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Abstract: Vascular calcification (VC) is a frequent condition in chronic kidney disease (CKD) and
a well-established risk factor for the development of cardiovascular disease (CVD). Gut dysbiosis
may contribute to CVD and inflammation in CKD patients. Nonetheless, the role of gut and blood
microbiomes in CKD-associated VC remains unknown. Therefore, this pilot study aimed to explore
the link between gut and blood microbiomes and VC in CKD patients on peritoneal dialysis (CKD-
PD). Our results showed relative changes in specific taxa between CKD-PD patients with and without
VC, namely Coprobacter, Coprococcus 3, Lactobacillus, and Eubacterium eligens group in the gut, and
Cutibacterium, Pajaroellobacter, Devosia, Hyphomicrobium, and Pelomonas in the blood. An association
between VC and all-cause mortality risk in CKD-PD patients was also observed, and patients with
higher mortality risk corroborate the changes of Eubacterium eligens in the gut and Devosia genus in
the blood. Although we did not find differences in uremic toxins, intestinal translocation markers,
and inflammatory parameters among CKD-PD patients with and without VC, soluble CD14 (sCD14),
a nonspecific marker of monocyte activation, positively correlated with VC severity. Therefore,
gut Eubacterium eligens group, blood Devosia, and circulating sCD14 should be further explored as
biomarkers for VC, CVD, and mortality risk in CKD.

Keywords: chronic kidney disease; vascular calcification; gut microbiome; blood microbiome;
mortality risk; sCD14

1. Introduction

Chronic kidney disease (CKD) is a major public health problem carrying a high socio-
economic burden with elevated morbidity and mortality [1]. It is expected that CKD will
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become the fifth global cause of death by 2040 [2]. Cardiovascular disease (CVD) is the
leading cause of death among CKD patients with a mortality rate 30 times higher than the
general population [3]. The increased CVD risk in CKD patients is only partially explained
by traditional cardiovascular risk factors such as diabetes, hypertension, dyslipidaemia,
smoking, obesity, among others. Non-traditional risk factors such as inflammation, oxida-
tive stress, endothelial dysfunction, and vascular calcification (VC) have been identified as
key players in the development of CVD in these patients [4].

Under normal conditions, inflammation can arise as a protective physiological re-
sponse to various inimical stimuli. However, in several debilitating disorders, such as
CKD, the inflammatory process becomes persistent and contributes to the aggravation of
the disease [5]. In CKD, inflammation is likely a consequence of multifactorial aetiology
and interacts with several factors that emerge in response to the accumulation of uremic
toxins due to renal function impairment, contributing significantly to the higher CVD risk
in CKD [6].

A disturbed or unbalanced gut microbiota, described as gut dysbiosis, is currently
recognised as a key factor in the pathogenesis or progression of CKD. This CKD dysbiotic
ecosystem is characterized by a shift towards proteolytic metabolism mostly due to an
increased number of bacteria that possess urease, uricase, and p-cresol, and indole-forming
enzymes, and by a decline in saccharolytic fermentation, leading to a reduction of short-
chain fatty acids (SCFA) production [7–9]. CKD-associated gut dysbiotic state leads to an
increase of uremic toxins derived from the microbial metabolism (such as trimethylamine
N-oxide (TMAO), p-cresol sulfate (PCS), indoxyl sulfate (INDS), and indole-3-acetic acid
(3-IAA) further contributing to the chronic status of oxidative stress and inflammation, and
the consequent increase in CVD risk [10–12]. Moreover, CKD-related gut dysbiosis is also
associated with an impaired epithelial barrier, a condition commonly referred to as leaky
gut, which allows the translocation of living bacteria, endotoxins (lipopolysaccharides
(LPS), bacterial DNA, and gut-derived uremic toxins into the systemic circulation [13],
eliciting or further aggravating the inflammatory state [14]. Together, these data highlight
the potential role of gut microbes in CKD and associated CVD.

Beyond the gut, an increasing body of evidence supports the existence of a human
blood microbiome with relevance in health and disease, although its origin, structure, and
function remain unrevealed [15,16]. Different reports suggested that blood owns a unique
microbiome and that a dysbiotic blood microbiome is associated with different pathologies
such as atherosclerosis, CVD, ischaemic stroke, and liver fibrosis [17–19]. Specifically, in
CKD, a recent study showed a blood microbiome profile with lower alpha diversity and
significant taxonomic variations when compared with healthy controls [20].

VC and its severity have long been recognized as an important factor in CVD develop-
ment in CKD patients [21]. VC is an active and highly regulated cellular process defined
by the deposition of calcium-phosphate crystals within the intima and media layers of
the vasculature and/or heart valves. Several factors have been related with VC, such as
biomarkers of inflammation (for example high-sensitivity C-reactive protein (PCR), inter-
leukin (IL)- 6, Tumour necrosis factor-α (TNF-α), and of monocyte activation (for example
soluble CD14 and CD163) [22]. In fact, the mineral bone disorder associated with CKD is
characterised by one or more abnormalities in circulating minerals and their regulating
hormones, bone abnormalities, and VC [21]. Mounting evidence indicates that the gut
dysbiosis associated with CKD may be involved in the pathogenesis of bone–vascular
axis [8,23]. Recent data suggest that an increased protein fermentation, and consequent
uremic toxins production, decreased carbohydrate fermentation, vitamin K deficiency,
and gut-derived inflammation may, alone or together, drive to a vascular and skeletal
pathobiology in CKD patients [8,23]. Still, to our knowledge, there are currently no data on
the putative association between blood microbiome and vascular calcification.

