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Abstract: Eukaryotic cells monitor and regulate metabolism through the atypical protein kinase
target of rapamycin (TOR) regulatory hub. TOR is activated by amino acids in animals and fungi
through molecular signaling pathways that have been extensively defined in the past ten years. Very
recently, several studies revealed that TOR is also acutely responsive to amino acid metabolism
in plants, but the mechanisms of amino acid sensing are not yet established. In this review, we
summarize these discoveries, emphasizing the diversity of amino acid sensors in human cells and
highlighting pathways that are indirectly sensitive to amino acids, i.e., how TOR monitors changes
in amino acid availability without a bona fide amino acid sensor. We then discuss the relevance of
these model discoveries to plant biology. As plants can synthesize all proteinogenic amino acids
from inorganic precursors, we focus on the possibility that TOR senses both organic metabolites
and inorganic nutrients. We conclude that an evolutionary perspective on nutrient sensing by TOR
benefits both agricultural and biomedical science, contributing to ongoing efforts to generate crops
for a sustainable agricultural future.

Keywords: amino acid signaling; target of rapamycin; metabolism; mTOR; Sestrin2; GCN2; Castor1;
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1. Introduction

Target of rapamycin (TOR) is a serine/threonine kinase that senses environmental
cues, especially nutrient availability, to coordinate eukaryotic cellular metabolism [1–5].
TOR supports growth by activating anabolic processes, such as mRNA translation [6–9],
nucleotide biosynthesis [10–13], and lipid biosynthesis [14–16], while inhibiting catabolic
processes, such as autophagy [17–21]. TOR is especially responsive to amino acid signals.
Free amino acids stimulate TOR, which then increases the global rate of protein synthesis to
metabolize those amino acids [7,22,23], thereby maintaining metabolic homeostasis while
promoting growth and development. The stimulatory effect of amino acids on TOR has
primarily been studied in heterotrophs, especially yeast, invertebrates, and mammals,
that rely on dietary sources for the 20 proteinogenic amino acids. Unlike these model
species, plants are autotrophs that can synthesize all proteinogenic amino acids from
inorganic precursors [24–26]. TOR is also responsive to amino acid signals in autotrophic
plants [27–30], but the precise amino acids sensed by TOR and the molecular mechanisms
of amino acid sensing in plants remain unknown.

In this review, we summarize the current understanding of the molecular pathways
of amino acid sensing by TOR in mammalian, invertebrate, and yeast models, discuss
the recent literature on amino acid sensing by TOR in plants, address the possibility
that TOR responds to both inorganic and organic nitrogenous compounds in plant cells,
and propose that a deeper understanding of nitrogen–TOR signaling is urgently needed
to minimize reliance on chemical fertilizers for a sustainable agricultural future. We
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argue that a comparative, evolutionary perspective on nutrient sensing by TOR benefits
both agricultural and biomedical science, and we highlight how ongoing studies of TOR
signaling in plants and algae contribute to these fields.

2. Sensors and Transducers in Metabolic Signaling

Multiple amino acid sensors are proposed to regulate TOR activity in humans [23,31].
The relative significance of these sensors and their precise mechanisms of signal transduc-
tion are under debate. Therefore, we now define several terms in the field of metabolic
signal transduction that are useful for understanding the amino acid–TOR network. A
“sensor” protein responds directly to an environmental cue, e.g., by binding to a metabolite
that alters the protein’s activity or by undergoing a structural change triggered by light or
temperature. A classical example of a sensor from plant biology is phytochrome, which
reversibly changes conformations in response to red or far-red light [32]. Sensors then
engage “transducer” proteins, either indirectly or through direct protein–protein interac-
tions, which may either act on additional transducers to create a chain of signaling events
in a pathway or activate the response to a cue. Antibodies, ligand-binding proteins, and
hormone receptors are examples of sensors [33]; mitogen-activated protein (MAP) kinases,
G-proteins, and TOR itself are examples of transducers.

