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Abstract: The administration of combinations of drugs is a method widely used in the treatment
of different pathologies as it can lead to an increase in the therapeutic effect and a reduction in the
dose compared to the administration of single drugs. For these reasons, it is of interest to study
combinations of drugs and to determine whether a specific combination has a synergistic, antagonistic
or additive effect. Various mathematical models have been developed, which use different methods
to evaluate the synergy of a combination of drugs. We have developed an open access and easy to
use app that allows different models to be explored and the most fitting to be chosen for the specific
experimental data: SiCoDEA (Single and Combined Drug Effect Analysis). Despite the existence of
other tools for drug combination analysis, SiCoDEA remains the most complete and flexible since it
offers options such as outlier removal or the ability to choose between different models for analysis.
SiCoDEA is an easy to use tool for analyzing drug combination data and to have a view of the various
steps and offer different results based on the model chosen.

Keywords: drug screenings; bioinformatics; IC50; genomics; isobologram; combination index;
synergic; antagonist; additive; automatic report

1. Introduction

When in 1965 Emil Frei designed the first combinatorial regimen for acute leukemia [1],
it became clear that remissions obtained with therapies based on single drugs were only
temporary, and that the clinical responses achieved were more durable when more agents
were combined.

Over time, pursuing this approach, cancers that had previously been fatal such as
acute lymphocytic leukemia, diffuse large B-cell lymphoma, Hodgkin’s lymphoma and
testicular cancer have become largely curable [2].

These days effective chemotherapies mostly involve combinations of two or more
drugs, allowing the targeting of tumor heterogeneity, feedback loops, dependencies and
synthetic lethality, and the selective rise of therapy-resistant tumor clones.

In the last two decades, a new concept of cancer therapy, the targeted therapy, has
emerged giving rise to several classes of cancer drugs that are designed to precisely block
specific pathways that are relatively selective to the cells of distinct cancer types, inhibiting
their growth or promoting their differentiation, or death sparing healthy tissues. These new
targeted therapies that include kinase inhibitors, receptor inhibitors and immunotherapies
give promising results in combination with standard chemotherapeutic regimens [3,4], and
equally growing is the depth of molecular characterization in cancer.

Biomolecules 2022, 12, 904. https://doi.org/10.3390/biom12070904 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12070904
https://doi.org/10.3390/biom12070904
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-4220-2474
https://orcid.org/0000-0002-0966-4001
https://orcid.org/0000-0002-2366-1210
https://orcid.org/0000-0001-9139-1729
https://doi.org/10.3390/biom12070904
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12070904?type=check_update&version=1


Biomolecules 2022, 12, 904 2 of 14

With countless possibilities of combinations, dosing, scheduling and repurposing, and
finer targeting due to the deeper disease characterization, the number of possible clinical
trials vastly exceeds the number of patients [5].

If we take into account that just 7% of anti-cancer drugs undergoing clinical trials prove
to be effective [6], while oncology trials are, together with cardiovascular trials, the most
expensive [7], it becomes even more clear that technological advances are urgently needed
to make the design of combination treatments, necessary to improve clinical outcomes for
most patients, truly fruitful.

For these reasons, it is of interest to study combinations of drugs and to determine
whether a specific combination has a synergistic, antagonistic or additive effect, i.e., greater,
less than or equal to the effect expected by the sum of the individual drugs.

The fundamental step is the definition of a Combination Index (CI) that allows eval-
uation of the effect of the two drugs used separately with respect to the combination.
The CI represents a value that indicates the distance of the observed response from the
expected response and will indicate synergy if CI < 1, antagonism if CI > 1 and additivity if
CI = 1. For this purpose, an effect-based strategy or a dose–effect-based strategy can be used [8],
two different approaches that compare the observed effect of the combination with the
expected effect under the assumption of non-interaction predicted by a reference model.
In the first case, a direct comparison is made between the effect of the individual drugs
and the effect of the drugs on the combination; in the second case the calculation of the
dose–effect curves for the individual drugs is used to calculate their expected values. In
this second case, therefore, a further important step is the choice of the model to calculate
the dose–effect curve.

Each of these methods for calculating the CI has advantages and disadvantages
based on the situation and the data being analyzed, and for this reason it is of interest
to provide a choice. Creating a model for this purpose and calculating its parameters,
however, requires a certain level of mathematical and programming knowledge or the use
of commercial software.

