues of research on deep learning-based models
for computing multi-structure views of protein molecules.

Keywords: protein molecule; tertiary structure; multi-structure view; generative model; variational
autoencoder; spatial pyramidal pooling; training set configuration; disentanglement

1. Introduction

The key relationship between protein tertiary structure and protein function has mo-
tivated decades of computational research on predicting in silico an equilibrium tertiary
structure of a protein molecule [1]. The community of researchers organized around such ef-
forts through the CASP biennial competition [2] made seminal developments over the years,
of which we highlight ResNet and AlphaFold2. Changing the focus from optimization-
based approaches built over the molecular fragment replacement technique [3] to predicting
contacts with deep neural networks was a key advancement [4]. In particular, ResNet [5]
represented a significant advance in our ability to compute amino-acid contacts through
deep neural networks leveraging sequence covariation and trained over known protein
sequences. ResNet became a precursor to DeepMind’s AlphaFold2 [6], which is now hailed
as a solution to a fifty-years-old grand challenge in computational biology.

With AlphaFold2 we now can get a highly-accurate view of a reasonable equilibrium
tertiary structure of a protein molecule. Yet, we have known for decades that a single-
structure view is insufficient to understand the relationship between structure and function,
as it ignores the importance of structural dynamics as a key regulator of molecular inter-
actions in the cell [7]. However, accounting for dynamics and obtaining a multi-structure
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view of a protein molecule continues to be an outstanding challenge in computational
structural biology.

While a review of literature on computing a multi-structure view is beyond the scope
of this paper, it is worth noting that this literature is rich in concepts and techniques
developed and refined over decades of work on this fundamental problem. Methods
formulated under the umbrella of Molecular Dynamics (that is, numerical simulation),
Monte Carlo, or both via hybridization abound [8]. These methods have been able to
provide highly-accurate and detailed views of the functionally-relevant structure space of
a protein molecule, but overall they are either explicitly limited to a particular molecule
or class of molecules or shown to be less effective in their capability to generalize [1]. The
key insight for this shortcoming is that in order to handle the high dimensionality of the
underlying search space, these methods often utilize key insight specific to a system of
interest [9–12].

The effectiveness of deep learning-based methods for single-structure prediction [13–16]
is further motivating researchers to seek related platforms for expanding the static view to
the dynamic view. While work on this is largely beginning, various generative deep
models can be found in literature [17]. They aim to learn directly from tertiary structures
typically represented as contact maps or distance matrices through primarily variational
autoencoders (VAEs) [18,19] or generative adversarial networks (GANs) [20–22]. Until
recently [23], the majority of these models were limited to learning from same-length
protein fragments. Work in [23] employs the technique of spatial pyramidal pooling in
conjunction with convolutional layers to obtain a VAE, referred to as CVAE-SPP, capable of
learning from experimental tertiary structures of protein molecules of any length obtained
from the Protein Data Bank [24]. The rigorous evaluation demonstrates that CVAE-SPP
is capable of capturing local and distal patterns of tertiary structures (namely, short- and
long-range contacts) better than existing models.

When accommodating different-size objects in the training dataset, one has to be
aware of the possible implications of the composition of the training dataset for the quality
of generated data. In this paper we investigate this along various dimensions; utilizing
sequence-non-redundant datasets of crystal tertiary structures, we investigate the impact of
dataset size, quality, and composition on the ability of CVAE-SPP to reproduce physically-
realistic local and distal structural patterns in generated data. We evaluate the model
on various training set configurations with regards to composition over different-length
protein molecules. Finally, we extend CVAE-SPP to disentangle the learned latent factor
by adding a regularization term in the loss function. The strength of the regularization
is controlled through the β hyperparameter, as in the classic βVAE model. The resulting
βCVAE-SPP is shown to improve over CVAE-SPP on various metrics of performance,
further advancing the state of the art.

We hope the work we present in this paper opens up more avenues of research on
generative deep models for computing multi-structure views of protein molecules. Many
future directions of research promise to sustain these avenues, including end-to-end models
that do not limit the models to work with intermediate representations of tertiary structures
but rather tertiary structures themselves.

2. Related Work

Many deep generative models for protein structure modeling can now be found
in literature [18,22,25–30]. Some of the earliest work [27,28] demonstrated the ability of
a vanilla convolutional GAN to learn over fixed-size distance matrices, with the latter
capturing pairwise Euclidean distances of the central carbon atoms in amino acids. The
analogy leveraged was between a distance matrix and a pixel image.

While rigorous metrics would be introduced later [22], the qualitative analysis demon-
strated varying performance. One issue identified was the difficulty of GAN-based models
to focus on all patterns present in distance matrices or contact maps (binarized versions
of distance matrices based on a proximity threshold). Various works followed seeking to
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address this issue. Some relied on specializing the loss function so as to focus the network
to learn the symmetry of contact maps [20]. Others utilized the loss function to focus on
the sparse, long-range contacts [21].

