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Abstract: The concept of molecular similarity has been commonly used in rational drug design, 
where structurally similar molecules are examined in molecular databases to retrieve functionally 
similar molecules. The most used conventional similarity methods used two-dimensional (2D) fin-
gerprints to evaluate the similarity of molecules towards a target query. However, these descriptors 
include redundant and irrelevant features that might impact the performance of similarity searching 
methods. Thus, this study proposed a new approach for identifying the important features of mol-
ecules in chemical datasets based on the representation of the molecular features using Autoencoder 
(AE), with the aim of removing irrelevant and redundant features. The proposed approach experi-
mented using the MDL Data Drug Report standard dataset (MDDR). Based on experimental find-
ings, the proposed approach performed better than several existing benchmark similarity methods 
such as Tanimoto Similarity Method (TAN), Adapted Similarity Measure of Text Processing (AS-
MTP), and Quantum-Based Similarity Method (SQB). The results demonstrated that the perfor-
mance achieved by the proposed approach has proven to be superior, particularly with the use of 
structurally heterogeneous datasets, where it yielded improved results compared to other previ-
ously used methods with the similar goal of improving molecular similarity searching. 

Keywords: molecular similarity; drug design; autoencoder; irrelevant and redundant features  
 

1. Introduction 
Virtual Screening (VS) is one of the most extensively utilized computational methods 

for searching for small molecule libraries in drug discovery. The vs. is often used to dis-
cover structures most likely used as binding for a drug target [1]. In virtual screening, 
there are two approaches: ligand-based virtual screening (LBVS) and structure-based vir-
tual screening (SBVS). Similarity searching is one of the LBVS approaches that is used to 
search and scan chemical databases for molecules that are most similar to a user-defined 
reference structure using a quantitative measure of intermolecular structural similarity. 
LBVS methods search for molecules structurally similar to the ligand and need a known 
active input. The second approach, SBVS, searches for compounds that match the target 
binding site and needs the target protein’s structure [2]. The basic underlying assumption 
in similarity searches is that structurally similar compounds would have similar physico-
chemical and biological properties [3].  

The 2D similarity methods are the most commonly used for large numbers of mole-
cules. The concept behind the molecular similarity measure is that molecules with similar 
structures have a higher degree of similarity than molecules with diverse structures. 
Therefore, the goal of similarity searching is to retrieve molecules that exhibit a structural 
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similarity with the user’s reference structure. Scaffold Hopping is a term used in chemoin-
formatics to refer to the process of identifying structurally diverse molecules that exhibit 
biological activity. This process may be used to learn more about compounds that have 
been discovered as active compounds by modifying the molecule’s core structure. Hence, 
newer methods for identifying biologically active compounds must be developed [4,5]. 

As discussed above, measuring the similarity of two molecules is highly important 
and is routinely performed in chemoinformatics. Various coefficients measure the degree 
of similarity/dissimilarity between two molecules. The basic concept of determining sim-
ilarity/dissimilarity based on numerical measures has been widely implemented in vari-
ous areas. However, the lack of communication between these disciplines presents an op-
portunity to reinvent similar coefficients under different names, leading to duplication 
[6,7].  

The ability of a coefficient to accurately predict the property/activity value of a com-
pound is used to determine its effectiveness, which can be determined using the values of 
the most similar compounds in the same dataset. Many subsequent studies compared the 
effectiveness of various similarity coefficients and concluded that the Tanimoto coefficient 
surpassed the others [8]. Thus, the Tanimoto coefficient has been acknowledged as the 
standard similarity measure of chemical compounds in chemo-informatics [9]. 

The majority of currently used similarity-based virtual screening methods deal with 
massive amounts of data that contain redundant and irrelevant features. The present mol-
ecule’s fingerprint consists of several features. Furthermore, due to the irregularities in 
their relevance levels, removing some of the features may improve the recall of the simi-
larity measure [10]. Data with irrelevant and redundant features might mislead the virtual 
screening findings and make them harder to interpret [11,12]. Numerous modern finger-
prints are complex, consisting of many features as well as many bit locations, with typi-
cally over 1000 features. 

Deep learning (DL) techniques based on deep artificial neural networks have greatly 
advanced state-of-the-art in computer vision [13,14], speech recognition [15,16], natural 
language processing [17,18], and molecular bioactivity prediction [19]. Deep learning has 
made considerable gains, bringing it closer to one of its main goals: Artificial Intelligence. 
One advantage of DL is that it is beneficial for feature learning, which can be done auto-
matically using a general-purpose technique. This procedure is frequently used by imple-
menting a multi-layer stack of simple neural networks with non-linear input-output map-
pings, including deep neural networks (DNNs) [20], convolutional neural networks 
(CNNs) [21,22], recurrent or recursive neural networks (RNNs) as well as deep networks 
with more than one hidden layer and more neurons in each layer. Besides, DL architec-
tures have proven capable of handling large volumes of data with minimum manual in-
tervention [23]. 

Over the last several years, DL technology has advanced dramatically. This approach 
outperformed other ML algorithms in terms of empirical findings, most likely because, 
similar to the brain model, this method replicates brain activity by stacking multiple neu-
ral network layers [24–26]. According to Wang and Raj [27], who use the feature extraction 
approach, DL methods outperform conventional machine learning methods. However, 
there is no theoretical underpinning for DL technology at this time. The DL approaches 
are used to learn feature hierarchies by combining features from higher hierarchical levels 
with low-level features. The availability of feature learning at different abstraction levels 
enables the system to learn sophisticated functions that map input and output from data 
without requiring human-developed features [27]. Handcrafted features are extracted and 
fed into SVM and other classification algorithms in the conventional setup for image 
recognition systems. On the other hand, deep learning outperforms conventional methods 
since it optimizes all extracted features. 

The most noticeable distinction between machine learning and deep learning tech-
nologies is how their effectiveness fluctuates as the data increases. DL techniques perform 
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inefficiently on smaller datasets as they require a large amount of data to comprehend 
adequately [28]. 

Autoencoders (AE) are a sophisticated deep learning technique used in situations 
involving complicated data such as images and videos. AE is good at handling low di-
mensional feature representation from the inputs based on unsupervised learning [29–31]. 
The AE has the benefit of providing a functional relationship between the high-dimen-
sions and low-dimensions representations, as well as vice versa. The AE establishes effi-
cient functional links between the high-dimensions and low-dimensions representations 
and is compelled to offer a meaningful point arrangement in the low-dimensions repre-
sentation by employing a non-linear distance metric-based cost function [32]. In chemoin-
formatics, one of the major drawbacks in chemical fingerprints in virtual screening is that 
the fingerprint descriptors often consist of irrelevant and redundant features, and remov-
ing some of these features can improve the recall of the similarity measure performance 
[10]. In this paper, a new similarity-based virtual screening approach has been developed 
based on a new molecular representation that uses Autoencoder to remove irrelevant and 
redundant features to provide low dimensions. This new representation with low dimen-
sions is regarded as a new descriptor and utilized to enhance the recall of the similarity 
searching measures. Based on the experiments conducted, the results demonstrated that 
the new proposed representation based on Autoencoder is effective and superior to the 
proposed benchmarks methods using full descriptors features. In general, this paper pre-
sents the following significant contributions: 
 Proposing a novel ligand-based virtual screening dimensionality reduction method 

based on Autoencoder deep learning offers low-dimensional representations of mo-
lecular features while removing irrelevant and redundant features that affect simi-
larity searching. 