Given the importance of VC in CKD and the associated increased risk of CVD in these
patients, the aim of our study was to explore the link between VC, all-cause mortality risk,
and the gut and blood microbiome in CKD patients on peritoneal dialysis (CKD-PD).
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2. Materials and Methods
2.1. Study Design, Subjects, and Sample Collection

This cross-sectional observational study included 44 CKD patients undergoing peri-
toneal dialysis in Centro Hospitalar Universitário de São João in Porto, Portugal, between
2018 and 2019. This study was approved by the local Ethics Committee (approval references
200/18), in accordance with the 1964 Helsinki declaration and its later amendments. All
participants were recruited voluntarily after receiving detailed information on the study
protocol. Written informed consent was obtained from all patients. Exclusion criteria
included age under 18 years old, inability to give informed consent, history of infection in
the last 3 months, and antibiotic intake in the last 3 months.

Relevant clinical and demographic information was gathered for each participant.
Clinical characteristics collected were gender, age, CKD aetiology, history of high blood
pressure, diabetes mellitus, dyslipidaemia, obesity (defined as body mass index of 30 kg/m2

and higher), and history of cardiovascular disease (peripheral vascular disease, ischemic
cardiomyopathy, or cerebrovascular disease). Their pharmacological treatment and infec-
tion history was also gathered.

VC was estimated in all patients using Adragao score through hands and pelvic radiogra-
phies [24]. The Charlson Comorbidity Index was also calculated predicting 10-years survival
in patients with multiple comorbidities [25,26].

Blood samples were collected in the peritoneal dialysis unit, and the self-collected stool
specimens were brought refrigerated by the patient within 48 h after collection. Whole blood
and stool samples were collected in DNA-free sterile containers and were immediately frozen
and stored at −80 ◦C for microbiome analysis. Plasma was obtained after blood centrifugation
(1500× g, 15 min, 4 ◦C) and stored at −80 ◦C for biochemical analysis.

2.2. Sample Processing and Microbiome Analysis

Genomic DNA was isolated in a strictly controlled environment at Vaiomer SAS
(Labège, France) as previously described [20]. Total DNA was extracted from whole blood
(100 µL) using a specific Vaiomer protocol carefully designed to minimise any risk of
contamination between samples from the experimenters or the environment. Negative
controls (molecular grade water added in an empty tube, the same used for sample storage
and peritoneal dialysis solution) were extracted, amplified, and sequenced at the same
time as the samples. PCR amplification was performed using universal primers targeting
the V3-V4 region of the bacterial 16S rRNA gene (340F-781R). Illumina sequencing length,
by use of the 2 × 300 paired-end MiSeq kit V3, was designed to encompass the 476-base
pair amplicons. Sample multiplexing and sequencing library generation were conducted,
as previously described [27]. qPCR was used to quantify the DNA concentration in the
pool employing a 7900HT Fast Real-Time PCR System (Life Technologies, Thermo Fisher
Scientific, Carlsbad, CA, USA) and KAPA Library Quantification Kits for Illumina Platform
(Kapa Biosystems, Inc., Wilmington, NC, USA). The final pool, at a concentration after
dilution between 5 and 20 nM, was used for sequencing as suggested previously [27].
The sequencing steps were performed using a paired-end sequencing run in a MiSeq
Illumina device.

2.3. 16S rRNA Gene Sequence Analysis

The targeted gene regions were analysed using the FROGS bioinformatics pipeline
established by Vaiomer SAS (Labège, France) [28]. The following filters were applied as
previously suggested [27]: (1) amplicons with a length < 350 nt or a length > 480 nt were
removed; (2) amplicons without the two PCR primers were removed (10% of mismatches
were authorised); (3) amplicons with at least one ambiguous nucleotides (‘N’) were re-
moved; (4) operational taxonomic units (OTU) identified as chimera (with search v1.9.5)
in all samples in which they were presented were removed; (5) OTU with an abundance
lower than 0.005% of the whole dataset abundance were removed, and (6) OTU with a
strong similarity (coverage and identity ≥ 80%) with the phiX (library used as a control
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for Illumina sequencing runs) were removed. OTU were produced via single-linkage
clustering, and taxonomic assignment was performed by Blast+ v2.2.30+ with the databank
RDP v11.4.