Work in [22] evaluated GAN-based models and showed that the generated distance
and contact matrices were often not physically-realistic for various reasons. Key metrics,
utilized in this paper, as well, elucidated the varying performance on capturing the back-
bone, the short-range contacts, and the long-range contacts by different models. Work
in [22] also showed that training GANs presented many challenges, and proposed various
training mechanisms to stabilize the models, as well as a Wasserstein GAN to improve the
quality of generated distance matrices.

In contrast to the dominant GAN architecture in literature, work in [31] explored
the vanilla VAE architecture and showed promising results. Work in [23] extended this
architecture with convolutional layers and the spatial pyramidal pooling technique to
account for contact maps of different sizes and so leverage tertiary structures of proteins
of varying amino-acid sequence lengths. The CVAE-SPP proposed in [23] provides the
foundational architecture upon which we build in this work. As summarized in Section 1,
we evaluate the impact of training dataset size, quality, and composition on the ability
of this architecture to learn local and distal patterns in contact maps, as well as extend
this architecture with disentanglement, resulting in a new model, βCVAE-SPP. Before
proceeding with methodological details, we relate some preliminaries.

3. Preliminaries
3.1. 2D Representations of Tertiary Structure

The most popular 2D representations of a tertiary structure do away with the Cartesian
coordinates of single atoms and instead record Euclidean pairwise distances. Typically,
calculations are carried over the central carbon atom (CA) of each amino acid. In this
manner, a tertiary structure of a protein molecule of N amino acids is summarized with an
N × N distance matrix recording Euclidean distances of pairs of CA atoms. In a binarized
version, a proximity threshold is introduced, which is typically 8 Å. Pairwise distances
above this threshold are replaced with 0s, and the rest are replaced with 1’s. The result
is referred to as a contact matrix, with 1-valued entries referred to as contacts. These 2D
representations are translationally- and rotationally-invariant, so they are very popular for
deep models. They also bring analogies with pixel images to the forefront, thus allowing
one to leverage convolutional VAEs or GANs for generative tasks.

3.2. VAE Architecture

The SPP-CVAE architecture proposed in [23] is a foundational one that we evaluate
along various dimensions and extend here, so we summarize it briefly for the reader. SPP-
CVAE is a VAE at its core, so it consists of a parameterized encoder network, which is also
referred to as the inference model, and a parameterized decoder network, which is referred
to as the generative model. In general, in a VAE, each of these networks has one or more
layers of units/neurons. The encoder maps the input layer x to the hidden/latent layer y.
The decoder does the reverse and maps y to the output layer z, effectively reconstructing
the data. The latent layer y is the latent representation that a VAE seeks to learn, and it
contains the latent variables/factors.

The training of a VAE minimizes the difference between the reconstructed data (z) and
input data (x). The key assumption in a VAE is that both the input and latent distributions
are Gaussian. The encoder assumes that x ∼ N(µx, σx) exists. During training, the encoder
learns the parameters µx and σx of the input distribution. Similarly, VAEs assume that
z ∼ N(µx, σx).

The VAE loss function combines a reconstruction term with a regularisation term;
that is, L = |x − y|2 + KL(N(µx, σx)− N(0, I)). The first term is the reconstruction loss.
The second term measures the Kullback-Leibler (KL) divergence between the returned
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distribution and a standard Gaussian distribution. More details on the VAE training process
can be found in [32].

3.3. CVAE-SPP

CVAE-SPP learns over distance matrices and so employs convolution layers in both
the encoder and decoder. Figure 1 shows the architecture. Inspired by related work in
computer vision [31,33], the architecture is extended with the SPP layer, so that the model
can learn from distance matrices of varying sizes. As Figure 1 shows, the CVAE-SPP
encoder uses a stack of convolutional layers followed by LeakyReLU for the activation
function and Batch Normalization layers to support model optimization. An SPP layer
follows the convolutional layer; in the SPP layer, each feature map is pooled multiple times.
Its output vectors are concatenated into a single-dimensional vector that is then fed to a
following fully-connected layer. The decoder consists of a stack of convolutional transpose
layers coupled with LeakyReLU and Batch Normalization layers at the beginning. Each
convolutional transpose layer increases the size of the height and width by a factor of
two. At this point, the tensors generated are fixed in size and likely to be significantly
smaller than the desired output. Interpolation addresses this issue by up-sampling or
down-sampling the input to a desired size or scale. This layer aligns the corners of the data
points and fills in the spaces by fitting various functions; we utilize the “nearest” mode,
which enables data reshaping while allowing for backpropagation. A final convolutional
layer is used to further improve the data reconstruction.

Figure 1. The key components of the proposed CVAE-SPP network are depicted in the schematic.
Convolutional layers are used in both the encoder and decoder of the network, allowing it to learn
patterns over distance matrices. A SPP layer enables the encoder to accommodate distance matrices
of various sizes. Another proposed βCVAE-SPP network utilizes the same schematic but adds an
extra hyperparameter denoted by β in order to regulate the loss function.