 Enhancing the effectiveness of the similarity searching by applying the proposed low 
dimensional representation of molecules. 

 The proposed method has demonstrated superior results in terms of overall perfor-
mances than the benchmark methods, e.g., TAN, ASMTP, and SQB. 

2. Related Work 
Many similarities between text information retrieval and chemoinformatics have 

suggested that techniques developed in text documents information retrieval can perhaps 
be used to enhance similarity searching of molecules [33]. Hence, many molecular simi-
larity approaches employed in ligand-based virtual screening were originally based on 
the text retrieval domain. Bayesian Inference Networks are one of the techniques that have 
been extensively used for text in a variety of domains, as well as substantially used in 
virtual screening as a substitute for conventional similarity searching strategies, surpas-
sing conventional similarity approaches [34–37]. Several similarity measures have been 
recently developed for virtual screening that outperformed the Tanimoto coefficient, such 
as quantum-based similarity measure (SQB) [38] and adapting text similarity measures 
(ASMTP) [39] which has been derived from a similarity measure of text processing and 
ideal for virtual screening. 

The fragment bases and bit-strings similarity method has gained attention from re-
searchers in chemoinformatics and especially in virtual screening [40,41]. The weight of 
each fragment in chemical structure compounds has been examined by adding more 
weight to highly significant fragments [42]. In Ligand-Based Virtual Screening, several 
weighting functions have been presented for a new fragment weighting approach for 
Bayesian Inference Network [40]. The fragment reweighting approach was developed by 
integrating reweighting variables with relevance feedback to enhance the Bayesian Infer-
ence Network’s retrieval recall performance [43].  
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Several reweighting methods that have been used, such as features reweighting, fea-
tures selection, mini-fingerprint, and fuzzy correlation coefficient, have been used to im-
prove the performance of the similarity methods [44–46]. However, performance over a 
highly diverse dataset is still low and requires more enhancement [41].  

Data fusion approaches have significantly improved the overall performance of con-
ventional similarity algorithms [47,48]. They combine multiple data sources into a single 
source, with the output of the combined source expected to be more informative than the 
input sources individually [49,50]. Most chemical representations, query molecules, dock-
ing scores, and similarity coefficients were integrated using linear combination techniques 
[51]. Many fusion studies, whether in text or chemical compound retrieval, have estab-
lished that using multiple sources rather than a single source yields a greater outcome. To 
enhance retrieval performance via data fusion, two requirements must be met: the accu-
racy of each source and the independence of sources [52].  

Samanta et al. [53] introduced a novel approach for molecular similarity, in the form 
of a variational autoencoder (VAE) to instate a new method that uses only the canonical 
SMILES encoding of the molecules themselves, leading to its representation as a 100-ele-
ment vector and using Simple Euclidean distances to obtain a metric of similarity calcu-
lated for any new molecule, including the entire set of molecules used in the development 
of the latent space. First, The VAE has been trained to use SMILES molecule representa-
tion. This training returned more than 95% valid SMILES in the test (holdout) set, so those 
that were invalid could simply be filtered out without significant loss of performance. 
Following training, each molecule (SMILES) was associated with a normalized vector of 
100 dimensions, and the Euclidean distance between them was calculated. The VAE was 
trained on over six million druglike molecules and natural products (including over one 
million in the final holdout set). The VAE vector distances provided a rapid and novel 
metric for molecular similarity that is easily and rapidly calculated. The new metrics de-
termine the similarity to clozapine of other drugs.  

Recently, Nasser et al. [54] developed a new feature selection model based on the 
deep belief networks method for ligand-based virtual screening. The reconstructed fea-
tures weight and features error were calculated, and the features were filtered according 
to the value of the features error. Important features with lower error values are selected 
based on threshold and utilized to enhance the recall of similarity searching measures 
[54,55]. Another recent new research focuses on determining whether some descriptors 
and molecular presentation are better as individual or complementary to other de-
scriptors. The results show that the combined use of descriptors demonstrated to be better 
[56]. Several molecular representations, in particular, are included by merging and inte-
grating features from multi-descriptors, which improves the effectiveness of similarity 
searching [56]. The proposed research was based on a new feature selection model based 
on deep belief networks applied to five descriptors, with the significant features from each 
descriptor being selected and integrated to generate a new descriptor. This descriptor is 
then used to improve the final performance of molecule similarity searching [56,57]. 

3. Materials and Methods 
3.1. Dimensionality Reduction Based Autoencoder 

Autoencoder (AE) is a method that encodes some input into a low-dimensionality 
representation known as code and then reconstructs this compact representation to match 
the original input as closely as possible using a decoding module [58]. AE is obliged to 
learn an encoding transformation that contains the most important information about the 
structural data for the decoding component to function effectively in the reconstruction 
task. The AE is divided into two parts: an encoder and a decoder. The encoder takes the 
original input and makes a limited representation of it, referred to as the representation 
code layer or the latent space layer, while the decoder is in charge of reconstructing the 
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original input from the code layer. Encoders and decoders are frequently linear transfor-
mations that may be done unsupervised using a dense layer of a neural network [59]. 

The AE transforms a molecule into a continuous space, which the decoder then uti-
lizes to rebuild the molecule based on its continuous representation. Therefore, by em-
ploying this fundamental concept, the model is not required to acquire a generic mathe-
matical representation of the molecules. Due to the large number of parameters in Neural 
Networks and the relatively lesser amount of training data, the AE will almost certainly 
learn an explicit mapping of the training set, and the decoder will be unable to decode 
random points in the continuous space [60]. Figure 1 depicts a basic autoencoder architec-
ture. The encoder takes 푥 input to a hidden representation ℎ and a decoder which re-
constructs the input 푥 back from the ℎ.  

 
Figure 1. The Standard structure of Autoencoder. 