The distinction between “sensor” and “transducer” is crucial for understanding
nitrogen- and amino acid responsive signaling networks in eukaryotic cells. Debates
over the function of GCN2 (general control nonderepressible 2), for example, revolve
around whether GCN2 is a sensor or a transducer. GCN2 is a serine/threonine kinase that
is activated when cells experience extreme stress [34]. Among other substrates, GCN2 phos-
phorylates the eukaryotic translation initiation factor, eIF2α (at serine 51 in human eIF2α,
which is orthologous to serine 56 in Arabidopsis eIF2α), which globally represses trans-
lation of most mRNAs and selectively upregulates translation reinitiation of transcripts
that encode small, upstream open reading frames (uORFs) in addition to the primary
ORF [35–38]. Transcripts with uORFs encode various stress-inducible and starvation-
responsive transcription factors [39]. Thus, when GCN2 is active, gene expression is
regulated translationally and transcriptionally to promote stress responses.

GCN2 is often misleadingly called an “amino acid sensor” as GCN2 is rapidly acti-
vated in response to amino acid deprivation and mediates starvation responses in diverse
eukaryotes [39,40]. Early studies confirmed that GCN2 does not directly sense amino
acids and hypothesized that GCN2 senses uncharged tRNAs (i.e., tRNAs that have not
been ligated with an amino acid by an aminoacyl-tRNA synthetase, presumably due to
amino acid deprivation), and that physical interaction with uncharged tRNAs allosterically
activates GCN2 [40–43]. Later studies upended this straightforward model, proposing
instead that GCN2 senses translational stress through alternative mechanisms, such as
by directly binding the exposed phosphoprotein (P)-stalk of stalled mRNA-bound ribo-
somes [44,45] or by acting as a transducer downstream of other proteins that associate
with stalled ribosomes [46,47]. While the distinction among directly sensing uncharged
tRNAs, directly sensing exposed P-stalks, and acting as a transducer for other sensors of
translational stress seems esoteric, these distinctions are critical for understanding human
diseases [48]. In mouse, Drosophila, and human cell models of Charcot-Marie-Tooth (CMT)
disease, a genetic disorder that causes peripheral neuropathies, tRNA synthetases carry
partially dysfunctional mutations that limit the synthesis of charged tRNAs, leading to
translational stress and constitutive activation of GCN2 [48–51]. Overexpressing tRNA
genes reduces CMT symptoms and suppresses GCN2 by increasing levels of both charged
tRNAs and uncharged tRNAs [49,51]. This experiment in a disease model demonstrates
that accumulation of uncharged tRNAs is not sufficient to activate GCN2 in cells. There-
fore, structural, biochemical, and in vivo experiments indicate that GCN2 is not an amino
acid sensor or an uncharged tRNA sensor but is most likely a sensor or transducer of
translational stress per se in eukaryotic cells [46,47,52] (Figure 1).
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Figure 1. Sensors and transducers in metabolic signaling. (A) Metabolic signaling is triggered by a
metabolite sensor protein that directly binds to a metabolite. The sensor then engages transducers in
a signaling pathway that eventually activate responses through an effector protein. (B) In mammalian
models, amino acids are sensed directly by diverse sensor proteins that activate the mechanistic
target of rapamycin (mTOR), a central regulatory hub that transduces diverse upstream signals to
coordinate metabolism. mTOR then phosphorylates additional transducers and effectors, such as
LARP1 and S6K, to promote protein synthesis and repress autophagy.

3. The Growing Chorus of Amino Acid Sensors and Transducers for Mammalian TOR

From an evolutionary perspective, sensors may evolve through one of two general
mechanisms: exaptation or adaptation [2]. In the former case, a sensor evolves from a
protein that already interacted with the cue it senses (e.g., an enzyme and its substrate), later
evolving to interact with a transducer that connects to a downstream signal transduction
pathway. This situation is called “exaptation” [53] because both the transduction pathway
and the sensor already existed in cells, and they were co-opted to create a new pathway that
conferred some fitness benefit. When the sensor retains its ancestral function in addition
to its new, exaptive role as a sensor, the sensor is often called a “moonlighting protein”.
In the latter case, an existing transducer or sensor evolves the capacity to sense a new
cue. This situation is called “adaptation” because the sensor did not already interact
with a cue but arose de novo through mutation of a previously nonsensor protein and
conferred some fitness benefit. The distinction between exaptation and adaptation is
useful for understanding the evolutionary origins and diversity of amino acid sensors in
eukaryotic cells.