While more details can be found in [23], the SPP layer conducts pooling operations
of varying sizes. Information “aggregation” is carried out at the beginning by splitting
the input matrix into divisions from finer to coarser levels at a deeper stage, between the
convolutional and fully-connected layers. The final convolutional layer’s feature maps are
divided into multiple spatial bins, with the number of bins fixed. Each SPP layer has a
resolution parameter n. Larger values indicate higher resolution and enable the pooling
operation to capture smaller features. The sub-layers with larger values of n extract smaller
features; the sub-layers with smaller values of n extract larger features. The effect is that
of a pyramidal structure that makes the model input size-agnostic and enables it to learn
from features of varying scales. The SPP layer in CVAE-SPP contains 3 sub-layers with
corresponding n values of 1, 2, and 4.
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4. Methods
4.1. β-CVAE-SPP

We first extend the CVAE-SPP loss function to force disentanglement on the latent
factors and obtain a new model, β-CVAE-SPP. Following the β-VAE introduced in [34],
β-CVAE-SPP augments the CVAE-SPP architecture with a regularization term, whose
weight in the resulting loss function is controlled by the β hyperparameter. The loss
function then becomes: L = |x− y|2 + βKL(N(µx, σx)− N(0, I)).

The hyperparameter β limits the latent bottleneck’s effective encoding capacity and
encourages the latent representation to be increasingly factorised [? ]. It is this factorization
that we refer to as disentanglement.

The hyperparameter can be adjustable to strike a balance between the capacity of the
latent channel and independence constraints with the precision of the reconstruction [34].
According to work in [34], the value of β should be greater than 1 so as to learn a disen-
tangled latent representation. We investigate the impact of the value of β in a systematic
manner. In a controlled experimental setting, we vary the value of this hyperparameter in
a reasonable range and track the impact on performance along several metrics.

4.2. Training Dataset Compositions

Work in [23] shows that a model needs to see enough examples of a certain size
before it is able to learn the inherent patterns in complex data, such as distance matrices
(or contact maps). So, in this paper, we consider the following setting. First, from now
on, we distinguish between an input dataset and a training dataset. A training dataset
is what one can construct from an input dataset. For us, an input dataset will consist of
tertiary structures obtained from the Protein Data Bank. However, rather than risk over-
or under-representation of sequences and structures, we utilize the pre-curated datasets
available by the PISCES server [36]. We related more details on these below. For now, let us
refer to such a non-redundant input dataset of tertiary structures as Input-Dataset.

From this dataset, which invariably contains different-length proteins, one can choose
to extract all fragments of N amino acids long and compute from these fragments the
corresponding N × N distance matrices. One can vary N and so obtain different images of
this dataset. We vary N in {64, 72, 90} in this paper in order to balance between sufficiently-
long fragments and sufficiently-large training datasets. Specifically, we construct a training
dataset where N = 64. This is a dataset of fixed-size, 64× 64 distance matrices, which
refers as a baseline dataset. As one increases the value of N, the amount of data becomes
scarcer. So, we consider varying compositions: a training dataset consisting of 64× 64
and 72× 72 distance matrices in a 70–30 split (so, 70% of the distance matrices are of size
64× 64, and the rest are 72× 72). In another training dataset, we vary this split to 50-50. In
yet another, we introduce 90× 90 distance matrices in a 40-30-30 split for N ∈ {64, 72, 90}.
Finally, we consider the split 34–33–33. In summary, we consider 5 different training dataset
configurations and Table 1 reports the descriptions. CVAE-SPP and βCVAE-SPP are trained
on each of these five training datasets separately, and their generated distance matrices are
evaluated for their realism along several metrics summarized below.

Table 1. Descriptions of different training dataset configurations.

Training Dataset Configurations Descriptions

Configuration 1: 64× 64 All contact maps extracted from an input dataset are
of size 64× 64.

Configuration 2: 64(70%) + 72(30%)
70% of the contact maps extracted from an input
dataset are of size 64× 64, and the rest are of size
72× 72.

Configuration 3: 64(50%) + 72(50%)
50% of the contact maps extracted from an input
dataset are of size 64× 64, and the rest are of size
72× 72.
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Table 1. Cont.

Training Dataset Configurations Descriptions

Configuration 4:
64(40%) + 72(30%) + 90(30%)

40% of the contact maps extracted from an input
dataset are of size 64× 64, 30% of the contact maps
extracted from an input dataset are of size 72× 72
and the rest are of size 90× 90.

Configuration 5:
64(34%) + 72(33%) + 90(33%)

34% of the contact maps extracted from an input
dataset are of size 64× 64, 33% of the contact maps
extracted from an input dataset are of size 72× 72
and the rest are of size 90× 90.

4.3. Input Datasets

We utilize separately three pre-compiled datasets, considering each as a representative,
non-redundant view of the PDB obtained via the PISCES server [36]. What we control in
the input datasets are tertiary structure quality; indirectly, the control on quality gives us
control on the input dataset size, as well.

Specifically, we consider the following three input datasets, each containing ter-
tiary structures of protein molecules varying in length from 40 to 1,440 amino acids:
“cullpdb_pc15.0_res0.0-2.0_len40-10000_R0.25_Xray_d2022_02_22_chains3626”, “cullpdb_
pc15.0_res0.0-2.5_len40-10000_Re0.3_Xray_d2022_02_22_chains4639”, and “cullpdb_pc15.0_
res0.0-3.0_len40-10000_R0.3_Xray_d2022_02_22_chains5115”.