An encoder is a deterministic mapping function 푓(푥) that converts a d-dimensional 
input vector 푥 into an r-dimensional hidden representation ℎ called an encoder [61]. It 
commonly takes the form of an affine mapping preceded by a nonlinearity, as seen in the 
following: 

ℎ = 푓(푥) = 훷(푤푥 + 푏) = sigmoid (푤푥 + 푏) =  1
1 + 푒 ( ) (1)

where 푤  denotes the affine mapping weight matrix, 푏 denotes the bias vector and 훷 is 
the activation function, typically a non-linear squashing function known as the sigmoid 
function.  

A decoder is a mapping function 푔(ℎ) that converts the latent representation ℎ de-
rived based on Equation (3) into a reconstructed vector 푧 in the input space. A decoder 
can alternatively take the form of an affine mapping with a squashing nonlinearity [61], 
which can be stated as the following: 
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푧 = 푔(ℎ) = 훷 푤ℎ + 푏 = sigmoid (푤ℎ + 푏) =  1
1 + 푒 ( ) (2)

where 푤 and 푏 are the affine mapping weight matrix and the bias vector, respectively, 
and 훷(ℎ) is the activation function known as the sigmoid function.  

Generally, learning in autoencoders includes the optimization of the weights for the 
minimization of the reconstruction error. Hence, the objective function can be expressed 
as the following: 

ℒ = ‖푥 − 푥‖  (3)

which is the mean squared error (MSE) between the input data and the reconstructed data 
and the tied weights is commonly used, i.e., 푤 = 푤  [62]. Figure 2 shows the structure 
and the visualization description of an autoencoder. 

 
Figure 2. The visualization description of Autoencoder. 

3.2. Ability of Autoencoder for Molecular Dimensionality Reduction 
A certain level of dimensionality is required to retrieve useful information such as 

important states and major conformational shifts. The ability of dimensionality reduction 
methods varied to efficiently project huge amounts of data to useful low-dimensional 
(low-d) representations varied, as did the manner the low-d and high-dimensional (high-
d) representations are connected [32]. The autoencoder method has the benefit of estab-
lishing a functional link between the high-d and low-d representations and vice versa. 
This allows us to not only effectively project data points to a low-d representation but also 
to generate high-d representations for each point on the low-d map. The Autoencoder 
creates efficient functional links between the high-d and low-d representations. It is com-
pelled to offer a meaningful point arrangement in the low-d representation by employing 
a non-linear distance metric-based cost function. 

In this paper, deep Autoencoder is proposed to exploit the powerful ability to learn 
a feature representation of molecules from low-level encodings of a large corpus of chem-
ical structures. It employs the concepts of neural machine translation to translate between 
two semantically similar but syntactically diverse representations of chemical structures, 
condensing the relevant information shared by both representations into a low-dimen-
sional representation vector. After training the model, this molecule’s representation can 
be retrieved and utilized as a new descriptor for similarity searching. The Tanimoto sim-
ilarity measure was used to search for molecular similarity using the new low-dimension 
descriptor. The findings were compared to existing similarity approaches that utilized the 
original full-dimension descriptor. 

Figure 3 depicts the general framework of the Autoencoder proposed method for 
molecular dimensionality reduction, which begins by training the Autoencoder to calcu-
late the weight of the reconstructed feature for the molecule, then calculates the mean 
squared error by subtracting the input molecule features values from the weight of the 
reconstructed features. If the mean squared error value for the trained molecule is greater 
than the proposed autoencoder learning rate, the autoencoder matrix weight and bias 
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weight should be updated, and the Autoencoder trains again till the mean squared error 
becomes less than the proposed learning rate. The new representation of molecules based 
on the code layer is then saved. A similar process is conducted on all proposed datasets 
molecules. The output of this training is a new molecules representation with low dimen-
sions based on the size of the latent space code layer (autoencoder dimension reduction 
layer). 

 
Figure 3. Autoencoder framework for molecular dimensionality reduction. 

Algorithm 1 shows the pseudo-code used to represent the proposed datasets mole-
cules, which is based on an autoencoder with a variable number of encoder and decoder 
layers to build a new low-dimensional molecules representation dependent on the size of 
the latent space code layer. 

Algorithm 1: Autoencoder Algorithm. The Pseudocode of the proposed Autoencoder algorithm for 2D molecular fin-
gerprints. 
1: Mols = 2 D figerprints dataset descriptor 
2: M = number of database molecules.// 102516 
3: N = number of hidden layers. 
4: α = learning rate value. 
5: Epoch = 0; 
6: For k = 1:M      // for all dataset molecules 
7:    Input = Mlos(k)      // input data 

8:    x = mols(k); // initial the encoder input layer with molecule k. 
9:    AE(x)      // Autoencoder function 
10:        For i = 1 until N      //start the encoder phase 
11:              If epoch = 0 do // first time training 
12:                 wi = random (0,1) // initial the weigh matrix for the first time training 
13:                 bi = random (0,1) // initial the bias vector for the first time training 
14:              Else 
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15:                 wi = wi+ ℒ // update the weigh matrix based on the error value 
16:                 bi = bi+ ℒ // update the bias vector based on the error value 
17:                 hi = 1

1 + 푒 –(wix+bi)  //calculate the hidden layers values based on equation (1) 

18:              x = hi      // make the hidden layer values to be an input to the next hidden layer. 
           End      // end encoder phase 
19:        Encoded date = x      // keep the last encoder layer which the new represented molecule. 
20:        h = x                 // keep last encoder layer be an input encoder layer. 

21:        n = N 
22:        For j = 1 until N      // start decoder phase 
23:              ŵj = wnT   // male the weight matrix of the decoder layer j be the transpose of n encoder weight matrix layer 
24:              bj = bnT    // make the value of the bias vector of the decoder layer j be the transpose of bias vector of n encoder layer. 
25:              zj = 1

1 + 푒 –(ŵjh+bj)  // calculate the zj reconstructed decoder layer values 

26:              h = zj; // keep the hidden decoder layer values to be an input to the next hidden layer. 
27:              n = n−1 
           End      // end decoder phase 
28:    output = h      // Reconstructed data 
29:    ℒ = ‖input − output‖        // calculate the error value based on equation (3) 
30:    If (ℒ > α)                 // if the error value is greater than the learning rate. 
31:       Epoch = epoch+1        // need more training to reduce the error value 

32:       Go to 9           // call the AE function again for new training — fine tune. 
      Else 
33:       New_Rep_mols(k) = Encoded date;// 

3.3. Autoencoder Proposed Cases for Molecular Dimensionality Reduction 
In the paper, three different architectures of Autoencoder are proposed, namely AE1-

DR, AE2-DR, and AE3-DR. Each Autoencoder consists of a different number of encoder 
and decoder layers while using a different number of layer nodes for molecular represen-
tation. The three proposed cases of AE are trained using different error rates (0.01, 0.05, 
0.06) and different epochs (20, 30, 50, 70, 100), and for each we calculated the similarity of 
the molecules based on the new proposed molecular representations. The performance of 
the similarity searching methods was compared with other benchmarks methods. The ex-
periments showed that the best results were obtained when the epoch is 100 and the error 
rate is 0.01. These three proposed cases are further explained in the following subsection.  