We now present the major proposed amino acid sensors for TOR and discuss their
proposed transducers that mediate the signaling pathway to TOR. In mammals, TOR is es-
pecially responsive to levels of the essential amino acid leucine (Leu) and the conditionally
essential amino acid arginine (Arg) [54,55]. Leucyl-tRNA synthetase (LARS) was the first
proposed leucine sensor for TOR, identified through a protein–protein interaction screen
for potential amino acid sensors in yeast [56] and through colocalization experiments in
mammalian cells [57]. SLC38A9, an amino acid transporter localized to the membranes
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of lysosomes (lytic vacuoles), was the first proposed arginine sensor for TOR, identified
through a protein–protein interaction screen for potential amino acid sensors in mam-
mals [58]. Both LARS and SLC38A9 are examples of exaptation as their ancestral functions
already involved direct interactions with leucine and Arg, respectively, at a molecular level.

Protein–protein interaction screens later identified additional amino acid sensors for
TOR in mammalian cells, including the leucine sensors Sestrin1/2 [59,60] and Sar1b [61],
the arginine sensor Castor1 [62,63], and a sensor of the methionine derivative S-adenosyl
methionine (SAM) called SAMTOR [64]. Sestrins have an ancestral role as transducers of
stress signals to TOR [2,65]: Sestrin genes are transcriptionally activated by stress-responsive
transcription factors, including p53 and the GCN2-stimulated activating transcription
factor 4 (ATF4). Very recently in the mammalian lineage, some Sestrins evolved a leucine-
binding pocket that induces a conformational change to prevent their role in transducing
stress signals to TOR. In humans, not all Sestrin paralogues interact with leucine (for
example, Sestrin3 is completely leucine-insensitive), and Sestrin orthologues outside of
mammals do not include a leucine-binding site, suggesting that the leucine sensor function
of Sestrin1/2 is a recent adaptation and that Sestrin genes are subfunctionalizing in the
human lineage [65]. Sar1b is a small GTPase in the Arf family, which is conserved across
eukaryotes and participates in endomembrane trafficking. Human and C. elegans Sar1b
orthologues directly bind to leucine and signal leucine levels to TOR through interaction
with transducers [61]. Whether Sar1b orthologues in other lineages bind to leucine is not
established, but presumably, the role of Sar1b as a leucine sensor is another example of
adaptation. The evolutionary histories of Castor1 and SAMTOR are less clear; Castor1
encodes two ACT domains, which are found in various metabolite-binding proteins and
enzymes [66], and SAMTOR likely evolved from a SAM-dependent methyltransferase or
may itself be a functional SAM-dependent methyltransferase enzyme [64]. Neither gene
has readily identifiable orthologues outside of vertebrates, suggesting that these sensors
evolved very recently in the human lineage.

The transducers of amino acid signals to TOR were largely identified before the amino
acid sensors, primarily through screens for protein interactors of TOR and associated
proteins, but also through genetic screens for regulators of TOR activity. The Rag family of
small GTPases forms a complex with regulatory proteins called the “Ragulator”, which
forms a platform for the activation of TOR at the surface of lysosomes [67]. These Rag
GTPases are regulated by the “GAP activity towards the Rags 1” (GATOR1) complex,
which stimulates hydrolysis of RagA/RagB-bound GTP to negatively regulate TOR [68–70].
GATOR1 is negatively regulated by another multiprotein complex, GATOR2. GATOR2
transduces signals from Sestrins, Castor1, and Sar1b; GATOR1 transduces these signals
along with signals from SAMTOR; and the Ragulator complex transduces all these signals
along with signals from SLC38A9 and LARS (Figure 2).