All three datasets have been extracted from the PDB on 22 February 2022. In each
dataset, the percentage sequence identity cutoff is 15%, sequence lengths are between 40
and 10,000. The first dataset, which we abbreviate as “res0.0-2.0” from now on contains
the best-quality tertiary structures. This control is executed through the upper bound of
2.0 in the X-ray resolution. Although R0.25 indicates a threshold on the quality of NMR
structures, it is not utilized. The dataset contains only X-ray structures. This dataset
contains the fewest structures, 3626 in all. In this dataset, the longest protein molecule
contains 1440 amino acids.

The second dataset, which we abbreviate as “res0.0-2.5” worsens the resolution by
increasing the upper bound; specifically, X-ray structures with resolution as low as 2.5 Å are
allowed. Again, the dataset contains only X-ray structures, a total of 4639 structures. In this
dataset, the longest protein molecule contains 1440 amino acids.

The third and last input dataset, to which we refer as “res0.0-3.0”, contains tertiary
structures of even lower resolution (e.g., X-ray structures with resolution as low as 3.0 Å).
This increases the dataset size further to 5116 structures. The dataset contains only X-ray
structures. In this dataset, the longest protein molecule contains 1664 amino acids.

We note that for each of these datasets, the five different training configurations
described above are utilized to generate five different training datasets. Training models on
these datasets allows us to evaluate the impact of data size, quality, and composition on the
quality of generated data.

4.4. Metrics to Evaluate Generated Data

Since generated data in our case are complex objectives, they can be summarized
in different ways to obtain distributions that can then be compared with training data
distributions to evaluate generated data quality. As in [22], we summarize each distance
matrix with metrics that evaluate the presence of the backbone, short-range contacts, and
long-range contacts.

Backbone: The presence of a backbone can be indicated by consecutive CA atoms at a
distance of 3.83 Å from each-other, We expand this threshold to 4.0 Å as in [22] to allow for
some variation from the ideal geometry that we also observed over experimental data. We
first summarize a distance matrix with the percentage of consecutive CA atoms no further
than this threshold; we refer to this summary metric as % Backbone.
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Short-range Contacts: Here we count the number of [i, j] entries in the distance matrix
(corresponding to Euclidean distances between the CA atom of amino acid at position i and
the CA atom of amino acid at position j) whose values are no higher than 8 Å. We restrict
to |j− i| ≤ 4, which are referred to as short-range contacts. We refer to this metric as SR-Nr.
Work in [22] introduces this metric for a fixed-size matrix. To account for distance matrices
of varied sizes, we normalize this number by the number of CA atoms (dividing them by
the number of rows of a distance matrix). We refer to this metric as SR-Score .

Long-range Contacts: Restring the above computations to |j− i| > 4 provides us with
the number of long-range contacts in a distance matrix. Normalizing by the number of CA
atoms gives us the LR-Score.

Utilizing the above, each distance matrix can be then summarized with % Backbone,
SR-Score, or LR-Score. We can do this for the training dataset and for the generated dataset,
effectively obtaining distributions that then can be compared with any number of distance
metrics. We utilize the Earthmover Distance (EMD) metric [37] here to compare a distribution
over the training dataset to a distribution over the generated dataset. This comparison informs
on whether a model has learned to reproduce in the generated data the local (Backbone,
short-range contacts) and distal (long-range contacts) patterns observed over training data.

4.5. Statistical Significance Tests

In addition to comparing distributions over training and generated data and visualiz-
ing this comparison over training dataset configurations, we utilize statistical significance
testing to make rigorous observations. We make use of the SciPy library [38]. The Supple-
mentary Materials contains a large number of varying tests that we carry out, each with
its own assumptions on the underlying distribution of the data and various models for
multi-test correction and more. In Section 5 we only relate two representative tests. The
first one is the One-way Analysis of Variance (ANOVA) which is a statistical technique
used to determine whether the means of two or more samples are significantly different
or not using the F distribution [39]. The ANOVA evaluates the null hypothesis, which as-
sumes that all samples in all compared groups are derived from populations with identical
mean values. To accomplish this, two estimates of the population variance are generated
considering various assumptions. The ANOVA yields an F-statistic, the variation between
means divided by the variance within samples. According to the central limit theorem, if
the group means are chosen from the same population, their variance should be less than
the sample variance. A larger ratio indicates that the samples came from populations with
diverse mean values.

The second test we relate in Section 5 is a Kruskal-Wallis test [40] considered to be
the non-parametric equivalent of the One-Way ANOVA test. A significant Kruskal–Wallis
test implies that at least one sample stochastically dominates another sample. This can be
shown by comparing the means of at least independent groups of two samples.