3.3.1. Proposed Autoencoder Case 1 (AE1-DR) 
In this case, the Autoencoder is trained using four encoder layers. The first encoder 

layer is known as the input layer, which consists of 1024 nodes and 1024 features of the 
extended connectivity fingerprints count (ECFC) for each molecule in the datasets. The 
remaining three hidden layers have 900, 700, and 500 nodes, respectively. The last hidden 
layer of the encoder is called the code layer (encoded data). The size of this vector is 500 
dimensions which will be used as a new molecule’s representation. The decoder is a re-
construction of the encoder representation where the nodes for all the decoder layers in 
this care are 500, 700, 800, and 1024, respectively. The last decoder layer is known as the 
output layer, which is the reconstructed input data most like the input data.  

Each molecule in the proposed datasets has been trained using AE1-DR until the er-
ror value of the training became lesser than the proposed learning rate value, which is 
0.01. The new representation of molecules based on the code layer is then saved. A similar 
process has been conducted on all proposed datasets molecules. The proposed design of 
AE1-DR is shown in Figure 4. The output of this proposed case of Autoencoder is a new 
molecule representation with 500 dimensions only used for similarity searches between 
molecules. The experimental results of AE1-DR have been presented in Section 5. 
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Figure 4. The AE1-DR proposed design. 

3.3.2. Proposed Autoencoder Case 2 (AE2-DR) 
The AE2-DR has been trained using five encoder layers in which the input data to 

the first layer of the encoder is the molecule vector with 1024 features. The remaining four 
hidden layers have 800, 600, 400, and 300 nodes, respectively. The size of the encode layer 
in this proposed case is 300, where it will be used as a new representation for the molecules 
and the size of the decoder layers in this proposed case are 300, 400, 600, 800, and 1024, 
respectively. The last decoder layer is the reconstructed input data which is mostly like 
the input data. All the molecules in the proposed datasets have been trained using the 
AE2-DR until they achieved a lesser error rate of the training compared to the proposed 
learning rate value, which is 0.01. The proposed design of AE2-DR is presented in Figure 
5. The finished training output of AE2-DR is a new molecules representation with 300 
dimensions which is only used for similarity search between molecules. The experimental 
results of AE2-DR have been presented in Section 5. 
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Figure 5. The AE2-DR proposed design. 

3.3.3. Proposed Autoencoder Case 3 (AE3-DR) 
The AE3-DR has been trained using five encoder layers in which the input data to 

the first layer of the encoder is the molecule vector with 1024 features. The remaining four 
hidden layers have 900, 800, 600, and 400 nodes, respectively. The size of the encode layer 
in this proposed case is 400, where it will be used as a new representation for the mole-
cules, and the size of the decoder layers in this proposed case are 400, 600, 800, 900, and 
1024 respectively. The last decoder layer is the reconstructed input data which is mostly 
like the input data. All molecules in the proposed datasets have been trained using the 
AE3-DR until they achieved a lesser error rate of the training than the proposed learning 
rate value, which is 0.01. The proposed design of AE3-DR is shown in Figure 6. The fin-
ished training output of AE3-DR is a new molecules representation with 400 dimensions 
which is only used for similarity search between molecules. The experimental results of 
AE3-DR have been presented in Section 5. 
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Figure 6. The AE3-DR proposed design. 

3.3.4. Similarity Searching Based Autoencoder Molecular Representation Using  
Tanimoto Similarity Measure 

Several similarity methods have been developed in virtual screening to calculate the 
similarity between the query and the molecular database. In this study, the continuous 
Tanimoto measure is utilized to calculate the similarity of the molecules in the represented 
datasets, which are based on three Autoencoder proposed cases. The continuous Tan-
imoto measure formula is expressed in Equation (7) where 푆  is the similarity between 
molecules A and B and the molecules A and B are represented Autoencoder with new 
vectors ƒ of length N and N has a different length based on the size of the autoencoder 
code layer for all the proposed cases, where 푓  is the value of the 푖 fragments of mole-
cule A and 푓  is the value of the 푖 fragments of molecule B.  
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4. Experimental Design  
The Autoencoder (AE) can be used as supervised and unsupervised training models. 

For the proposed model, we used the unsupervised Autoencoder for training all the mol-
ecules in the dataset in order to remove irrelevant and redundant features and generate a 
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new representation of the molecules. The low dimensionality of the new molecular repre-
sentation helps to improve the molecular similarity searching. The proposed models in 
the experiments are built using Keras. 

This study uses three different benchmark datasets that feature 2D structure repre-
sentations to conduct simulated virtual screen searches to examine the effectiveness of the 
proposed molecular representations based on Autoencoder deep learning. The datasets 
are the MDDR (MDL Drug Data Report) from MDDR datasets. DS1, DS2, and DS3 da-
tasets are used with different 2D fingerprints that consist of different bit strings length. 
The extended connectivity fingerprints count (ECFC), which consists of 1024 bits, is used 
to be an input to each proposed case of the Autoencoder. Moreover, each proposed case 
of Autoencoder was trained until it achieved an error rate of training lesser than the pro-
posed learning rate and for all the molecules in the proposed datasets. For each proposed 
case, the output serves as a new low-dimensional molecular representation based on the 
encoded data layer. The new representations are used as a new descriptor for molecular 
similarity searching. Figure 7 depicts the experiment design steps used in the proposed 
study.  

 
Figure 7. The Experimental design processes. 

The experiments were carried out using several similarity measures to provide a 
comparison result between all three proposed cases of Autoencoder with commonly used 
and conventional similarity measures such as the Tanimoto Similarity Method (TAN) [63], 
which is deemed as the baseline and standard similarity measure; Adapted Similarity 
Measure of Text Processing (ASMTP) [39]; and Quantum-Based Similarity Method (SQB) 
[38].  

The simulated virtual screening studies were conducted by searching using ten ref-
erence structures selected at random from each activity class. All the previously men-
tioned similarity measures are applied with the selected references that were unified. The 
final output, derived from the similarity findings of all molecules in the database, is then 
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ranked in decreasing order. This is usually done in ligand-based virtual screening to in-
vestigate and identify where the active compounds will appear in the ranked list. The 
presence of active compounds at the top of the ranking list demonstrates the effectiveness 
of the virtual screening techniques. A similar procedure is followed for all experiments 
performed on all datasets. The average retrieved output of the ten references’ query re-
sults mean is calculated in the 1% and 5% recall data cut-offs. Then, the average of the 
recall results of all classes is calculated to compare and evaluate the proposed measure 
with the standard measures. This process is repeated for all datasets and all experiments 
in this research. 