2.4. Biochemical Analysis

Routine clinical analyses were collected from our patients’ clinical records, namely,
urea, proteinuria, albumin, haemoglobin, cholesterol, low-density lipoprotein (LDL), high-
density lipoprotein (HDL), triglycerides, phosphorus (P), calcium (Ca), calcium phosphate
product, ferritin, B-type natriuretic peptide (BNP), parathyroid hormone (PTH), sedimen-
tation velocity (SV), CRP, creatinine clearance (Ccreat), residual renal function, and Kt/V
(urea). Kt/V (urea) is a parameter that measures adequacy to PD using urea weekly clear-
ance normalised by urea estimated distribution volume. Tumour necrosis factor α (TNF-α),
IL-1, IL-6, IL-10 were determined in plasma by Luminex Multiplex Assay (Millipore Corpo-
ration, Billerica, MA, USA). ELISA kits were used to evaluate Lipopolysaccharide-binding
protein (LPS-BP, Cloud-clone Corp.®, Katy, TX, USA), Toll-like receptor 4 (TLR4, Cloud-
clone Corp.®, Katy, TX, USA), and soluble CD14 (sCD14, Quantikine® ELISA, R&D Systems,
Inc., Minneapolis, MN, USA), and TMAO (MyBiosource®, San Diego, CA, USA) whereas
endotoxins were evaluated by Traditional Kinetic Limulus Amebocyte Lysate (LAL) Assay
(Lonza Walkersville, Inc., Walkersville, MA, USA).

Uremic toxins were quantified following the method described by [29] with modifica-
tions. p-Cresol sulfate (PCS), 3-indoxyl sulfate (3-INDS), and indole-3-acetic acid (3-IAA)
were detected by high-performance liquid chromatography (HPLC) with fluorescence de-
tection (275 and 330 nm). Elution was performed in gradient mode using as mobile phase a
mixture of (A) aqueous NaH2PO4 buffer (20 mM, pH 4.6), containing tetrabutyl ammonium
iodide (TBAI, 5 mM), and (B) acetonitrile, at a flow rate of 1.5 mL/min, and injection
volume of 20 µL. Prior to HPLC analysis, 100 µL of each plasma standard or sample was
added to 300 µL of ethanol containing 0.22 mg/L of internal standard 4-ethylphenol. After
vortexing during 30 s, 100 mg of NaCl were added and mixed vigorously. After 10 min,
700 µL of component (A) of mobile phase was further added following centrifugation at
18,000× g for 10 min at 4 ◦C and supernatant analysis by HPLC.

2.5. Statistics

All the results are represented as mean ± standard deviation (SD) or in percentage (%).
Statistical analysis was performed using SPSS Statistics version 27 (IBM). The categorical
variables were described through absolute or relative frequencies (%) and analysed using
the Pearson’s chi-square test or Fisher’s exact test when more than 1 cell displayed expected
counts less than 5. Continuous variables were described using mean ±SD and analysed
by Student’s t test for independent samples when following a normal distribution, or by
Mann-Whitney U test when there was no normality of the data. Normality was assessed
by the Shapiro-Wilk test. A partial correlation between vascular calcification and all-cause
mortality risk, while controlling of the effect of age and sex, was performed using JASP-
stats software. For all analysis, statistical significance was assumed when p values were
less than 0.05.

Primer v7 (PRIMER-e, Auckland, New Zealand) was used for the calculation of
diversity indices, non-metric multidimensional scaling (NMDS) and principal coordinate
analyses (PCO), and other multivariate analyses, mainly ANOSIM and PERMANOVA,
were used to test the significance of Beta-diversity. The percentage of OTU data per sample
was used for these analyses, followed by squared root transformed data, resemblance
matrices of similarity data types using Bray-Curtis similarities, adding dummy value and
testing 4999 permutations. The reads in each sample were converted into percentage values
according to the total number of sequences in the sample to eliminate the effect of the final
number of reads [30]. Post-hoc analyses were done in STAMP 2.1.3 [31] for multiple groups
using one-way analysis of variance (ANOVA), Tukey-Kramer (0.95) and Eta-squared for
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effect size, while, with two groups, analysis using Welch’s t-test was conducted (two-sided,
Welch’s inverted for confidence interval method).

3. Results

Our 44 CKD-PD patients presented an Adragao score mean of 2.98 ± 2.74, included
26.1% patients without VC (Adragao score = 0); 30.4% with moderate VC (Adragao score of
1 or 2) and 39.1% with severe VC (Adragao score higher than 2). In our study, we compared
CKD-PD patients with moderate or severe VC versus patients with no VC. Demographic
and clinical characteristics of the studied CKD-PD population with and without VC are
shown in Table 1.

CKD-PD patients with moderate or severe VC were older and included more males
than CKD-PD patients without VC. Concerning the comorbidities, no differences were
found in terms of arterial hypertension (present in 95.5% of the studied population), obesity
(11.4% of the studied population, with all obese patients presenting VC), or CVD (25.0%
of the studied population). A significantly higher prevalence of patients with diabetes
mellitus was observed in the group with VC in comparison to the group without VC (43.8%
vs. 8.3%, p = 0.035).

Most PD technical parameters did not differ significantly between patients with and
without VC, except total Kt/V (urea), which was lower in CKD-PD patients with VC
(Table 1). In addition, this parameter was inversely correlated with VC severity (Spearman
correlation, correlation coefficient = −0.437, p < 0.01).