There are already several tools that analyze the interaction between drugs, and the
most famous or complete are CompuSyn [9], SynergyFinder Plus [10] and DDCV [11].
However, we have observed that, for an analysis that is as precise and flexible as possible,
something is missing from each of these tools (Table 1). CompuSyn is a paid software
that only works on Windows platforms, it also does not offer many options to choose
from and only allows analysis using the median-effect model. DDCV is another shiny app
that can be found on the web that allows the analysis of drug combinations. It uses only
the median-effect model for the calculation of the CI, without the possibility of choosing
otherwise. Another fairly complete app that allows the analysis of drug combinations
is SynergyFinder Plus, but, although it allows you to choose between different models
for the calculation of the CI, it does not allow you to choose between different models of
dose–response curves in the web version. In addition, none of these tools offer an analysis
of the outliers with a variable filter threshold to refine the model.

Table 1. Options available in the various tools for drug combination analysis.

CI Models Drug–Response
Models Open Source Report Single

Drug Analysis
Customizable

Outlier Analysis Platform 3 Drugs
Analysis

SynergyFinder
Plus 4 1 X X X Win/Mac/Linux X

CompuSyn 1 1 X Win

DDCV 1 1 X X Win/Mac/Linux

SiCoDEA 5 5 X X X X Win/Mac/Linux

For this purpose, therefore, we have developed an open access and easy to use app
that allows different models to be explored and the most fitting to be chosen for the specific
experimental data: SiCoDEA (Single and Combined Drug Effect Analysis).
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2. Materials and Methods
2.1. SiCoDEA Strategy

The models implemented within SiCoDEA for the calculation of CI are the effect-based
strategy and dose–effect-based strategy.

The effect-based strategy includes:

• Response additivity model. Additionally known as the linear interaction effect, the
response additivity model [12] consists of comparing the effect of the combination
and the effect obtained by adding that of the individual drugs at the same dose. It is
therefore possible to obtain a CI from the ratio

CIAdditivity =
EA + EB

EAB
, (1)

where EA is the effect of drug A alone, EB is the effect of drug B alone and EAB is the
effect of drugs A and B in combination.

• Highest single agent (HSA) model. The highest single agent model (HSA) or Gaddum’s
non-interaction model [13] assumes that the expected effect of the combination is
equal to the highest effect of the individual drug at the same dose as it has in the
combination. Thus, a synergistic combination should produce an additional beneficial
effect compared to what individual drugs alone can achieve. The CI is given by the
difference between the effect of the combination at a given dose and the highest effect
of one of the single drugs at that same dose

CIHSA =
max(EA, EB)

EAB
. (2)

• Bliss independence model. The Bliss independence model [14] assumes a stochastic
process in which two drugs produce their effect independently. Therefore, the expected
effect of the combination can be calculated as the probability of two independent
events: EA + EB − EAEB where 0 ≤ EA ≤ 1 and 0 ≤ EB ≤ 1. The CI will be

CIBliss =
EA + EB − EAEB

EAB
. (3)

The dose–effect-based strategy includes:
• Loewe additivity model. The principle on which the Loewe additivity model [15–17] is

based is that to calculate the CI it is necessary to compare the doses of the drugs in
combination with the doses of the individual drugs necessary to achieve the same effect.
In this way, if the dose required for a single drug is lower than that in combination,
we will have an antagonistic effect between the two drugs, if, instead, it is higher, the
effect will be synergistic. The CI will be calculated as

CILoewe =
a
A

+
b
B

, (4)

where a is the dose of drug A in the combination, A is the equivalent dose, i.e., the
dose of drug A needed to achieve the same effect of the combination, b is the dose of
drug B in the combination and B is the equivalent dose, i.e., the dose of drug B needed
to achieve the same effect of the combination.

• Zero Interaction Potency (ZIP) model. The Zero Interaction Potency (ZIP) model [18,19]
combines the Loewe model and the Bliss model together if, in combination, the two
dose–effect curves do not change. It then uses the same calculation of two independent
events as the Bliss model, but using the values calculated through the dose–effect
curve as in the Loewe model. The CI will be

CIZIP =
EEA + EEB − EEAEEB

EAB
, (5)
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where EEA is the expected effect of drug A, and EEB is the expected effect of drug B
calculated based on the dose–effect curve.