We conduct Post hoc tests after the statistical significance tests. Post hoc analysis, also
known as a posteriori analysis, is a sort of statistical analysis that is performed after the
rejection of the null hypothesis. The most common application of post hoc analysis is to
investigate mean differences. When we run a statistical significance test to compare two
or three group means, the findings may show that not all group means are equal but does
not help identify which variations between means are significant. Using Post hoc tests, it
is possible to compare several group means while adjusting the experiment-wise error rate.
There are several techniques to conduct a post-hoc analysis (Holm, Bonferroni, Hommel,
Hochberg, Nemenyi, etc.). We choose Dunn’s Test [41] with 2-stage FDR (false discovery
rate) Benjamini-Hochberg and Holm-Bonferroni methods, as these are robust and established
statistical procedures to justify the performance of the models. We note that Dunn’s Test is
a multiple comparison test used to pinpoint which specific means are significant from the
others. Both the Benjamini-Hochberg and Holm-Bonferroni methods are effective in lowering
the FDR and avoiding Type I errors (false positives) [42]. In this work, we only show a subset
of the post-hoc analysis results; the others are included in the Supplementary Materials.
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4.6. Implementation Details

All models are implemented, trained, and evaluated using Pytorch Lightning [43]
which is an open-source python library that provides a high-level interface for the Py-
Torch deep learning framework. We trained each of the investigated models for a total of
90 epochs; we observe that all models converge at around 40 to 45 epochs. For both of our
VAE models, we use a batch size of 32 when all the distances matrices are of the same size
(64× 64). For the other four configurations of the training dataset, we consider a batch size
of 1 to handle input data of variable-lengths and to avoid having different sizes in the same
batch. To avoid premature convergence, a learning rate of 0.0003 is utilized. Training times
for the models vary from 1500.143 to 2700.238 s. After a model is trained, we utilize its
decode to generate distance matrices.

5. Results

We first evaluate the impact of varying β in βCVAE-SPP on the quality of generated
data. We then compare βCVAE-SPP to CVAE-SPP in terms of the quality of the data they
generate. In each case, the evaluation compares the generated to the training data via EMD
along each of the three metrics related in Section 4. We additionally isolate and evaluate
the impact of data quality, size, and composition on the quality of generated data. Finally,
we relate the findings of statistical significance tests that compare models, input data, and
dataset configurations on the quality of generated data.

5.1. Impact of β in βCVAE-SPP

In this experiment, we restrict our focus to the res0.0-2.5 input dataset. We vary β ∈ [5, 50]
in increments of 5. We train each resulting model on 3 of the 5 training dataset configurations
separately, and then compare the data generated by each model to the respective training
dataset via EMD along % Backbone, SR-Score, and LR-Score. Figure 2 relates our findings.
Figure 2 relates several interesting observations. As the value of the β hyperparameter
grows, the percentage of reconstructed backbone decreases, whereas the SR- and LR-Scores
of generated distance matrices improve. The disentanglement term applies more pressure
away from reconstruction in the loss function. Generally, all models are for most β values
above 90% in their reconstruction of the backbone and all achieve similar low EMD values
on the SR- and LR-Score distributions. Notably, the training dataset configuration that is
more diverse helps the models most on recovering SR- and LR-patterns (green lines) for
the majority of β values. Considering these results altogether, we fix the value of β to 10 for
βCVAE-SPP in the rest of the experiments.

% Backbone Evaluation

Figure 2. Cont.
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SR-Score Evaluation

LR-Score Evaluation

Figure 2. Varying β in [5, 50] in increments of 5. Each resulting β-CVAE-SPP model is trained
separately on each of the 3 training dataset configurations built over the res0.0-2.5 input dataset. Data
generated by each model are compared to the respective training dataset via EMD over % Backbone
(top panel), SR-Score (middle panel), and LR-Score (bottom panel).

5.2. Comparison of βCVAE-SPP to CVAE-SPP

We now compare βCVAE-SPP to CVAE-SPP along each of the three structural metrics
(% Backbone, SR-Score, and LR-Score). We do so on each of the three input datasets, on each
of the five training dataset configurations per input dataset; note that this means we are
effectively evaluating 15 trained models. To account for training variance, we train each
model three times. We track the average performance of a model over the three runs but
relate the standard deviation via error bars. Figure 3 relates the comparison over % Backbone.
Figure 4 does so for the SR-Score, and Figure 5 does so for the LR-Score.

Figure 3 clearly shows that βCVAE-SPP outperforms CVAE-SPP for most of the train-
ing configurations. In particular, while both models start with a similar performance on the
training dataset configuration containing only 64× 64 distance matrices, the differentiation
in performance becomes visible as the training dataset becomes more diverse. An exception
is observed on the res0.0-2.5 input dataset, at the 34–33–33 training dataset configuration.
We note that for all models and all settings, the % Backbone reconstruction is at a high value
of 93%.
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Figure 3. Average of % Backbone (over 3 independent runs) over generated distance matrices by
CVAE-SPP and βCVAE-SPP. Each model is trained on a training dataset configuration (x-axis) of an
input dataset. The three panels relate the different input datasets.