The analysis of the mean values of Charlson Index showed that CKD-PD patients with
VC presented a significant increase in all-cause mortality risk compared with CKD-PD
patients without VC (5.6 ± 2.2 vs. 3.92 ± 3.0, p < 0.05). Accordingly, CKD-PD patients
with VC included twice as many patients with severe Charlson Index than patients without
VC (Table 1). When VC severity was correlated with all-cause mortality risk, we observed
a significant positive correlation (spearman correlation, correlation coefficient (r) = 0.538,
p < 0.001), meaning that patients with more severe VC present higher mortality risk.
Moreover, by multivariable analysis, we found that vascular calcification correlates with
the all-cause mortality risk, independently of sex and age.

Pharmacological therapies did not differ significantly between patients with or without
VC regarding iron supplementation, erythropoietin, laxatives, hypouricemic agents, statins,
calcimimetics, calcium-based phosphate binders, non-calcium-based phosphate binders,
and vitamin D. However, the percentage of CKD-PD patients on vitamin D analogues and
activators of vitamin D receptor (including alpha D, calcitriol, paricalcitol, and vitamin D
receptor selective activators) was 100% in patients without VC whereas it was only ~72%
in patients with VC, representing a statistically significant difference (p < 0.05). Further,
two patients were on chronic anti-inflammatory drugs (prednisolone), both with severe
VC (Adragao score of 8), and only three patients were not on anti-hypertensive drugs,
all with VC.

Regarding biochemical parameters, only phosphorous plasma levels were significantly
lower in CKD-PD patients with VC than patients without VC. Moreover, markers of in-
flammation (IL-1β, IL-6, TNF-α, and the anti-inflammatory IL-10), markers of intestinal
translocation (endotoxins, LPS-binding protein, TLR4, and sCD14), and uremic toxins of
microbial origin (T-MAO, PCS, 3-INDS, and 3-IAA) did not differ significantly between
patients with or without VC. Regarding sCD14, although no statistically significant differ-
ences were found between CKD-PD patients with and without VC, a positive correlation
was observed between sCD14 levels and VC severity (r = 0.338, p < 0.05). So, CKD-PD
patients with more severe VC presented higher plasma values of sCD14.
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Table 1. Demographic and clinical characterization of chronic kidney disease patients on peritoneal
dialysis (CKD-PD) with and without vascular calcification (VC).

CKD-PD
(n = 44)

CKD-PD
With no VC (n = 12)

CKD-PD
with VC (n = 32) p-Value

Demographic data
Age, years 56.1 ± 10.9 47.7 ± 11.5 59.4 ± 8.8 <0.001 a

Sex, % male 65.9% 33.3% 78.1% 0.011 d

PD parameters
PD duration, months 33.4 ± 30.0 36.3 ± 43.4 30.9 ± 23.8 0.668 b

PD type, % >0.999 d

APD 52.3% 50.0% 53.1%
CAPD 47.7% 50.0% 46.9%

Ccreat, L/week 114.8 ± 56.8 105.7 ± 45.1 118.2 ± 60.8 0.668 b

Residual renal function,
mL/min 5.6 ± 4.0 5.8 ± 3.8 5.6 ± 4.1 0.706 b

Kt/V (urea) 2.2 ± 0.5 2.6 ± 0.6 2.1 ± 0.4 0.004 b

Charlson Index, % 0.003 c

Low (≤2) 18.2% 50.0% 6.3%
Moderate (3–4) 31.8% 25.0% 34.4%
Severe (≥5) 50.0% 25.0% 59.4%

Biochemical parameters
Urea, mg/dL 125.0 ± 37.0 127.6 ± 20.1 124.0 ± 41.8 0.780 a

