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Abstract: Periodontal ligament (PDL) cells play a pivotal role in periodontal and bone homeostasis
and have promising potential for regenerative medicine and tissue engineering. There is compelling
evidence that long non-coding RNAs (lncRNAs) are differentially expressed in PDL cells compared
to other cell types and that these lncRNAs are involved in a variety of biological processes. This study
systematically reviews the current evidence regarding the expression and regulatory functions of
lncRNAs in PDL cells during various biological processes. A systematic search was conducted on
PubMed, the Web of Science, Embase, and Google Scholar to include articles published up to 1 July
2021. Original research articles that investigated the expression or regulation of lncRNAs in PDL
cells were selected and evaluated for a systematic review. Fifty studies were ultimately included,
based on our eligibility criteria. Thirteen of these studies broadly explored the expression profiles
of lncRNAs in PDL cells using microarray or RNA sequencing. Nineteen studies investigated the
mechanisms by which lncRNAs regulate osteogenic differentiation in PDL cells. The remaining
18 studies investigated the mechanism by which lncRNAs regulate the responses of PDL cells to
various stimuli, namely, lipopolysaccharide-induced inflammation, tumor necrosis factor alpha-
induced inflammation, mechanical stress, oxidative stress, or hypoxia. We systematically reviewed
studies on the expression and regulatory roles of lncRNAs in diverse biological processes in PDL cells,
including osteogenic differentiation and cellular responses to inflammation, mechanical stress, and
other stimuli. These results provide new insights that may guide the development of lncRNA-based
therapeutics for periodontal and bone regeneration.

Keywords: long non-coding RNA; periodontal ligament cells; osteogenic differentiation; inflamma-
tion; mechanical stress

1. Introduction

Periodontitis is a plaque-induced inflammatory oral disease that causes the progres-
sive breakdown of periodontal tissue, and it is one of the leading causes of tooth loss [1,2].
Although conventional therapies can control active periodontal inflammation, they are
unable to fully regenerate damaged periodontal tissue. Therefore, recent efforts to treat
periodontal diseases have focused on regenerative therapies that can restore the physio-
logical function of teeth by re-building supporting periodontium, including periodontal
ligament (PDL), alveolar bone, gingiva, and cementum [3,4].

PDL is a thin layer of fibrous connective tissue, located between the alveolar bone and
cementum, that plays a crucial role in the development, functioning, and regeneration of
the tooth-supporting apparatus. An early study of PDL found that it had a regenerative
capacity and possibly contained a population of multipotent progenitor cells [5]. It has
since been established that PDL cells are a heterogeneous cell population consisting of
fibroblastic and osteoblastic mesenchymal lineages that include cells at different stages of
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differentiation and lineage commitment [6–11]. PDL stem cells (PDLSCs) were first isolated
in 2004 [12] and have been shown to exhibit self-renewal ability and multipotent capacities.
Numerous in vitro studies have revealed that PDLSCs can differentiate into various types
of cells, including adipocytes, osteoblasts, chondrocytes, neurons, and hepatocytes [12–15].
Moreover, in vivo models have demonstrated that PDLSCs form cementum- and PDL-
like structures after transplantation into surgically created periodontal defects, which
suggests that they could be used for the regeneration of periodontal tissues [16–18]. A
study comparing PDL cells with PDLSCs revealed that PDL cells were similar to PDLSCs
in that they have a high proliferative capacity and multipotent differentiation abilities,
express mesenchymal surface markers, and can regenerate periodontal tissues in vivo [19].
This study also demonstrated the feasible and safe application of autologous PDL cells for
periodontal regenerative treatment in patients diagnosed with periodontitis [19].