Multiple groups proposed that the diversity of amino acid sensors in mammalian
cells reflects functional differences rather than simple redundancy [23,61]. The proposed
sensors have distinct binding affinities, subcellular localizations, and expression profiles,
and sensors intersect with distinct transducers upstream of TOR, which conceivably allows
the various sensors to coordinately act on TOR like “rheostats” that fine-tune TOR activity
in response to dynamic metabolic conditions [1]. To illustrate, Castor1 and SLC38A9 are
localized to the cytosol and lysosome, respectively, responding to different subcellular
pools of arginine [58,62,63,71]. As another example, Sestrin1, Sestrin2, and Sar1b each
bind specifically to leucine in the cytosol, but with high, moderate, and low affinities,
respectively [59,61]. In cells that express both Sestrins and Sar1b, Sestrins engage with
GATOR2 and only partially suppress TOR activity when leucine levels are moderately low,
but both Sar1b and Sestrins engage with GATOR2 and completely inactivate TOR when
leucine is extremely scarce or absent [61].
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Figure 2. Amino acid signaling in eukaryotes. In mammals, amino acids (red) are monitored by
multiple sensors (orange) that engage transducers (blue) at multiple steps in the GATOR2–GATOR1–
Ragulator–Rag GTPase signaling cascade to coordinate TOR (teal) activity at the surface of the
lysosome. Very few of these signaling components are conserved in plants (gray indicates not
conserved in plants). Sar1b and LARS, which have essential roles in membrane trafficking and tRNA
synthesis, respectively, were exapted as amino acid sensors in the animal lineage and may not act as
amino acid sensors in plants.

Beyond leucine and arginine, many other amino acids stimulate TOR, and the potency
of TOR activation by specific amino acids varies across biological contexts (e.g., cell type,
species, experimental conditions, etc.). Some of these amino acid sensitivities are mediated
by the GATOR2–GATOR1–Ragulator transduction pathway, but others act independently.
For example, glutamine and asparagine activate TOR through Ragulator-independent
mechanisms [72,73]. The details of how glutamine and asparagine activate TOR are still
under investigation, but several studies have pointed to the role of another small GTPase,
Arf1, in transducing glutamine and asparagine signals to TOR [74]. Alternative (but not
mutually exclusive) pathways have been proposed, including that glutamine drives syn-
thesis of α-ketoglutarate (αKG, also known as 2-oxoglutarate or 2OG) via glutaminolysis,
and that αKG promotes TOR activity in Ragulator-dependent mechanisms [75]; or, that
glutamine and asparagine elevate ATP/AMP ratios via asparagine synthase and the GABA
shunt, which, in turn, inhibits the TOR-antagonizing AMP-activated kinase (AMPK) [75].
Therefore, glutamine and asparagine may activate TOR indirectly, without any glutamine-
or asparagine-specific sensor proteins in cells.

Leu may induce TOR indirectly, without a bona fide Leu sensor, under some circum-
stances. In cells that do not strongly express Sestrins, including HeLa cells, Leu stimulates
TOR through a downstream metabolite, acetyl coenzyme A (AcCoA) [76,77]. AcCoA is
synthesized in human cells from pyruvate, fatty acid, or branched-chain amino acid (espe-
cially Leu) precursors [78]. Under leucine deprivation, AcCoA levels temporarily decrease,
but they can be restored by resupplying leucine or by compensatory synthesis from other
precursors [76]. AcCoA is mobilized in the cytosol to acetylate the TOR-associated protein
RAPTOR, which effectively increases TOR activity in cells; RAPTOR acetylation corre-
lates tightly with cytosolic AcCoA concentrations, thereby acting as an AcCoA sensor [77].
Knocking down Sestrin1/2 or LARS does not prevent leucine from activating TOR in
some cell types (e.g., HeLa cells), but knocking down the enzymes that metabolize leucine
to produce AcCoA makes TOR unresponsive to leucine supply [76,77]. This discovery
illustrates the complexity of amino acid signaling in cells and highlights how TOR can
integrate multiple dynamic cues as the hub of a signal transduction network.
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4. Plant Nutrient Sensing: From Inorganic Precursors to Organic Metabolites