Proteinuria mg/24 h 1.0 ± 1.2 0.9 ± 1.0 1.0 ± 1.2 0.342 b

Albumin, g/L 37.1 ± 3.3 37.0 ± 2.6 37.1 ± 3.6 0.944 a

Hemoglobin, g/dL 11.5 ± 1.4 11.0 ± 0.9 11.7 ± 1.6 0.133 a

Cholesterol, mg/dL 171.0 ± 56.8 169.9 ± 42.8 171.4 ± 61.8 0.825 b

LDL, mg/dL 95.7 ± 42.6 99.9 ± 33.7 94.0 ± 46.1 0.547 b

HDL, mg/dL 45.6 ± 10.7 47.4 ± 9.3 45.0 ± 11.3 0.267 b

Triglycerides, mg/dL 158.6 ± 68.4 129.8 ± 42.9 169.4 ± 73.5 0.169 b

P, mg/dL 5.0 ± 1.1 5.72 ± 1.05 4.73 ± 1.02 0.011 a

Ca, mg/dL 9.02 ± 0.89 9.39 ± 0.85 8.84 ± 0.89 0.073 a

Ca • P product 43.83 ± 10.63 52.08 ± 9.32 40.67 ± 9.70 0.002 b

Ferritin, ng/mL 361.3 ± 222.9 316.1 ± 221.3 378.3 ± 224.6 0.419 a

BNP, pg/mL 143.1 ± 119.2 87.0 ± 36.6 163.1 ± 131.9 0.124 b

PTH, pg/mL 462.5 ± 280.0 485.5 ± 366.4 453.9 ± 246.7 0.866 b

SV, mm 64.2 ± 25.6 67.2 ± 18.7 63.1 ± 27.9 0.644 a

CRP, mg/L 5.3 ± 8.5 4.8 ± 7.7 5.5 ± 8.9 0.907 b

TNF-α, pg/mL 11.4 ± 4.3 10.4 ± 2.8 11.7 ± 4.7 0.524 b

IL-1β, pg/mL 1.3 ± 0.93 1.3 ± 1.0 1.3 ± 0.9 0.969 b

IL-10, pg/mL 17.7 ± 14.7 17.5 ± 16.7 17.8 ± 14.2 0.825 b

IL-6, pg/mL 2.9 ± 6.3 5.4 ± 10.3 2.0 ± 3.8 0.687 b

Endotoxins, EU/mL 3.8 ± 0.8 3.8 ± 0.4 3.7 ± 0.8 0.978 a

LPS-BP, µg/mL 39.9 ± 17.1 32.2 ± 13.4 41.2 ± 18.3 0.442 b

TLR-4, pg/mL 624.4 ± 439.2 699.1 ± 464.5 596.4 ± 433.7 0.630 b

sCD14, µg/mL 5.0 ± 2.1 4.4 ± 2.0 5.3 ± 2.1 0.224 b

T-MAO 0.52 ± 0.62 0.47 ± 0.40 0.57 ± 0.70 0.854 b

PCS, mg/L 33.5 ± 19.1 36.4 ± 18.0 32.3 ± 19.7 0.341 b

3-INDS, mg/L 23.7 ± 14.6 24.1 ± 9.6 23.5 ± 16.22 0.442 b

3-IAA, mg/L 1.1 ± 1.2 1.0 ± 0.5 1.1 ± 1.4 0.169 b

Results are shown in absolute or relative frequencies (%) or mean ± standard deviation (SD). CKD, chronic
kidney disease; PD, peritoneal dialysis; APD, Automated Peritoneal Dialysis; CAPD, continuous ambulatory
peritoneal dialysis; Ccreat, creatinine clearance; residual renal function; Kt/V (urea); LDL, low-density lipoprotein;
HDL, High-density lipoprotein; P, phosphorous; Ca, calcium; Ca·P product, calcium phosphate product, BNP,
B-type natriuretic peptide; PTH, Parathyroid hormone; SV, sedimentation velocity, CRP, C reactive protein; TNF-α,
Tumour necrosis factor-α; IL, Interleukin; LPS-BP, Lipopolysaccharide-binding protein; TLR-4, Toll-like receptor
4; sCD14, soluble CD14; TMAO, trimethylamine N-oxide; PCS, p-cresol sulphate; 3-INDS, 3-indoxyl sulfate;
3-IAA, indole-3-acetic acid. p values were calculated using the following statistical analysis: a Student’s t-test,
b Mann-Whitney U test, c Pearson Chi-square test, and d Fisher test.
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The bacterial microbiome was evaluated in stool samples and whole blood samples.
Stool samples displayed a median of 32,370 reads (range: 15,879–41,566). A median of
105 OTUs was observed per sample, with samples presenting between 39 and 216 OTUs.
Blood samples displayed a median of 43,131 reads (range: 17,494–50,646). A median of
39 OTUs was observed per sample, with samples presenting between 25 and 56 OTUs.
Alpha-diversity analysis was calculated by Shannon index; gut samples showed an average
of 4.2 (values ranging from 3.03 to 4.89), while blood samples showed an average of 2.9
(values from 2.3 to 3.3). Similar values of diversity were observed in both groups of
patients (with or without VC) separately regarding gut and blood samples. Beta-diversity
assessment did not show differences in the gut and blood microbial communities when
comparing PD patients with and without VC (Figure 1).

Figure 1. Principal coordinates analysis (PCO) of gut (A) and blood (B) microbiome in chronic
kidney disease patients on peritoneal dialysis with vascular calcification (VC) or without vascular
calcification (No VC).

ANOSIM and PERMANOVA confirmed the PCO observations, as the groups for both
analyses were not significantly different (p > 0.1). Therefore, the taxonomic profiles of the
gut and blood microbiome were similar at phylum and family taxonomic levels within
each group of patients with or without VC (Figure 2).

Figure 2. Relative abundance of bacteria phyla (a) and family (b) in the gut and blood microbiome in
chronic kidney disease patients on peritoneal dialysis.

Gut microbiome was dominated by Firmicutes and Bacteroidetes at the phylum level,
and by Ruminococcaceae, Bacteroidaceae, Lachnospiraceae, and Prevotellaceae at family
level. The blood microbiome was dominated by Proteobacteria and Actinobacteria at
the phylum level, and by Pseudomonadaceae, Burkholderiaceae, and Legionellaceae at
family level. Nonetheless, relative changes of specific rare and/or less abundant taxa were
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observed between CKD-PD patients with and without VC, namely Coprobacter, Coprococ-
cus 3, Lactobacillus, and Eubacterium eligens group in gut microbiome, and Cutibacterium,
Pajaroellobacter, Devosia, Hyphomicrobium, and Pelomonas in blood microbiome (Figure 3).