RNAs are versatile biomolecules that are either protein-coding (coding) or non-protein-
coding (non-coding) RNAs. Non-coding RNAs, which are not translated into proteins, are
classified as housekeeping RNAs (e.g., ribosomal RNAs, transfer RNAs, and small nuclear
RNAs) and regulatory RNAs [20]. Regulatory RNAs are further classified based on their
length into short and long non-coding RNAs (lncRNAs). MicroRNAs (miRNAs) are short
non-coding RNAs that are generally 20 to 23 nucleotides in length, and they function as
post-transcriptional repressors by binding to messenger RNA (mRNA), which results in
the silencing of a specific target gene.

LncRNAs have received much attention in recent years and comprise a large and
diverse class of transcribed RNA molecules that are greater than 200 nucleotides in length. It
was discovered that these lncRNAs, which were once considered “transcriptional noise” in
the genome, may play critical regulatory roles in many biological processes [21]. However,
due to their low conservation, high level of alternatively spliced transcripts, and tissue-
and development-specific expression, most lncRNAs remain unannotated and are yet
to be ascribed any function [10]. LncRNAs typically interact with DNA, RNA, protein
molecules, and/or combinations thereof to regulate gene expression at transcriptional and
post-transcriptional levels [22].

Studies have indicated that lncRNAs are involved in and may be vital to a variety of
diseases associated with aberrant cellular control, including autoimmune, neurological and
cardiovascular conditions, and cancers [23–26]. In recent years, the role of lncRNAs in the
regulation of PDL cells has attracted increasing attention. There is substantive evidence that
lncRNAs are differentially expressed in PDL cells compared to other cell types and are also
differentially expressed during various biological functions [27–30]. In addition, several
lncRNAs, such as maternally expressed gene 3 (MEG3), anti-differentiation non-coding
RNA (ANCR), and taurine upregulated gene 1 (TUG1), have been found to regulate the
regenerative capacities of PDL cells under normal and inflammatory conditions [31–33].

The significant progress made toward elucidating the biogenesis and functions of
lncRNAs has afforded ample evidence for their critical roles in many biological pathways.
The present study systematically reviews articles on the expression and regulatory roles of
lncRNAs in PDL cells during a variety of biological processes.

2. Materials and Methods
2.1. Search Strategy

A systematic search for studies was conducted in four databases (PubMed, Clarivate-
Web of Science, Google Scholar, and Embase) from the date of their respective inception
to 1 July 2021. The search terms used were as follows: (“periodontal ligament cell” OR
“periodontal ligament stem cell” OR “periodontal ligament fibroblast” OR “PDL cell” OR
“PDLSC” OR “PDLC” OR “hPDLSC” (human PDLSC) OR “hPDLC” (human PDLC) OR
“hPDL cell” (human PDL cell) AND “long non-coding RNA” OR “long noncoding RNA”
OR “lncRNA”.
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2.2. Selection Criteria

The inclusion criteria were as follows: (1) studies based on cell, human, or animal
models; (2) studies related to the expression or regulation of lncRNAs in PDL cells; and
(3) studies published in English. The exclusion criterion was as follows: reviews, conference
abstracts, or editorials.

2.3. Selection of Studies

Titles and abstracts of manuscripts were independently screened in electronic sheets
by two reviewers (Y.L. and Z.T.). Titles and abstracts were examined, and duplicate
studies were eliminated. If an article’s abstract did not contain sufficient information for an
inclusion/exclusion decision to be made, its full text was obtained and carefully inspected.
Any inter-examiner disagreement was resolved by discussion. The level of agreement
between the two examiners was assessed by determining Cohen’s kappa scores.

2.4. Quality Assessment

The quality of selected papers was evaluated using a well-known system (Table S1)
described by Wells and Littell [34]. The following eight questions comprised the quality
scoring system. (1) Was the study hypothesis/aim/objective clearly described? (2) Were
the experimental designs in the study well described? (3) Were the methods and materials
in the study well described? (4) Were the time-points of data collection in the study clearly
defined? (5) Were the main outcomes of measurements in the study clearly defined?
(6) Were the experimental groups comprehensively compared with the control group in
the study? (7) Were the results in the study well described? (8) Were the limitations of the
study discussed? In answering each question, 1 point was allocated for “yes” and 0 points
were allocated for “no.” The sum of scores for each study was calculated independently,
and the total possible score was 8. A score of 7 to 8 indicates a study with excellent quality,
a score of 5 to 6 indicates a good quality study, a score of 3 to 4 indicates a low-quality
study, and a score of 0 to 2 indicates a bad quality study. A detailed evaluation of the scores
of selected studies is presented in Table S1.