In the case of dose–effect-based approaches, the choice of the model for the calculation
of the dose–response curve is equally important. Although, in fact, there are models that
are more used than others, it is important to evaluate case by case, based on the data under
examination, which model is best suited. In SiCoDEA, the following 5 models are available
to choose

• Chou–Talalay Method [20] (median-effect), which is the most commonly used model
based on the median-effect equation, derived from the mass action law principle

D = Dm ·
(

fa

1 − fa

) 1
m

. (6)

fa =
1

1 +
(

Dm
D

)m . (7)

where D is the dose of interest, Dm is the median-effect dose, f a is the fraction affected
and m is the slope.

Another widely used model is the log-logistic one, which can use two, three or four
parameters: with two parameters, the minimum is set equal to zero and the maximum
equal to one; with three parameters only one of the two is kept fixed (either the maximum
or the minimum); finally, with four parameters there is no fixed value, but all four are
calculated within the model (maximum, minimum, median-effect dose, Dm, and slope, m).
The following are the formulas for the four models

• Log-logistic with four parameters (log-logistic).

D = Dm ·
(

max − min
fa − min

− 1
) 1

m
. (8)

fa = min +
max − min

1 +
(

D
Dm

)m . (9)

• Log-logistic with three parameters (minimum equal to zero, log-logistic[0]).

D = Dm ·
(

max − fa

fa

) 1
m

. (10)

fa =
max

1 +
(

D
Dm

)m . (11)

• Log-logistic with three parameters (maximum equal to one, log-logistic[1]).

D = Dm ·
(

1 − min
fa − min

− 1
) 1

m
. (12)

fa = min +
1 − min

1 +
(

D
Dm

)m . (13)

• Log-logistic with two parameters (log-logistic[01]).

D = Dm ·
(

1 − fa

fa

) 1
m

. (14)
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fa =
1

1 +
(

D
Dm

)m . (15)

Outliers’ analysis:
Here, a Grubbs’ test [21] is used to check whether there is an outlier in the data that

is significantly different from the other values. For this purpose, a G score is calculated,
obtained as G = O−mean

SD where O represents the value of the presumed outlier, mean is the
average of all values and SD the standard deviation. Based on this score, the p-value is
then calculated.

SiCoDEA (available at https://sicodea.shinyapps.io/shiny/, accessed on 20 April
2022) is developed through a shiny interactive and easy to use interface (R based); it provides
both the simple calculation of the IC50 for different drugs and the calculation of the CI with
the display of the respective plots. The utilized R packages are “shiny” [22], “shinyjs” [23],
“plyr” [24], “car” [25], “drc” [26], “ggplot2” [27], “tidyr” [28], “gplots” [29], “outliers” [30],
“scales” [31], “rlist” [32], “dplyr” [33].

2.2. SiCoDEA Validation

The validation of our novel SiCoDEA open-source app was performed with drug
combinations on acute myeloid leukemia (AML) cell lines (OCI-AML3 and OCI-AML2), cul-
tured as recommended by cell line providers and previously described [34–36]. For analysis,
AML cells were exposed to drugs or controls either as single or combination treatment.

The first step was the optimization of drug responsive curves for the drugs used as
single agents. Cells were seeded in 384-well plate at a concentration of 4 × 105 cells/mL in
a volume of 22.5 µL/well and treated in triplicate with either vehicle (negative control) or
7 log-scale concentrations of each drug using the automized D300e Digital Dispenser (Tecan,
Männedorf, Switzerland). Treatment with 100 µM Etoposide (a topoisomerase II inhibitor
with known wide anti-tumor activity) was used as positive control. After either 48 or 72 h,
cell proliferation was assessed using the cell metabolism independent CyQUANT Direct
Cell Proliferation Assay (Life Technologies, New York, NY, USA). Cells were incubated
for 4 h with CyQUANT reagent, and then fluorescence signal of drug-treated and vehicle-
treated samples were measured using a Spark Microplate Reader (Tecan). Data were
normalized assuming 100% cell proliferation to vehicle-treated control and 0% proliferation
to 100 µM Etoposide treatment.

Once drug–response curves had been optimized, we proceeded to the drug combi-
natorial treatment. Again, cells were seeded in 384-well plates and treated in triplicate
with an 8 × 8 matrix of log-scale drug concentrations ranging from 0 to the maximum
effective dose for each drug. The IC50 of each drug was in the middle of the 7 drug doses.
CyQUANT reagent was added 48 or 72 h later, and data were analyzed to assess the CI.