Figure 3. Relative changes of gut (A) and blood (B) bacterial taxa at the genus/family level in chronic
kidney disease patients on peritoneal dialysis comparing patients with vascular calcification (grey
bars) with patients without vascular calcification (blue bars).

Given the correlation between VC and all-cause mortality risk, we explored the gut
and blood microbiome differences between CKD-PD patients with low and high mortality
risk (Figure 4).

Figure 4. Relative changes of gut (A) or blood (B) bacterial taxa at the genus/family level in chronic
kidney disease patients on peritoneal dialysis comparing patients with low all-cause mortality risk
(Charlson Index scores of 2 or less, blue bars) with patients with moderate or severe all-cause mortality
risk (Charlson Index scores of 3 or more, grey bars).

Among the taxonomic differences observed in CKD-PD patients with and without VC,
patients with high mortality risk presented higher relative abundance in E. eligens group in
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the gut microbiome and Devosia in the blood microbiome when compared to patients with
low mortality risk.

Given that patients with VC included more male and older participants, we further
investigate if sex and age would play a role in the relative changes of gut or blood mi-
crobiome (Figures S1 and S2). We found that male participants also have higher levels of
E. eligens group in the gut in comparison to females. Although Hyphomicrobium was elevated
in patients with VC in comparison to patients without VC, we found that Hyphomicrobium
was present in adult participants but not in senior participants. Therefore, except for
E. eligens group, the results suggest that the variation of the specific taxa in Figures 3 and 4
are mostly explained by vascular calcification in CKD-PD patients.

4. Discussion

Our results showed relative changes in specific taxa between CKD-PD patients with
and without VC, namely Coprobacter, Coprococcus 3, Lactobacillus, and E. eligens group in
the gut, and Cutibacterium, Pajaroellobacter, Devosia, Hyphomicrobium, and Pelomonas in the
blood. An association between VC and all-cause mortality risk in CKD-PD patients was also
observed, and patients with higher mortality risk corroborate the changes of E. eligens in the
gut and Devosia genus in the blood. Although we did not find differences in uremic toxins,
intestinal translocation markers, and inflammatory parameters among CKD-PD patients
with and without VC, sCD14, a nonspecific marker of monocyte activation, was positively
correlated with VC severity, suggesting its association with inflammation. Collectively,
these results open new avenues for biomarkers discovery in CKD-PD patients.

The gut microbiome of our CKD-PD population was dominated by Firmicutes and
Bacteroidetes at the phylum level, as described in healthy individuals, and by Ruminococ-
caceae, Bacteroidaceae, Lachnospiraceae, and Prevotellaceae at the family level, following
other studies describing the gut microbiome of CKD-PD patients [32–34]. Despite only a
few taxa differed between CKD-PD patients with and without VC, these taxa represent
relevant groups among the gut microbiome, such as Coprobacter, Coprococcus, Lactobacillus
or Eubacterium, which were more abundant in CKD-PD patients with VC. Some of these
taxa are key players in the gut microbiome [35–38] and may be altered when the gut mi-
crobiome becomes dysbiotic, for example, in CKD patients [11]. Among the taxonomic
differences observed in the gut microbiome for CKD-PD patients with or without VC, pa-
tients with higher mortality risk also demonstrated higher relative abundance in E. eligens
group, highlighting a potential critical role of this taxon in CKD-PD patients. However,
the microbiome differences associated to the sex may have contributed to this result, given
that participants with VC include more males, and male participants also presented higher
E. eligens group prevalence in comparison to females. The increase in the relative abundance
of E. eligens group is most frequently associated with a healthy status [39–41]. For example,
E. eligens were depleted in stool samples from atherosclerotic patients from Sweden and
China cohorts and were appointed as promising probiotics and potential therapeutic targets
for atherosclerosis [40]. However, the relative abundance of E. eligens group in the gut has
also been found, occasionally, associated with disease [42]. Taking our results into account,
the increase in E. eligens may not always constitute a protective factor as has been reported
in previous studies.

Although still controversial, there is evidence supporting the existence of a healthy
non-infectious human blood-microbiome [15,17,43]. In our CKD-PD patients, the blood
microbiome was dominated by Proteobacteria and Actinobacteria at the phylum level and
by Pseudomonadaceae, Burkholderiaceae, and Legionellaceae at the family level. Similarly,
Shah et al. [20] observed that Pseudomonadaceae and Enterobacteriaceae families were
significantly higher in the blood microbiome of non-dialysis CKD patients than in healthy
controls. They demonstrated higher Proteobacteria and Actinobacteria predominance
in the blood in contrast to Bacteroidetes and Firmicutes predominance in the gut. Pro-
teobacteria is a major phylum of Gram-negative bacteria, which includes a wide variety
of pathogens such as Escherichia, Salmonella, Vibrio, Yersinia, Pseudomonas, Burkholderia,
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Legionella, and many other genera. Proteobacteria are higher both in the gut and blood in
many chronic inflammatory diseases, including inflammatory bowel disease, metabolic
syndrome, cardiovascular diseases, and chronic lung diseases. They have also been de-
tected in atherosclerotic plaques and been related to the progression of CKD [17,20,44].
The correlation of all these diseases with gut dysbiosis, intestinal bacterial translocation,
and endotoxaemia-related inflammation, as well as the clinical association between one
and the other, suggests a common mechanism underlying these diseases associated with
inflammation arising from the gut.