4.1. Datasets 
Evaluating the similarity searching methods requires chemical datasets that can carry 

out retrospective searches based on compounds of known activity. Therefore, several li-
censed datasets can be used to assign biological activities to chemical compounds applied 
on various algorithms for evaluation purposes. The MDL Drug Data Report (MDDR) da-
taset is one of the most widely used chemo-informatics databases for measuring the suc-
cess of retrieving active chemical structures from similarity screens (Accelrys Inc.: San Di-
ego, CA, USA, http://www.accelrys.com, accessed on 15 January 2020) [64] and has been 
used in several studies to validate ligand-based virtual screening methods [34,38,39,44]. 
The MDDR database consists of over 102,000 chemical compounds with hundreds of dif-
ferent activities, some of which are related to therapeutic areas such as antihypertensive, 
while others include specific enzymes such as Renin inhibitors. In contrast to other da-
tasets that use unstructured text to represent activity, the MDDR dataset has a limited set 
of set activities. Tables 1–3 show the specifics of the dataset’s active compounds. 

Table 1. The MDDR-DS1 structure activity classes. 

Activity Class Active Molecules Activity 
Index 

Pairwise  
Similarity 

Renin inhibitors 1130 31,420 0.290 
HIV protease inhibitors 750 71,523 0.198 

Thrombin inhibitors 803 37,110 0.180 
Angiotensin II AT1 antagonists 943 31,432 0.229 

Substance P antagonists 1246 42,731 0.149 
5HT3 antagonist  752 06233 0.140 

5HT reuptake inhibitors 359 06245 0.122 
D2 antagonists 395 07701 0.138 

5HT1A agonists 827 06235 0.133 
Protein kinase C inhibitors 453 78,374 0.120 
Cyclooxygenase inhibitors 636 78,331 0.108 

Table 2. The MDDR-DS2 structure activity classes. 

Activity Class 
Active  

Molecules 
Activity 

Index 
Pairwise  

Similarity 
Adenosine (A1) agonists 207 07707 0.229 
Adenosine (A2) agonists 156 07708 0.305 

Renin inhibitors 1130 31,420 0.290 
CCK agonists 111 42,710 0.361 

Monocyclic  -lactams 1346 64,100 0.336 
Cephalosporins 113 64,200 0.322 
Carbacephems 1051 64,220 0.269 
Carbapenems 126 64,500 0.260 

Tribactams 388 64,350 0.305 
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Table 3. The MDDR-DS3 structure activity classes. 

Activity Class 
Active  

Molecules 
Activity 

Index 
Pairwise 

Similarity 
Muscarinic (M1) agonists 900 09249 0.111 

NMDA receptor antagonists 1400 12,455 0.098 
Nitric oxide synthase inhibitors 505 12,464 0.102 

Dopamine  -hydroxylase inhibitors 106 31,281 0.125 
Aldose reductase inhibitors 957 43,210 0.119 

Reverse transcriptase inhibitors 700 71,522 0.103 
Aromatase inhibitors 636 75,721 0.110 

Cyclooxygenase inhibitors 636 78,331 0.108 
Phospholipase A2 inhibitors 617 78,348 0.123 

Lipoxygenase inhibitors 2111 78,351 0.113 

In this paper, the experiments were carried out using the MDDR dataset to simulate 
virtual screening to evaluate various methods in this work. All MDDR datasets utilized 
in this work are 2D structural representations converted to multiple fingerprint de-
scriptors using Pipeline Pilot’s software [65]. The descriptors used in these research ex-
periments are ECFC_4 (Extended Connectivity Counts). The MDDR dataset contains 
102,516 active and inactive molecule data from the MDDR DS1, MDDR DS2, and MDDR 
DS3 datasets. The MDDR-DS1 comprises eleven distinct activity classes, some of which 
include structurally homogeneous actives (i.e., structurally diverse). On the other hand, 
the MDDR-DS2 dataset comprises ten homogeneous classes of activity, whereas the 
MDDR-DS3 dataset comprises ten heterogeneous classes of activity. The following Tables 
1–3 provided each description for the datasets used. 

The diversity level in each of the chosen sets of bioactivities can be estimated, using 
Pipeline Pilot software, through the matching of each chemical structure with every other 
structure in its activity class. The class diversity is calculated using ECFC 4 fingerprints 
and the Tanimoto coefficient. These findings were provided in the tables where the scores 
demonstrate that activity class “Vitamin D analogs”, as shown in Table 2, is the most ho-
mogeneous, while activity class “NMDA receptor antagonists”, as shown in Table 3, is the 
most diverse. 

4.2. Evaluation Measures of the Performance 
The performance of the similarity methods is measured using different evaluation 

methods. First, the screening is performed using the proportion of active compounds dis-
covered within the top 1% and 5% of the ranking test set. Most virtual screening tech-
niques commonly employ the top 1% and 5% to measure the recall of virtual screening 
methods [66]. 

The second measure involves the comparison of proposed methods against the 
benchmark approach. Over the past years, the searching benchmark approach in ligand-
based virtual screening has been the Tanimoto similarity method. Additionally, several 
existing methodologies are available for the performance evaluation of the proposed 
methods. The methods are listed as the following: 
 Tanimoto Similarity Method (TAN) [63]: is used to calculate both binary and distance 

similarity coefficients. 
 Adapted Similarity Measure of Text Processing (ASMTP) [39] is a similarity measure 

based on ligand-based virtual screening. It has been generated to utilize the process 
of chemical structure databases for a textual database.  

 Quantum-Based Similarity Method (SQB) [38] is a method for determining molecular 
similarity based on quantum mechanics. To improve the model’s performance, the 
approach concentrates on the complex pure Hilbert space of molecules. 
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The final important measure that can be used to evaluate the proposed methods is the 
Significance Test. The Kendall W test of concordance is one of the important measures 
that use the Significance Test for a quantitative method for measuring the performance of 
the similarity approach [67]. In particular, Kendall’s W was used to translate the coeffi-
cient of concordance, commonly referred to as the measure of agreement among raters. 
The assumption is based on, there is either a judge or a rater for each possible instance 
and that each variable is either an object or a person being judged. The overall rankings 
for each variable are determined accordingly. The range of Kendall’s W is between 0 (no 
agreement) and 1 (complete agreement). Assume that object i (search similarity method) 
is provided a rank 푟푖,푗 by judge number j (activity class), where there are in total n objects 
and m judges. Thus, the total rank provided to the object i is:  

푅 = 푟 ,  (5)

and the mean value of these total rankings is  

푅   =
1
푛

 푅  (6)

The sum of squared deviations, S, is defined as  

푆 = (푅 − 푅)  (7)

and then Kendall’s W is defined as  

푊 =
12 푆

푚 (푛 − 푛) (8)

The Kendall W test determines if a group of judges can reach similar conclusions 
regarding the rank of each set of objects and vice versa. An experiment is carried out 
as part of this study. Each of the dataset’s activity classes served as judges, while the 
recall rates of the various search models served as objects. The findings supplied the 
Kendall coefficient value and corresponding relevance levels, demonstrating whether 
the occurrences of the coefficient are due to chance. It was possible to provide an over-
all object ranking provided the value was important (cut-off values of both 1% and 5% 
were used). 