As example of SiCoDEA application to drug combinatorial treatment analysis, here
we tested the combination of ABT-199 (Venetoclax, Catalog No. S8048) and HHT (Ho-
moharringtonine, also named Omacetaxine mepesuccinate, Catalog No. S9015) on the
model of OCI-AML3, carrying nucleophosmin (NPM1) gene mutation [34]. Both drugs
were purchased from Selleck Chemicals (Houston, TX, USA). Drugs were prepared as
10 mM stocks in 100% dimethyl sulfoxide (DMSO) and added to culture media at the final
concentration for drug assay. Here, OCI-AML3 cells were treated for 48 h with HHT at
dose range: 5 × 10−10–1 × 10−07 M, and ABT-199, at dose range: 2 × 10−09–5 × 10−06 M.

3. Results
3.1. Implementation and Description of SiCoDEA Functions

A detailed step by step description of the SiCoDEA app used with a combination of a
generic Drug A and Drug B is available in Supplementary File S1.

The app is divided into three tabs, each dedicated to a different analysis.
The first tab (Figure 1) is dedicated to single drug analysis and has the advantage of

being able to analyze many drugs in a single file. It is sufficient to enter one drug per line,

https://sicodea.shinyapps.io/shiny/
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both in the dose file and in the response file. Once the data have been loaded, the single
drug analysis consists of evaluating the trend of the dose–response curves to correctly
choose the parameters relating to the normalization method and p-value threshold for the
outlier test. It is possible to choose between two different normalization methods, one
based on the maximum value and the other on the value calculated at drug concentrations
equal to zero. Before the analysis, a test is also carried out to check for the presence of
outliers in the data, which can compromise the calculation of the model parameters. Our
app gives the possibility to observe the dose–response curves to evaluate the possible
presence of outliers and remove them based on the p-value threshold.

Figure 1. Screenshot of the first tab, dedicated to single drug analysis.

At this step the choice of the model for the calculation of the dose–response curve is
equally important. Although, in fact, there are models that are more used than others, it is
important to evaluate case by case, based on the data under examination, which model is
best suited. In our app, the plot shows the curves for all five models, as well as the line
corresponding to the IC50 for each model. Based on the curves and the calculated R2, the
model that best fits the data can be chosen (Figure 2).

Figure 2. Dose–response curves applying five different models to the same data. The HHT drug
concentration is shown in the x-axis and the proportion of cells (OCI-AML2) that have undergone
inhibition in the y-axis. The lower right table shows the R2 value for each. In this case, the best
models with the highest R2 and therefore best suited to the data are the log-logistic (R2 0.96) (purple
line) and the log-logistic[1] (R2 0.94) (light blue line).
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In the second tab (Figure 3) it is possible to make a comparison between different
samples, such as the different cell lines on which the same drugs are administered at the
same doses. The input files are identical to those of the previous tab, with the difference
being that up to four files with drug response data can be loaded. Thus, t is possible to
choose between the different models, also based on what has been seen in the previous
tab, and show the curve corresponding to each drug. It can be represented by one to four
curves, based on the number of samples you want to analyze and compare.

Figure 3. Screenshot of the second tab, dedicated to drug comparison.

Finally, in the third tab (Figure 4) we have the analysis relating to the combination
of drugs. Here we have both the visualization relating to the single curves for the five
models of the dose–response curve with the calculation of the R2, and the plots for the
combination, with the representation of the CI. It is possible to choose between both the
five models of the combination index and between the five dose–response curves, in the
case of dose–effect-based methods.

Figure 4. Screenshot of the third tab, dedicated to drug combination.
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For the chosen options, a plot is created that shows the trend of the CI for the different
drug combinations and, consequently, whether it is synergistic, antagonistic, or additive.

Finally, it is possible to export the results in single png files or in a summary report
in pdf.

3.2. Application of SiCoDEA

We are currently using SiCoDEA for drug data analysis of AML cells exposed to
different drugs combinations on study in our laboratory. In particular, we are studying the
effect of HHT (Homoharringtonine, also named Omacetaxine mepesuccinate) and ABT-199
(Venetoclax) on models of acute myeloid leukemia (AML), specifically AML with NPM1
mutation, which is the most frequent AML in adult patients, accounting for about one-third
of all cases [37]. Venetoclax is a small molecule drug that directly and selectively inhibits the
B-cell leukemia/lymphoma 2 (Bcl-2) anti-apoptotic protein [38], highly expressed in many
hematologic malignancies, including AML. Omacetaxine mepesuccinate is a synthetic form
of the plant cephalotaxine alkaloid homoharringtonine (HHT) that is derived from the bark
and leaves of various Cephalotaxus species. HHT binds to the A-site cleft of ribosomes
preventing the initial elongation step of protein synthesis and leading to a transient but
profound inhibition of the synthesis of proteins, especially those with a short half-life such
as the myeloid cell leukemia 1 (Mcl-1) anti-apoptotic protein, often upregulated in leukemic
cells [39]. Following the inhibition of Bcl-2, the activation of Mcl-1 is a known mechanism
of resistance that the cell develops to inhibit apoptosis.