It is also relevant to note that families found in the blood microbiome of our CKD-PD
patients include serious clinical pathogens, such as Pseudomonadaceae, Burkholderiaceae,
and Legionellaceae. When evaluating the infection history of these patients, five presented
previous Pseudomonas aeruginosa infections (between 4 months to 2 years before), with
this pathogen being isolated from the catheter exit-site in four of these five patients, and
in the respiratory tract in the remaining patient. However, it is important to highlight
that the blood microbiome was evaluated through the detection of short sequences of
bacterial genetic material, specifically the V3–V4 variable regions of the 16S rRNA gene.
Therefore, these genetic sequences may result from circulating microbial DNA derived
from phagocyted microbial cells of microorganisms translocated from the gut, the oral
cavity, the PD catheter biofilm, or even from PD solutions [18,45,46]. Notwithstanding, the
hypothesis that some of these DNA sequences may originate from living microbes should
not be discarded, given the fact that viable bacteria have been found in blood from donors
reported as medically healthy [47].

We observed in the blood microbiome of CKD-PD patients with VC an increase in
Cutibacterium, Pajaroellobacter, Devosia, and Hyphomicrobium, and a decrease in relative abun-
dance of Pelomonas when compared to CKD-PD patients without VC. Most of these groups
appear sporadically in different areas of the human microbiome (skin, oral, gut) [48–51],
but the real role of these genera remains unknown. An increase in the relative abundance of
Devosia genus was found both in CKD-PD patients with VC when compared with CKD-PD
patients without VC, as well as in CKD-PD patients with a higher mortality risk. To our
knowledge, Devosia has not been reported previously in the blood microbiome but has
been found to be increased in the gut microbiota of colorectal cancer patients [51] and in
rabbits with heat stress [52], suggesting its possible translocation from the gut into the
systemic circulation.

In our work, we also measured markers of intestinal translocation (endotoxins, LPS-
binding protein, TLR4, and sCD14), inflammatory parameters (C-reactive protein, ferritin,
sedimentation velocity, IL-1β, IL-6, TNF-α, and the anti-inflammatory IL-10), uremic toxins
(PCS, 3-INDS, 3-IAA, and TMAO), and other routine laboratory parameters (such as urea,
proteinuria, albumin, haemoglobin, cholesterol and its different fractions, triglycerides,
calcium, parathormone, BNP), but no statistical significant differences were found between
CKD-PD patients with or without VC. Although markers of intestinal translocation, uremic
toxins, or inflammatory parameters are known to be increased in CKD patients [53–55],
it should be noted that our study population included only end-stage kidney disease
patients, and not healthy controls for comparison. The absence of differences between
CKD-PD patients with or without VC could be associated with the relatively small number
of patients included in this study.

Interestingly, we found that sCD14, a human monocyte differentiation antigen that
acts as a pattern recognition receptor and is a TLR co-receptor for the detection of pathogen-
associated molecular patterns such as lipopolysaccharides [56], was positively correlated
with VC severity. In accordance, plasma sCD14 levels have been independently associated
with myocardial infarction, coronary heart disease, and all-cause mortality among men and
women above 65 years old in the Cardiovascular Health Study [57]. Longenecker et al. [22]
observed that sCD14 was independently associated with coronary artery calcification
measured by computed tomography and also predicted the extent of subclinical disease
in other vascular beds in HIV patients. Poesen et al. [58] demonstrated that sCD14 was
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elevated in patients with decreased kidney function and was associated with mortality and
CVD in patients with CKD not yet on dialysis during a median follow-up of 52–54 months.
Other studies positively related higher levels of sCD14 level to markers of inflammation
and negatively to nutritional status and concluded sCD14 to be an independent predictor
of all-cause mortality in long-term haemodialysis patients [59,60]. Together, these findings
support a putative role of sCD14 in VC that should be explored in future studies in CKD-
PD population.

When comparing CKD-PD patients with and without VC we observed higher es-
timated mortality risk in patients with VC, corroborating previous reports [61]. In our
study, the CKD-PD patients with VC included more males, older patients, and a higher
prevalence of diabetes in comparison with CKD-PD patients without VC. In fact, these
three factors were previously recognised as major contributors to VC [62,63]. Moreover, we
also observed lower Kt/V (urea) values in CKD-PD patients with VC when compared with
patients without VC. In accordance, lower Kt/V values have been associated with VC and
CVD in dialysis patients, including PD and haemodialysis patients [61,64].