5. Experimental Results and Discussion 
The study results presented a new molecules representation based on autoencoder 

dimensionality reduction (AE_DR) to exploit the powerful ability to learn a feature repre-
sentation of molecules from low-level encodings of a large corpus of chemical structures. 
In addition, the similarity score between the reference structures of the molecules and the 
entire represented molecules was calculated. As noted in Section 3.3, three different auto-
encoder architectures were proposed in this study (AE1-DR, AE2-DR, AE3-DR). The re-
trieval outcomes of all three proposed autoencoder cases were compared to different com-
parison approaches, including the Tanimoto Similarity Method (TAN), the Adapted Sim-
ilarity Measure of Text Processing (ASMTP), and the Quantum-Based Similarity Method 
(SQB). For many years, the TAN coefficient has been employed in ligand-based virtual 
screening and has been deemed as a reference standard, whereas the others have only 
recently been applied with a similar aim of improving the performance of similarity 
searching. The overall experimental findings of the MDDR-DS1, MDDR-DS2, and MDDR-
DS3 based on the new molecular representation are reported in Tables 4–9, with cut-off 
values of 1% and 5%. The dataset’s activity class is represented in the first column of each 
table. The second, third, and fourth columns reflect the average recall achieved at the top 
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1% and top 5% ranking results for each activity class, using TAN, ASMTP, and SQB sim-
ilarity metrics, respectively. The results achieved by the three proposed cases of the auto-
encoder approach are represented in the following columns. The average recall for the top 
1% and top 5% of the rankings is presented at the end of each column, and the contrasted 
shaded cell counts for all techniques will be evaluated. 

The recall values of MDDR-DS1 are shown in Table 4 and Table 5 for the 1% and 5% 
cut-off, respectively. Table 6 and Table 7 show the recall values of MDDR-DS2 results of 
the top 1% and 5%, respectively, and Table 8 and Table 9 report the retrieval recall results 
for MDDR-DS3 data sets of the top 1% and 5%, respectively. The last row of each table 
demonstrated the number of classes that achieved the best recall from each similarity 
measure. The best recall average values for each class are shaded.  

Table 4. The Retrieval results of the top 1% for the MDDR-DS1 dataset. 

Activity  
Index 

TAN ASMTP SQB AE1_DR AE2_DR AE3_DR 

31,420 69.69 73.84 73.73 71.31 70.43 70.99 
71,523 25.94 15.03 26.84 28.37 25.37 25.85 
37,110 9.63 20.82 24.73 21.40 21.90 20.92 
31,432 35.82 37.14 36.66 41.34 40.71 41.04 
42,731 17.77 19.53 21.17 19.23 17.67 22.03 
06233 13.87 10.35 12.49 13.01 14.04 14.87 
06245 6.51 5.50 6.03 6.03 7.78 7.08 
07701 8.63 7.99 11.35 9.87 8.91 12.31 
06235 9.71 9.94 10.15 10.71 11.07 10.49 
78,374 13.69 13.90 13.08 11.91 12.04 13.74 
78,331 7.17 6.89 5.92 7.23 7.07 8.14 
Mean 19.86 20.08 22.01 21.86 21.54 22.50 

Shaded 
cells 

0 2 1 2 2 4 

Table 5. The Retrieval results of top 5% for MDDR-DS1 dataset. 

Activity  
Index 

TAN ASMTP SQB AE1_DR AE2_DR AE3_DR 

31,420 83.49 86 87.75 85.8 85.03 87.08 
71,523 48.92 51.33 60.16 55.21 57.22 56.41 
37,110 21.01 23.87 39.81 43.53 42.17 41.79 
31,432 74.29 76.63 82 78.72 80.40 80.12 
42,731 29.68 32.9 28.77 27.04 26.03 27.04 
06233 27.68 26.2 20.96 23.8 24.11 25.19 
06245 16.54 15.5 15.39 19.76 21.17 21.07 
07701 24.09 23.9 26.90 25.21 24.78 26.25 
06235 20.06 23.6 22.47 22.08 21.91 24.17 
78,374 20.51 22.26 20.95 18.19 19.88 23.74 
78,331 16.2 15 10.31 11.07 11.9 13.19 
Mean 34.77 36.11 37.77 37.31 37.69 38.73 

Shaded 
cells 2 1 3 0 1 3 
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Table 6. The Retrieval results of top 1% for MDDR-DS2 dataset. 

Activity Index TAN ASMTP SQB AE1_DR AE2_DR AE3_DR 
07707 61.84 67.86 72.09 70.15 73.18 73.46 
07708 47.03 97.87 95.68 95.73 97.57 98.75 
31,420 65.10 73.51 78.56 73.75 75.17 74.04 
42,710 81.27 81.17 76.82 80.12 83.03 82.01 
64,100 80.31 86.62 87.80 86.19 88.17 87.79 
64,200 53.84 69.11 70.18 67.61 67.02 69.08 
64,220 38.64 66.26 67.58 67.96 66.74 67.19 
64,500 30.56 46.24 79.20 74.04 76.02 79.72 
64,350 80.18 68.01 81.68 81.96 81.77 83.09 
75,755 87.56 93.48 98.02 97.26 97.08 98.15 
Mean 62.63 75.01 80.76 79.48 80.58 81.33 

Shaded 
cells 0 0 2 1 2 5 

Table 7. The Retrieval results of top 5% for MDDR-DS2 dataset. 

Activity Index TAN ASMTP SQB AE1_DR AE2_DR AE3_DR 
07707 70.39  76.17  74.22  73.33 77.78 80.24 
07708 56.58  99.99  100 97.9 98.03 99.28 
31,420 88.19  95.75  95.24  92.08 94.11 95.22 
42,710 88.09  96.73  93 91.06 91.27 92.71 
64,100 93.75  98.27  98.94  98.90 97.41 97.85 
64,200 77.68  96.16  98.93  93.80 94.80 95.90 
64,220 52.19  94.13  90.9  91.5 92.09 92.33 
64,500 44.8  90.6  92.72  89.04 91.08 91.07 
64,350 91.71  98.6  93.75  91.11 92.44 90.9 
75,755 94.82  97.27  98.75  98.08 97.09 97.19 
Mean 75.82  94.36  93.61  91.68 92.61 93.27 

Shaded 
cells 0 4 5 0 0 1 

Table 8. The Retrieval results of top 1% for MDDR-DS3 dataset. 