Most investigations relevant to plant amino acid signaling have focused on how up-
stream precursors are sensed by plant cells, including inorganic nutrients absorbed from
soil (e.g., nitrate, ammonium, and sulfate) and photosynthesis-related cues (carbon dioxide,
light, and sugars). The best-studied sensor of nitrogenous nutrients in plant cells is the
plasma-membrane-localized nitrate transporter 1.1 (NRT1.1, often called chlorina 1 or
CHL1), a transceptor that alters nuclear gene expression when it detects environmental ni-
trate via a calcium-dependent protein kinase signaling cascade [79–81]. Pioneering studies
of plant TOR signaling focused on how TOR reacts to photosynthesized sugars rather than
amino acids. In plant cells, sugars are directly sensed by proteins including hexokinase
(HXK1) and the SNF1-related protein kinase (SnRK1, orthologous to human AMP-activated
kinase, AMPK, but not sensitive to AMP or ATP) [82]. HXK1 evolved an exaptive signaling
role in addition to its critical metabolic function in glycolysis, signaling sugar availability
in response to direct interaction with glucose [83–85]. SnRK1 phosphorylates proteins to
promote stress and starvation responses but is repressed by a proposed direct interaction
with trehalose-6-phosphate, an intermediate in sugar metabolism [86–89]. Although TOR
activity is likely regulated by SnRK1 [90], sugar activation of TOR also requires glycolysis
and oxidative phosphorylation [91,92], suggesting that TOR responds primarily to ATP
levels rather than directly to sugars. This may be analogous to the mammalian model:
TOR senses glycolytic intermediates (dihydroxyacetone phosphate), but only in cells that
lack ATP-sensing pathways [93]. Although no ATP sensors are established in plant cells,
a proposed ATP sensor for mammalian TOR, the cochaperone R2TP ATPase complex, is
conserved in plants and regulates TOR activity, hinting that R2TP may be an ATP sensor in
plant cells [94,95].

Several forward genetic screens have refocused attention on how plants sense organic
nitrogenous nutrients, especially amino acids and nucleotides. Two independent genetic
screens for Arabidopsis thaliana mutants that disrupt cellular patterning identified recessive
alleles of isopropyl malate synthase 1 (IPMS1), which encodes an enzyme in the leucine
biosynthetic pathway [27,28]. These ipms1 mutants display defects in cytoskeletal organiza-
tion and leaf shape during early seedling development [28], and ipms1 resolves the root
hair abnormalities observed in leucine-rich receptor/extensin 1 (lrx1) mutants [27]. Moreover,
ipms1 mutants exhibit elevated TOR activity, can be partially phenotypically rescued by
very low concentrations of TOR inhibitors, and are resistant to the growth-inhibiting effects
of moderate concentrations of TOR inhibitors [28]. Therefore, the effects of ipms1 on amino
acid metabolism are somehow transduced to TOR, and this is likely the primary cause of
ipms1 cellular and developmental phenotypes. A functional genetic screen for Nicotiana ben-
thamiana genes that regulate TOR activity identified phosphoribosyl pyrophosphate synthetase
4 (PRS4), which encodes an enzyme required for nucleotide biosynthesis in plant cells [13].
Plant TOR senses purine and pyrimidine availability, analogous to how mammalian TOR
monitors nucleotide levels [13,20]. Thus, plant TOR reacts to disruptions in organic nutri-
ent levels and biosynthetic pathways, but the sensors and transducers involved remain
enigmatic (Figure 3).

Beyond plants, the intersecting roles of nutrient sensing, amino acid metabolism, and
TOR signaling in distantly related microalgae, such as the chlorophyte Chlamydomonas rein-
hardtii, are currently under investigation and have potential industrial applications. Several
algae are excellent sources of triacylglycerols (TAGs) that could serve as biofuel feedstocks
for a sustainable energy future [96], and inhibiting TOR is sufficient to significantly induce
TAG biogenesis in candidate biofuel species, including C. reinhardtii and A. thaliana and the
nongreen algae Cyanidioschyzon merolae and Phaeodactylum tricornutum [97–101]. Alongside
TAG accumulation, inhibiting TOR rapidly increases amino acid levels in C. reinhardtii
cells [102]. Metabolomic investigations of the origin of these amino acids found that amino
acid accumulation upon TOR inhibition in C. reinhardtii is not primarily due to suppression
of mRNA translation or autophagic recycling of proteins but instead due to drastically ele-
vated inorganic nitrogen uptake from the environment and subsequent de novo amino acid
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biosynthesis [103]. As TOR activity is stimulated by both nitrogen and carbon sources in
C. reinhardtii cells [104], a possible model is that TOR monitors intracellular nutrient status
to regulate extracellular nutrient uptake and maintain carbon/nitrogen balance [102–104].
Understanding how algal cells monitor nutrient status on a molecular scale may accelerate
efforts to engineer algae for efficient biofuel production, but very little is known about
the mechanisms of nutrient sensing or which nutrients are sensed (inorganic nutrients or
organic forms such as amino acids) in these species.
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Figure 3. TOR monitors nitrogenous nutrient availability in plants. Plants can synthesize all
20 proteinogenic amino acids from inorganic precursors (nitrate or ammonium, carbon dioxide,
and sulfate). N. benthamiana were grown on calcined clay and supplied with standard nutrients except
for nitrogen, which was supplied as potassium nitrate at the indicated concentrations. Nitrate strongly
stimulated plant growth and activated TOR, as measured by Western blots using phosphospecific
antibodies against the canonical TOR substrate, S6K-pT449 (methods as in [13]).