When comparing phosphorous levels between CKD-PD patients with or without
VC, we unexpectedly found higher phosphorous levels in patients without VC. We also
found higher levels of calcium-phosphate product in patients without VC when compared
with patients with VC but below the cut-off established for higher risk of VC and CVD
in end-stage CKD patients [65]. According to KDIGO guidelines [66] and previously
published articles [67,68], VC is marked by hyperphosphataemia and higher levels of
calcium-phosphate product. Perhaps our results could be explained by some peculiarities
in our study population. We performed a unique blood test and we did not collect samples
in different time-points, so it is possible our CKD-PD patients with VC presented higher
phosphorous levels in the past. Another argument is that PD patients on vitamin D
analogues and activators of vitamin D receptor (including alpha D, calcitriol, paricalcitol,
and vitamin D receptor selective activators) represented 100% of patients without VC, and
only ~72% of patients with VC, denoting a significant difference (p < 0.05). The relationship
between vitamin D and VC is complex. Moderate activation of vitamin D receptor (VDR)
signaling protects against VC, but a deficient or excessive activation of VDR has been
associated to VC [69]. As some studies proved that clinically relevant dosages of calcitriol
and paricalcitol may protect against VC [70], others found no differences in the presence of
VC in PD patients treated with calcitriol or calcium-based phosphate binders [71]. Vitamin
D analogues and activators of vitamin D receptor promote an increase in phosphate levels
through different mechanisms, so the higher intake of these drugs in the group without
VC may collaborate on the higher levels of phosphorous in that group. Another argument
to be looked at with caution is that, although not statistically significant, in our study we
observed in the group with VC a higher calcium-based phosphate binders intake and lower
non-calcium-based phosphate binders intake, resulting in better phosphorous control in
that group. In clinical trials for the pharmacological management of phosphate imbalance,
phosphate binders, especially non-calcium-based phosphate binders, were reported to low
serum phosphorous levels by decreasing fibroblast growth factor-23 (FGF-23), which has
been shown to stimulate phosphorous excretion and reduce VC [68] with protective effects
on VC [72].

Lastly, it would be more accurate to evaluate VC using coronary computed tomog-
raphy instead of Adragao score; however, the simplicity of the used method is of great
advantage in clinical studies [24]. Adragao score measures VC and therefore may estimate
CVD risk in CKD patients through hands and pelvic radiographies. Charlson Comorbidity
Index predicts 10-year survival in patients with multiple comorbidities and has been useful
in the prediction of mortality risk in CKD patients [73].

5. Conclusions

Vascular calcification is a highly frequent condition in CKD and a well-established
risk factor for the development of CVD in CKD patients. Traditional factors fall short
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in explaining the high prevalence of VC and CVD in kidney disease, suggesting the
involvement of a CKD-specific pathological pathway that remains unknown. In recent
years, gut dysbiosis has been shown to contribute to CVD, inflammation, and VC in CKD
patients, but nothing was so far known regarding the role of gut microbiome in CKD-
associated VC and CVD. Moreover, the information regarding blood microbiome and its
putative relevance in health and disease is still very scarce.

Our results showed relative changes of specific taxa between CKD-PD patients with
and without VC, namely regarding Coprobacter, Coprococcus 3, Lactobacillus, and E. eligens
group in gut, and Cutibacterium, Pajaroellobacter, Devosia, Hyphomicrobium, and Pelomonas
in the blood. Relative changes in the E. eligens group may also be associated with higher
male prevalence in the group of participants with vascular calcification. An association
between VC and all-cause mortality risk in CKD-PD patients was also observed, and
patients with higher mortality risk corroborated the changes of E. eligens in the gut and
Devosia genus in the blood. Although we did not find differences in uremic toxins, intestinal
translocation markers, and inflammatory parameters among CKD-PD patients with and
without VC, sCD14, a nonspecific marker of monocyte activation, was positively correlated
with VC severity, suggesting an association with low grade inflammation. Figure 5 shows a
schematic view of our results.

Figure 5. Our results suggest that specific taxa in the gut microbiome (Coprobacter, Coprococcus 3, Lac-
tobacillus, and Eubacterium eligens group) and in the blood microbiome (Cutibacterium, Pajaroellobacter,
Devosia, Hyphomicrobium, and Pelomonas) are different between CKD-PD patients with and without
VC. sCD14 (a nonspecific marker of monocyte activation) correlated with vascular calcification (VC)
severity in CKD-PD patients. An association between VC and all-cause mortality risk in CKD-PD
patients was observed and patients with higher mortality risk corroborate the changes of Eubacterium
eligens in the gut and Devosia genus in the blood.



Biomolecules 2022, 12, 867 13 of 16

In conclusion, our results suggest a role as biomarkers of gut E. eligens group, blood
Devosia, and circulating sCD14 in CKD-VC, CVD, and mortality risk that should be fur-
ther explored.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12070867/s1. Figure S1: Relative changes of gut (A) or
blood (B) bacterial taxa at the genus/family level in chronic kidney disease patients on peritoneal
dialysis comparing male (yellow bars) with female (blue bars) patients. Figure S2: Relative changes
of gut (A) or blood (B) bacterial taxa at the genus/family level in chronic kidney disease patients on
peritoneal dialysis comparing adulthood (until 65 years old, grey bars) with seniorhood (>65 years
old, green bars) patients.
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