Here, we present representative data derived by the application of SiCoDEA to drug
effect analysis, generated by treating AML cell lines with HHT and ABT-199 (hereinafter
indicated as ABT) and using the CyQUANT Direct Cell Proliferation Assay to evaluate the
anti-proliferative effect, as described in the Section 2.

First, we treated OCI-AML2 (not harboring NPM1 mutation) versus OCI-AML3 (car-
rying NPM1 mutation) with HHT for either 48 or 72 h and compared the drug anti-
proliferative effects. In the reported experiment, observing the curves generated for OCI-
AML2 at 72 h of treatment (Figure 5a), we see the presence of some outliers for low dosages
of the drug, which compromise the quality of the dose–response curves and further analysis.
Indeed, it is evident that the curves of the various models are significantly influenced by
the presence of these outliers and, consequently, they are less consistent with the observed
data. The calculated R2 also reflects this trend, as they report values below 0.9, while the
goodness of fit of a model is evaluated by the proximity of this value to 1. Applying the
outlier removal function of SiCoDEA, we could appreciate a clear improvement in the
quality of the dose–response curves (Figure 5b). Indeed, the models adapt better to the
observed data and the R2 values rise to values above 0.9.

Curves obtained on OCI-AML3 are displayed in Figure 5c.
For comparison analysis (Figure 5d), we chose one model whose R2 values are or

approach the best for each experimental condition. In this case, the best model for each
corresponded to the log-logistic with three parameters model (Log-logistic[1]).

This analysis showed that the HHT IC50 at 72 h for OCI-AML3 and OCI-AML2 are
similar and in the range of 7–9 nM, in keeping with what was previously reported [40].
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Figure 5. Dose–response curves for HHT on OCI-AML2 and OCI-AML3 at 72 h. (A,B) Curves
obtained with OCI-AML2 according to the different models and data before (A) and after (B) outliers’
removal. (C) Curves obtained with OCI-AML3 according to the different models. (D) Comparison
between OCI-AML2 and OCI-AML3 cell lines treated with HHT. The concentration of the drug is
shown on the x-axis and the proportion of inhibition is shown on the y-axis.

In order to predict the synergistic effects of the HHT/ABT combination in AML with
the NPM1 mutation to be translated into the clinics, we tested SiCoDEA with the OCI-
AML3 cell line treated as described in the Section 2. By normalizing the starting data and
calculating the average for the various replicates, we first obtained a heatmap showing
the inhibition values for each drug combination (Figure 6a). We then generated the curves
for each drug according to the five different models available (Figure 6b,c). Specifically, in
the case of the HHT drug, the best model (and therefore with a higher R2) was the logistic
with three parameters (log-logistic[1], yellow line) (Figure 6b), with a calculated IC50 of
1.55 × 10−08 M, while in the case of the ABT drug, the best model was the log-logistic
with four parameters (log-logistic, purple line), with a calculated IC50 of 7.345 × 10−06 M
(Figure 6c).

The next step was the choice of the model that best suits the two drugs under examina-
tion. Since the model must be the same for the two drugs when evaluating a combination,
we chose the two-parameter log-logistic model (log-logistic[01]), which was the one that on
average gave better results in both the curves.
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Figure 6. Combinatorial HHT/ABT drug treatment analysis in OCI-AML3. (A) Heatmap of normal-
ized inhibition levels. (B,C) Dose–response curves according to the five different models available in
SiCoDEA, for OCI-AML3 cell line treated with HHT drug (B) and ABT drug (C) for 48h. The drug
concentration is shown in the x-axis and the proportion of cells that have undergone inhibition in
the y-axis.

For the chosen options, a plot was then created that shows the trend of the CI for the
different drug combinations and, consequently, whether it is synergetic, antagonistic, or
additive (Figure 7).