Biomolecules 2022, 12, 908 11 of 22

Figure 4. Average of EMD values over SR-Score distributions (over 3 independent runs) computed
over generated versus training distance matrices by CVAE-SPP and βCVAE-SPP. Each model is
trained on a training dataset configuration (x axis) of an input dataset. The three panels relate the
different input datasets.
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Figure 5. Average of EMD values over LR-Score distributions (over 3 independent runs) computed
over generated versus training distance matrices by CVAE-SPP and βCVAE-SPP. Each model is
trained on a training dataset configuration (x axis) of an input dataset. The three panels relate the
different input datasets.
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Figures 4 and 5 suggest that βCVAE-SPP and CVAE-SPP are closer in performance
in terms of the short-range and long-range contacts. In particular, Figure 4 shows that the
differences between βCVAE-SPP and CVAE-SPP, which we note are EMD values, are small.
Interestingly, irregardless of the model, the 64× 64 and the 50–50 split are the two training
dataset configurations that confer the best performance (lowest EMD values). This trend
holds also for the evaluation over long-range contacts, related in Figure 5.

Altogether, these results suggest that there are few differences among the models, and
that, interestingly, the addition of disentanglement does not hurt the model. In fact, it even
improves its ability to recover more of the backbone in generated data.

5.3. Evaluating the Impact of Data Size, Quality, and Composition

We now present the comparisons related above in such a way as to expose, if present,
any impact on generated data quality by the input datasets. Similar to the above analysis,
we relate the average Backbone % over the generated dataset and then the EMD values
comparing the generated to the training dataset over SR- and LR-Score.

Figure 6 shows the (average) percentage of backbone over generated data for the
CVAE-SPP (top panel) and βCVAE-SPP model (bottom panel) along the training dataset
configurations for each of the three input datasets (denoted by curves of different colors;
blue for res0.0-2.0, red for res0.0-2.5, and green for res0.0-3.0). Figure 6 shows a similar trend
for each of the models; as the training dataset diversity increases, the average % Backbone
goes down, with a small increase observed over the most diverse dataset. Additionally
comparing the three input datasets reveals that the highest performance is obtained from
the res0.0-2.5 input dataset and the 50–50 training dataset configuration. Interestingly, the
differences due to the three input datasets largely disappear on the most diverse training
dataset configuration when β-CVAE-SPP is utilized.

Figure 7 tracks the EMD value over SR-Score distributions of generated versus training
data separately for CVAE-SPP (top panel) and βCVAE-SPP. In each panel, the comparison
is made along the five training dataset configurations for each of the three input datasets.
Figure 7 shows that the input dataset largely has no bearing on the short-range contacts.
Tracking along the training dataset configurations however, clearly shows that the 64× 64
configuration confers the best performance, followed closely by the 50–50 split.

Figure 8 now tracks the EMD value over LR-Score distributions of generated versus
training data separately for CVAE-SPP (top panel) and βCVAE-SPP. In each panel, the
comparison is made along the five training dataset configurations for each of the three input
datasets. Unlike the results above, Figure 8 shows that the input dataset impacts the ability
of the models to reconstruct long-range contacts as in the training dataset. In particular,
the res0.0-3.0 dataset confers the worst performance (highest EMD values over all training
dataset configurations for both models). We recall that the quality of the tertiary structures
in this input dataset is worse, and this seems to impact the ability of both CVAE-SPP and
βCVAE-SPP to learn realistic long-range contact distributions. Largely, the differences due
to the other two datasets are smaller. As above, for short-range contacts, tracking along
the training dataset configurations clearly shows that the 64× 64 configuration confers the
best performance (lowest EMD value), followed closely by the 50–50 split.
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Figure 6. The (average) percentage of backbone over generated data for the CVAE-SPP (top panel)
and βCVAE-SPP model (bottom panel) is compared along the five training dataset configurations for
each of the three input datasets.



Biomolecules 2022, 12, 908 15 of 22

Figure 7. The EMD over SR-Score distributions of generated versus training data are tracked sepa-
rately for CVAE-SPP (top panel) and βCVAE-SPP. In each panel, the comparison is made along the
five training dataset configurations for each of the three input datasets.
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Figure 8. The EMD over LR-Score distributions of generated versus training data are tracked sepa-
rately for CVAE-SPP (top panel) and βCVAE-SPP. In each panel, the comparison is made along the
five training dataset configurations for each of the three input datasets.

5.4. Visualization of Distance Matrices as Heatmaps

We visualize generated distance matrices by the top two training dataset configuration
settings indicated by the analysis above, 64× 64 and 50–50 composition setting. We do so
for each input dataset, and each model, in addition to the training dataset configuration. We
select three distance matrices at random in each setting. These distance matrices are related
as heatmaps in Figure 9. The heatmaps employ a yellow-to-blue color scheme to visually
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relate higher-to-lower distances. The existence of the backbone in the distance matrices as a
dark line running along the main diagonal is clear. Short-range and long-range contacts as
dark lines off the main diagonal are also visible. Visually, the generated distance matrices
resemble actual distance matrices expected of tertiary structures.