A major outstanding question in plant metabolic signaling is whether plant cells
encode true amino acid sensors analogous to the aforementioned mammalian amino acid
sensors for TOR. Amino acid profiles of ipms1 mutants, which show constitutively elevated
TOR activity, revealed altered levels of almost every amino acid except for lysine and
methionine [28]. The relative potency of TOR activation by amino acids was not clearly
resolved by experiments using other mutants in the branched-chain amino acid biosynthetic
pathway [28]. In leaf discs floated on solutions containing either isoleucine or glutamine
at night, TOR activity was rapidly induced [29]; no amino acids were conclusively shown
to be incapable of activating TOR, but glutamine had a stronger effect on TOR activity
than isoleucine [29]. In Arabidopsis seedlings grown for 9 days without any source of
nitrogen, TOR became inactive and growth was arrested. Supplying most amino acids to
these nitrogen-starved seedlings activated TOR within minutes, except for arginine, proline,
and the aromatic amino acids phenylalanine, tryptophan, and tyrosine [30]. Nitrate and
ammonium may also activate TOR in this experimental system, even in the presence of
tungstate (a nitrate reductase inhibitor) or methionine sulfoximine (a glutamine synthetase
inhibitor), which prevent the assimilation of nitrogen into amino acids [30]. This may
suggest that TOR specifically senses inorganic forms of nitrogen in plants and that amino
acids supplied to N-deprived seedlings are catabolized to yield inorganic nitrogen forms.
Alternatively, plant TOR may monitor multiple nitrogenous cues, including inorganic
nitrogen and diverse amino acids, analogous to the diversity of amino acids and amino
acid related metabolites sensed by mammalian TOR. To summarize, although current data
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do not resolve whether plant cells directly sense amino acid cues, TOR dynamically reacts
to changes in amino acid metabolism (Figure 4).
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5. The Future of Crops: Deploying TOR for a Sustainable Agricultural Future

Modern agriculture relies heavily on inorganic fertilizers to drive growth and increase
yields [105,106]. Fertilizers are primarily composed of ammonias to provide nitrogen
(e.g., ammonium nitrate), phosphate rock to provide phosphorus, and potash to provide
potassium. Crops use fertilizers inefficiently, resulting in significant fertilizer run-off that
is environmentally disruptive [26,107]. Moreover, fertilizers are nonrenewable resources:
potash and phosphate rock are both ores mined from limited underground sources. Most
studies agree that both potash and phosphate production will peak in the 21st century,
reducing fertilizer availability while agriculture faces other pressures from changing cli-
mates, dwindling arable land, and growing global populations [108,109]. Therefore, a goal
of plant biology in the 21st century is to reduce reliance on external fertilizer sources and
maximize nutrient use efficiency in diverse, resilient crop species.

We argue that a detailed mechanistic understanding of the TOR signaling network in
plants is critical for these efforts. By defining the nutrient sensors and signaling network



Biomolecules 2022, 12, 387 9 of 13

transducers that act upstream of TOR and the phosphoprotein effectors and downstream
processes engaged by TOR, we expect to discover new targets for breeding, biotechnologi-
cal interventions, or both to improve plant nutrient use efficiency. Whereas TOR signaling
networks evolved to maintain homeostasis for plants that experience unpredictable, fluctu-
ating environments in ecological competition with other plant species, domesticated crops
do not face these same fitness costs and selective pressures. Ongoing investigations of
TOR signaling in model systems, including Arabidopsis, may illuminate new targets for
genetic modification, contributing to the larger project of establishing a sustainable global
agricultural program.
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