Activity Index TAN SQB AE1_DR AE2_DR AE3_DR 
09249 12.12 10.99 15.01 16.03 17.76 
12,455 6.57 7.03 7.88 9.17 6.77 
12,464 8.17 6.92 11.12 12.50 12.04 
31,281 16.95 18.67 17.66 17.75 16.5 
43,210 6.27 6.83 9.76 9.07 10.90 
71,522 3.75 6.57 7.19 9.14 9.02 
75,721 17.32 20.38 22.29 21.66 23.90 
78,331 6.31 6.16 6.09 5.06 8.98 
78,348 10.15 8.99 9.11 6.89 6.40 
78,351 9.84 12.5 14.02 15.78 16.06 
Mean 9.75 10.50 12.01 12.31 12.83 

Shaded 
cells 1 1 0 3 5 
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Table 9. The Retrieval results of top 5% for MDDR-DS3 dataset. 

Activity Index TAN SQB AE1_DR AE2_DR AE3_DR 
09249 24.17 17.8 26.08 26.02 25.79 
12,455 10.29 11.42 14.85 15.86 14.99 
12,464 15.22 16.79 19.76 20.74 19.78 
31,281 29.62 29.05 32.33 33.19 35.01 
43,210 16.07 14.12 19.11 20.22 19.55 
71,522 12.37 13.82 15.44 15.07 16.06 
75,721 25.21 30.61 33.71 34.45 35.33 
78,331 15.01 11.97 13.22 13.10 14.12 
78,348 24.67 21.14 20.87 20.98 21.89 
78,351 11.71 13.30 17.50 16.45 18.08 
Mean 18.43 18.00 21.29 21.61 22.06 

Shaded 
cells 2 0 1 3 4 

Tables 4 and 5 summarizes the top 1% and top 5% recall rates for DS1, respec-
tively. Based on findings, the three proposed cases of AE1-DR, AE2-DR, and AE3-DR 
surpassed both TAN and ASMTP at the 1% and 5% cut-off values. Meanwhile, the 
AE3-DR surpassed TAN, ASMTP, and SQB for the 1% and 5% cut-off. In the first case, 
the AE1-DR surpasses all TAN and ASMTP benchmark comparison approaches, with 
increases of 2% in mean recall values when compared to TAN and 1.78 in mean recall 
values when compared to ASMTP, respectively, for the top 1%. The findings for the 
top 5% are provided in Table 5, where it can be observed that the AE1-DR surpassed 
TAN by 2.54% mean recall values and ASMTP by 1.20% mean recall values. In the 
second case, the AE2-DR with DS1 surpassed the TAN and ASMTP benchmark simi-
larity approaches, increasing mean recall values by 1.68% to TAN and 1.46% com-
pared to ASMTP for the top 1%. The AE2-DR surpassed TAN and ASMTP in the top 
5%, achieving 2.92% mean recall values and 1.58% mean recall values, respectively. 
Finally, compared to the TAN, ASMTP, and SQB benchmark methods, the third rec-
ommended case of AE3-DR yielded the best results. On the DS1 dataset, AE3-DR sur-
passed the other similarity techniques in the top 1%, with mean recall values in-
creased by 2.64% to TAN, 2.42% when compared to ASMTP, and 0.49% when com-
pared to SQB. The findings of the top 5% demonstrated that AE3-DR performed well, 
with mean recall values increasing by 3.96% compared to TAN, 2.62% when com-
pared to ASMTP, and 0.96% when compared to SQB. 

The DS2 dataset comprises ten homogeneous activity classifications. This da-
taset’s molecules are more similar to one another with lower diversity. In Tables 6 and 
7, the recall values for the three proposed cases were compared to those obtained us-
ing the TAN, ASMTP, and SQB benchmark techniques. The AE1-DR beats the TAN, 
and ASMTP benchmark similarity approaches for the top 1%, with increases of 
16.85% mean recall values versus TAN and 4.47% mean recall values versus ASMTP. 
The AE2-DR for the top 1% with DS2 outperforms the TAN and ASMTP benchmark 
similarity methods, with increases of 17.95% mean recall values compared to TAN, 
and 5.57% mean recall values compared to ASMTP. Among all three proposed cases, 
the AE3-DR for the top 1% with DS2 demonstrated the best results compared to TAN, 
ASMTP, and SQB benchmark methods. The AE3-DR outperformed other similarity 
methods, with increases of 18.70% for mean recall value compared to TAN, 6.32% 
compared to ASMTP, and 0.57% compared to SQB. The results for the top 5% of the 
three proposed cases of AE1-DR, AE2-DR, and AE3-DR are provided in Table 7, 
where each case outperforms the TAN with increases of 15.86%, 16.79%, and 17.45%, 
respectively. The ASMTP and SQB, on the other hand, outperformed the proposed 
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cases. The DS2 Dataset is more homogenous, with less important and redundant char-
acteristics that might affect similarity performance. Therefore, compared to ASMTP 
and SQB, the performance of similarity searches using the new molecules’ represen-
tations based on low dimensions was worse. Thus, our work focuses on how to im-
prove the similarity between molecules that are diverse and have low similarity val-
ues. 

The DS3 dataset comprises ten heterogeneous activity classes with highly diverse 
molecules. Based on the findings, the DS3 dataset produces the best outcomes. Table 
8 shows the top 1% retrieval results of AE1-DR, AE2-DR, and AE3-DR when com-
pared to TAN and SQB benchmark methods, while Table 9 presents the retrieval re-
sults of the top 5% of AE1-DR, AE2-DR, and AE3-DR. The results of AE1-DR in the 
top 1% demonstrated increased performance, with improvements of 2.26% in mean 
recall values compared to TAN and 1.51% in mean recall values compared to SQB. 
While the AE1-DR performed well in the top 5% of results, it gained 2.86% of mean 
recall values compared to TAN and 3.29% of mean recall values compared to SQB. In 
the second case, the outcomes of AE2-DR with the top 1% performed better than the 
TAN, with improvements of 2.56% of mean recall values and 1.81% of mean recall 
values compared to SQB. While the AE2-DR fared better in the top 5% of results, with 
improvements of 3.18% mean recall values compared to TAN, and 3.61% mean recall 
values compared to SQB. Compared to benchmark methodologies, the AE3-DR find-
ings outperformed the other two proposed cases. AE3-DR outperformed the bench-
mark similarity approaches for the top 1%, gaining 3.08% of the mean recall values 
compared to TAN and 2.33% of the mean recall values compared to SQB. While the 
AE3-DR fared better for the top 5% of results, with improvements of 3.63% of the 
mean recall values when compared to TAN and 4.06% when compared to SQB.  