Dataset: res0.0-2.0
Training Dataset CVAE-SPP64 βCVAE-SPP64 CVAE-SPP βCVAE-SPP

Generated Generated 64(50%)+72(50%) 64(50%)+72(50%)

Generated Generated

Dataset: res0.0-2.5
Training Dataset CVAE-SPP64 βCVAE-SPP64 CVAE-SPP βCVAE-SPP

Generated Generated 64(50%)+72(50%) 64(50%)+72(50%)

Generated Generated

Dataset: res0.0-3.0
Training Dataset CVAE-SPP64 βCVAE-SPP64 CVAE-SPP βCVAE-SPP

Generated Generated 64(50%)+72(50%) 64(50%)+72(50%)

Generated Generated

Figure 9. We relate here distance matrices selected at random over a training dataset (leftmost
column) and over generated datasets (other columns) for each model and two of the training dataset
configurations. The rows separate the three input datasets utilized. A yellow-to-blue color spectrum
indicates high-to-low distance values.

5.5. Statistical Significance Analysis

Since the above analysis suggests possible differences over long-range contacts, we
restrict the statistical significance analysis here to those contacts. As is typical, we consider
α = 0.05.

Table 2 reports the results of the one-way ANOVA test and its non-parametric equiva-
lent, the Kruskal–Wallis test. We conduct each test separately on CVAE-SPP and βCVAE-SPP.
For each model, we compare 3 groups that allow us to evaluate the impact of the input
dataset (res0.0-2.0 vs. res0.0-2.5 vs. res0.0-3.0). Each group contains the EMD values
obtained over all five training dataset configurations; so each group contains 5 values.
Each value is the EMD measuring the distance between the LR-Score distribution over
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the generated and the LR-Score distribution over the training dataset. Table 2 shows that
all obtained p-values are under the α value; that is, the means are different and that this
is statistically significant. This result holds by both the One-way ANOVA test and the
Kruskal-Wallis test. This result confirms our visual observations above; that is, there are
differences due to the three different input datasets.

Table 2. Statistical significance test over 3 groups of EMD values (over LR-Scores of generated
vs. training dataset distributions) corresponding to the three different input datasets. Each group
includes EMD values over LR-Score distributions (generated versus training) obtained from a model
trained over each of the five training dataset configurations. The test is repeated separately for
CVAE-SPP and βCVAE-SPP. The non-parametric version of the One-way ANOVA test, the Kruskal
Wallis test is included in the last column. p-values are shown. Those no higher than 0.005 are
highlighted in bold, indicating that there are statistically-significant differences among the means of
the three groups.

res0.0-2.0 vs. res0.0-2.5 vs. res0.0-3.0

LR-Score

Model One way ANOVA Kruskal-Wallis

p value p value

CVAE-SPP : 5 training dataset configs 0.0017 0.0131

βCVAE-SPP: 5 training dataset configs 0.0018 0.0103

The above analysis does not locate the differences among the means. To do so, we
conduct a post-hoc analysis after the null hypothesis is rejected, which is related in Table 2.
As related in Section 4, we apply the Dunn’s multiple comparison test with the Benjamini-
Hochberg method and the Holm-Bonferroni method to investigate differences between
group means. Table 3 relates all pairwise comparisons across the input datasets. The
highlighted p-values indicate statistically-significant differences.

Table 3 shows that when CVAE-SPP is employed, the Benjamini-Hochberg method
shows that there are statistically-significant differences between the res0.0-3.0 and the
res0.0-2.5 input datasets (we abuse terminology here, as the comparison is between means
of EMD values obtained by trained models) and between the res0.0-3.0 and the res0.0-2.0
input datasets. No statistically-significant differences are observed between the res0.0-2.0
and the res0.0-2.5 input datasets. When the Holm-Bonferroni method is employed, the only
statistically significant difference is between the res0.0-3.0 and the res0.0-2.0 input datasets.
These observations are replicated in their entirety over the results obtained by βCVAE-SPP.
Taken altogether, they suggest that indeed the input dataset impacts the quality of the
generated data with regards to the realism of long-range contacts; statistically-significant
differences are observed when the resolution worsens from 2.0 Å to 3.0 Å. These results
clearly relate that dataset quality has an impact over the quality of data generated by
a model.

Then we focus on for a specific dataset, whether the differences between CVAE-SPP
and βCVAE-SPP are statistically significant or not. For each dataset, we compare 2 sets
or groups of input. The distribution of the average of LR-Score values on 5 different
configurations on the training dataset using CVAE-SPP model is the first set of input
for a given dataset, and the distribution of the average of LR-Score values on 5 different
configurations on the training dataset using βCVAE-SPP is the second set of input for
that dataset.
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Table 3. Post-hoc analysis over EMD values (over LR-Score generated vs. training dataset distribu-
tions) obtained over the training dataset configurations, comparing all pairs of input datasets. The
analysis is carried out separately for CVAE-SPP and βCVAE-SPP. The left panel relates Dunn’s test
using the FDR 2 stage Benjamini-Hochberg method. The right panel indicates Dunn’s test using the
Holm-Bonferroni method. p-values are shown. Those no higher than 0.005 are highlighted in bold,
indicating statistically-significant differences among the means of the groups under comparison.