Combination efficacy analysis shows a combination index (CI value) of less than
0.1 (Figure 7, blue dots) at multiple combination concentrations, indicating that ABT in
combination with HHT has a synergistic anti-proliferative effect in the OCI-AML3 cell line.
In particular, a strong synergy was observed in correspondence with combinations of clini-
cally relevant concentrations of either HHT (between 1.7 × 10−08 and 4.1 × 10−08 M, being
the pharmacological concentration of about 15–30 nM) or ABT (between 5.8 × 10−08 and
3.2 × 10−07 M, being the pharmacological concentration of about 100–200 nM) (Figure 7).
Strikingly, in in vivo preclinical experiments in patient-derived xenograft (PDX) murine
models of AML with NPM1 mutation, the combinatorial HHT/ABT treatment with doses
equivalent to the pharmacological concentrations, confirmed a strong synergistic anti-
leukemic activity and gave a significant survival advantage compared with single drug or
vehicle-treated animals [41]. These preclinical findings greatly contributed to the approval
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of a phase 1 clinical trial entitled “A Phase I Study to Evaluate Safety and Preliminary
Efficacy of Omacetaxine Mepesuccinate (Synribo) Combined with Venetoclax (Venclyxto)
in Patients with Relapsed/Refractory Acute Myeloid Leukemia with Nucleophosmin
(NPM1) Gene Mutation” (EudraCT n. 2019-001821-29), active in recruiting patients at our
Hematology Clinical Department [41].

Figure 7. Combination index (CI) values calculated for OCI-AML3 cell line treated with the drug
combination HHT/ABT for 48 h. Here, the model used for the calculation of the dose–response curve
is the log-logistic with two parameters (log-logistic[01]) from the data shown in Figure 6, and for the
calculation of the combination index of the Loewe model. The higher the size of the circle is, the higher
the CI power. The black square highlights the synergistic effect obtained with clinically relevant drug
concentrations of HHT (x-axis) and ABT (y-axis).

4. Discussion

The purpose of SiCoDEA is to provide an easy to use tool for analyzing drug com-
bination data, to have a view of the various steps and to offer different results based on
the model chosen. An important prerequisite in analyzing drug combinations is in fact
the dose–response curve calculated for individual drugs. Many of the existing tools, from
the famous CompuSyn to the most recent SynergyFinder Plus, involve the use of a single
model in the calculation of the dose–response curve, but we have observed that there is
no universally better model than the others: different data require different models. For
this reason, we decided to implement in SiCoDEA five different models for calculating
the dose–response curve, as well as five different models for calculating the CI (Table 1).
SiCoDEA allows you to view the plots of the individual drugs with the curves of the
different models taken into consideration and evaluate which one best fits the data and
thus has the best R2 value. A table showing all the R2 values for the five different models is
automatically created with the curve plot. This is certainly an advantage since it ensures the
best adherence of the model to real data and therefore increases the quality of the analysis.
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Furthermore, as described above, since the presence of outliers can compromise the
results of the analyses, SiCoDEA includes the possibility of choosing the p-value threshold
to use for the outlier calculation, based on the Grubbs’ test [21]. By changing the threshold,
you can immediately observe the consequences on the model to choose the right value to
obtain the most reliable results.

Another type of analysis that may prove useful and that we intend to implement in
the future is the one that involves the three-drug combination.

Other advantages include that it is open source and works on different platforms.
Moreover, it allows you to download a final report, and for each type of analysis, it is
possible to export the results in single png files or in a summary report in pdf.

In conclusion, SiCoDEA is an open-source app and among the most complete. It is
developed through a shiny interactive and easy to use interface (R based, as with our RNA-
Seq app, ARPIR [42,43]) and it allows users to perform three different types of analysis:

• Single drug analysis. Obtain the dose–response curve for different drugs by uploading
a single file. For each drug, curves are displayed for all five models with relative R2

and IC50.
• Drug comparison. Compare the effect of the same drug on different samples, up to a

maximum of four, by choosing the most fitting model from the five options.
• Drug combination analysis. Perform a combination analysis in two steps: first, vi-

sualizing the dose–response curves for the five models in the two drugs considered;
second, based on the R2, choosing the best model to be adopted for the dose–response
curve and for the CI. Results are displayed in an isobologram plot and in a heatmap.

Data input can be easily integrated into Laboratory Information Management Systems
(LIMS), which support analysis plate readings, such as adLIMS [44].

SiCoDEA can be a useful tool, next to the already existing ones, for drug combinatorial
treatment analysis as it introduces different mathematical models allowing accurate fitting
of data. It is a flexible app that allows you to better adapt the analysis parameters based on
the data and can be further improved by adding the three-drug combination analysis option.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom12070904/s1, File S1: Read me and user guide for SiCoDEA.
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