Another important measure used to evaluate the performances of the proposed 
method is a quantitative approach known as the Significance Test. The Kendall W test of 
concordance, as previously discussed in Section 4.2, was employed as the Significance 
Test in this study. The Kendall W significance test determines if a group of raters makes 
comparable judgments about the ranking of a group of objects; the raters, in this case, are 
the activity classes, and the item to be ranked is represented by the recall rates of the var-
ious search methods. Kendall’s coefficient of concordance test aims to measure whether 
the output result of the virtual screening was random or if the proposed approach pro-
duced good results that enhanced the virtual screening efficiency. In this study, if the 
value was significant, for which the cut-off values of 1% and 5% were chosen, it is possible 
to rank the items overall. Table 10 summarizes the top 1% and top 5% ranks for the differ-
ent similarity findings of the TAN, ASMTP, SQB, AE1-DR, AE2-DR, and AE3-DR based 
on the Kendall analysis for DS1, DS2, and DS3 with ECFC 4 fingerprints. Table 10 has 
columns labeled with the dataset type, recall%, Kendall W coefficient value, related prob-
ability, and ranking of each of the six approaches. 

Table 10. The Rankings of TAN, ASMTP, SQB, AE1-DR, AE2-DR, and AE3-DR approaches Based 
on Kendall W Test Results: DS1, DS2, and DS3 at top 1% and top 5%. 

Data Set 
Recall 

Cut-Off 
W P 

Mean Rank 
TAN ASMTP SQB AE1_DR AE2_DR AE3_DR 

DS1 1% 0.19 0.00012 1.56 1.64 2.59 2.95 2.55 3.737 
DS1 5% 0.11 0.03 1.73 2.55 2.82 2.05 2.36 3.5 
DS2 1% 0.49 0.002 0.4 1.7 3.2 2.4 3.2 4.1 
DS2 5% 0.61 0.001 0.2 4.4 4.4 1.8 2.6 3.1 
DS3 1% 0.23 0.0001 1 Not used 1.4 2.3 2.6 2.7 
DS3 5% 0.47 0.0011 1.1 Not used 0.7 2.2 2.7 3.3 
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Kendall W tests have a range of 0 to 1, with 0 indicating no agreement and 1 indicat-
ing total agreement, and the associated probability (p) should be less than 0.05. Kendall W 
test values for DS1 were p = 0.00012 and w = 0.19 for the top 1% retrieval results, p = 0.03 
and w = 0.11 for the top 5% retrieval results, p = 0.002 and w = 0.49 for the top 1% retrieval 
results, p = 0.001 and w = 0.61 for the top 5% retrieval results, and p = 0.000 for the DS3 
dataset. Thus, the Kendall W test findings for the top 1% and top 5% of all datasets DS1, 
DS2 and DS3 indicate that the associated probability (p) is less than 0.05. This indicates 
that the AE1-DR, AE2-DR, and AE3-DR are statistically significant at both the 1% and 5% 
cut-offs. Thus, the overall ranking of techniques for DS1 with the top 1% is AE3-DR > SQB 
> AE1-DR > AE2-DR > ASMTP > TAN while for the top 5% is AE3-DR > SQB > ASMTP > 
AE2-DR > AE1-DR >TAN. As for the DS2, the overall ranking of techniques for the top 1% 
is AE3-DR > AE2-DR > SQB > AE1-DR > ASMTP > TAN while for the top 5% is SQB > 
ASMTP > AE3-DR > AE2-DR > AE1-DR >TAN. Next, for DS3, the overall ranking of tech-
niques for the top 1% is AE3-DR > AE2-DR > AE1-DR > SQB > TAN while for the top 5% 
is AE3-DR > AE2-DR > AE1-DR > TAN > SQB. 

As mentioned in the related works section, the Bayesian inference network (BIN) is 
the most popular method of machine learning used for molecular similarity searching that 
provided an interesting performance to the existing tools of similarity-based virtual 
screening. The BIN is particularly effective when the active molecules being sought have 
a high degree of structural homogeneity but has been found to perform less well with the 
structurally heterogeneous sets of molecules. The mean recall value results of BIN based 
on the MDDR-DS3 heterogeneous dataset is 10.55 with a cutting-off of 1 %, while the mean 
recall value results with cutting 5% is 17.81 [36]. In this paper, we aimed to improve the 
performance of similarity searching for the heterogeneous dataset, where the molecules 
are highly diverse and where the benchmarks methods failed to improve the performance 
of the LBVS similarity searching. Thus, we introduced an alternative approach for molec-
ular representation called Autoencoder, which aims to remove irrelevant and redundant 
features that impact the performance of the similarity searching methods and produces a 
new molecules’ representation (new descriptor with low dimensions) used for improving 
the performance of the similarity searching. This helped overcome the limitations of the 
previous methods, such as BIN. For instance, the results of the Autoencoder cases AE1-
DR, AE2-DR, and AE3-DR with the top 1% showed an improved performance using the 
mean recall values compared to BIN (12.01, 12.31, 12.83, and 10.55, respectively. Similarly, 
for the top 5%, AE1-DR, AE2-DR, and AE3-DR obtained better performance than BIN 
(21.29, 21.61, 22.06, and 17.81). 

6. Conclusions 
The selection of favorable reduced metric space without prior information is not easy. 

However, the use of new algorithms that can learn complex functions has opened up a 
new way of providing a lower-dimensional representation of the data without significant 
information loss. Autoencoders have proven extremely effective at reducing data dimen-
sionality while preserving significant underlying features. Three proposed cases with dif-
ferent architectures of Autoencoder have been employed to remove irrelevant and redun-
dant features and produce a new molecular representation with low dimensions. This new 
representation based on the low dimension is regarded as a new descriptor and used to 
enhance the recall of the similarity searching measures. The proposed cases resulted in a 
low dimensional molecular representation that preserved the significant underlying fea-
tures. The represented datasets were utilized to calculate the molecular similarity search 
using the Tanimoto similarity measure. The experiments performed in this study using 
the MDDR benchmark dataset demonstrated that virtual screening of chemical databases 
using ligands is more cost-effective than other techniques. The screening and evaluation 
findings indicated that the proposed method outperforms other similarity search meth-
ods, including Tanimoto coefficient (TAN), Adapted Similarity Measure for Text Pro-
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cessing (AS-MTP), and Quantum-Based Similarity (QBS) approaches. The screening in-
vestigation demonstrated that the new approaches outperformed the existing methods. 
The performance of the three proposed cases featuring structurally heterogeneous da-
tasets (MDDR-DS1, MDDR-DS3), in particular, outperformed current approaches used in 
prior work to improve molecular similarity searches. 
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