Post Hoc Dunn’s Test (CVAE-SPP: 5 Different Configs on Training Dataset), α = 0.05

FDR 2 stage Benjamini-Hochberg Method Holm-Bonferroni Method
LR-Score (Training, Generated)

Dataset res0.0-2.0 res0.0-2.5 res0.0-3.0 Dataset res0.0-2.0 res0.0-2.5 res0.0-3.0

p value p value

res0.0-2.0 1.0000 0.2958 0.0067 res0.0-2.0 1.0000 1.0000 0.0266

res0.0-2.5 0.2958 1.0000 0.0066 res0.0-2.5 1.0000 1.0000 0.3998

res0.0-3.0 0.0067 0.0066 1.0000 res0.0-3.0 0.0266 0.3998 1.0000

Post Hoc Dunn’s Test (βCVAE-SPP: 5 Different Configs on Training Dataset), α = 0.05

FDR 2 stage Benjamini-Hochberg Method Holm-Bonferroni Method
LR-Score (Training, Generated)

Dataset res0.0-2.0 res0.0-2.5 res0.0-3.0 Dataset res0.0-2.0 res0.0-2.5 res0.0-3.0
p value p value

res0.0-2.0 1.0000 0.1598 0.0037 res0.0-2.0 1.0000 1.0000 0.0112

res0.0-2.5 0.1598 1.0000 0.0141 res0.0-2.5 1.0000 1.0000 0.0851

res0.0-3.0 0.0037 0.0141 1.0000 res0.0-3.0 0.0112 0.0851 1.000

Table 4 shows for each of the datasets (in row), we compare the distribution of the
average of LR-Score values on 5 different configurations on the training dataset between
CVAE-SPP and βCVAE-SPP models using different statistical significance tests and found
that those difference are not statistically significant.

Table 4. Statistical significance between CVAE-SPP and βCVAE-SPP models for each 3 datasets res0.0-
2.0 (first row), res0.0-2.5 (second row) and res0.0-3.0 (third row) are determined through different
statistical significance test at α = 0.05. Column 1 lists the individual dataset for CVAE-SPP and
βCVAE-SPP models comparison. Column 2 shows the “p-value” using the One-way ANOVA test,
Column 3 using the Student’s t-test, Column 4 using the Kruskal–Wallis test and Column 5 using
the Mann-Whitney U test. We recall that LR-Score measures the number of long-range contacts in
a distance matrix (normalizing by the number of CA atoms). And for both VAE models, we have
considered all 5 different configurations on the training dataset.

CVAE-SPP vs. βCVAE-SPP: 5 Different Configs on Training Dataset

LR-Score

Dataset One way ANOVA t-test Kruskal Mann Whitney Reject-hs

p value

res0.0-2.0 0.3409 0.3409 0.3472 0.4033 False

res0.0-2.5 0.5707 0.5707 0.3472 0.4033 False

res0.0-3.0 0.0624 0.0624 0.0758 0.0946 False

6. Conclusions

This paper advances research on deep generative models for computing multi-structure
views of protein molecules. Building over state-of-the-art VAE frameworks and, in partic-
ular, architectures capable of accommodating different-length protein molecules, such as
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SPP-CVAE, we investigate here the impact of dataset quality, size, and composition. We
utilize rigorous evaluation along various metrics gaging the presence of local and distal
patterns expected in realistic tertiary structures. We additionally present a disentangled
SPP-CVAE model and show that the disentanglement does not impact the quality of gener-
ated data; in fact, there is some benefit in the ability of the model to recover more of the
backbone. Careful comparison of the models shows no meaningful differences on metrics
related to short-range and long-range contacts; this conclusion is supported by statistical
significance analysis related in the Supplementary Materials. Evaluation along the various
input datasets shows that the quality of the dataset has a clear impact on the quality of
generated data, and these observations are supported by statistical significance analysis. In
particular, the analysis suggests that high-quality tertiary structures are needed to improve
a model’s ability to capture realistic long-range/distal patterns.

The work presented in this paper opens up many avenues of future research, including
end-to-end models that do not limit the models to work with intermediate representations
of tertiary structures but rather tertiary structures themselves. Another important direction
concerns making these models sequence-specific; that is, conditioning generated data on a
given amino-acid sequence. We also note that graph-based representations of tertiary struc-
tures may open further directions of promising research on graph-based GANs, graphVAEs,
and graph neural network architectures.

Supplementary Materials: The following supporting information regarding large number of varying
statistical significance tests that we carry out, each with its own assumptions on the underlying
distribution of the data and various models for multi-test correction and more can be downloaded at:
https://www.mdpi.com/article/10.3390/biom12070908/s1. Refs. [44,45] are cited in Supplementary
Materials.
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Abbreviations
The following abbreviations are used in this manuscript:

ANOVA One-way Analysis of Variance
βVAE Beta Variational Autoencoder
CA atom Central Carbon atom
C-terminus Carboxyl terminus
CASP Critical Assessment of Protein Structure Prediction
CVAE Convolutional Variational Autoencoder
EMD Earth Mover Distance
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GAN Generative Adversarial Network
KL divergence Kullback-Leibler divergence
LR Long-Range Contact
N-terminus NH2 (Amino) terminus
PDB Protein Data Bank
PISCES Protein Sequence Culling Server
SPP Spatial Pyramid Pooling
SR Short-Range Contact
ResNet Residual Neural Network
2-stage FDR Two-stage False Discovery Rate
VAE Variational Autoencoder
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