3. Results
3.1. Literature Search and Screening of Studies

A flow diagram of study selection is shown in Figure 1. Two hundred and eighty
records were obtained by screening titles and abstracts and removing duplicates. After
reviewing these titles and abstracts, 73 articles were retrieved for full-text evaluation, and
23 were subsequently excluded for the reasons described in the diagram. The remaining
50 studies were included for further analysis. The kappa score for study selection was
0.939, indicating that there was an excellent level of agreement between the reviewers. All
studies were published between 2014 and 2021, and their characteristics are summarized in
Figure 2.

3.2. Studies on lncRNA Expression Profiling in PDL Cells

In total, 13 of the 50 studies broadly explored the expression profiling of PDL cells
using microarray or RNA sequencing (RNA-seq) (Table 1). These studies investigated the
lncRNA expression profiles of PDL cells subjected to osteogenic induction [28–30,35,36]
and mechanical stress [37–41]; some compared PDL cells’ expression profiles with those of
other cell types, including bone marrow stem cells (BMSCs) [27], gingival mesenchymal
stem cells (GMSCs) [42], and dental follicle cells (DFCs) [43].
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Table 1. Studies on expression profiling of lncRNAs in PDLSCs.

Study Samples and Stimulation Differential Expression of lncRNAs in
PDL Cells qPCR Validation

[27] 3 PDLSC and 3 BMSC samples 457↑ and 513↓ lncRNAs in PDLSCs
↑: NR045555, NR027621, NR03365;
↓: NR037182, NR037595, XR111050

(in PDLSCs)

[28] osteogenic-induced and
non-induced PDLSC samples

777↑ and ↓ lncRNAs in induced PDLSCs
(|fold change| ≥ 2 and p < 0.05)

↑: TCONS_00019601,
TCONS_00227764, TCONS_00254538,
TCONS_00198784, TCONS_00136898;

↓: TCONS_00085268,
TCONS_00125934, TCONS_00115113

[29]

3 osteogenic-induced samples,
3 osteogenic- and

TNFα-stimulated samples,
and 3 non-

induced/stimulated samples

214↑ and 193↓ lncRNAs in
osteogenic-induced PDLSCs;

149↑ and 169↓ lncRNAs in TNFα- and
osteogenic-induced PDLSCs compared to

non-induced PDLSCs (log2 fold-change ≥ 1
and adjusted p ≤ 0.05).

↑: LINC-PDE10A-1, GK-AS-1;
↓: ZNF385D-AS-1, SGOL1-AS-1

[30] osteogenic-induced and
non-induced PDLSC samples

10, 36 and 69↑ and 44, 11 and 70↓ lncRNAs
after 3 days, 7 days, and 14 days of
osteogenic induction, respectively

(fold-change ≥ 2 and adjusted p < 0.05).

↑: MEG8, MIR22HG

[35]
3 osteogenic-induced and

3 non-induced PDLSC
samples from 15 individuals

994↑ and 1177↓ lncRNAs in induced PDLSCs
(|fold change| ≥ 2 and p < 0.05)

↑: AC078851.1, RP11-45A16.4,
XLOC_002932, RP4-613B23.1,

RP11305L7.6

[36]
osteogenic-induced and
non-induced exosomes
derived from PDLSCs

118 (70↑ and 48↓) and 43 (24↑ and 19↓)
lncRNAs after 5 or 7 days of osteogenic

induction, respectively (p < 0.05 and log2
fold-change > 1).

SNHG5, LOC100130992, and
ATP6V1B1-AS1: no

significant difference.

[37]
3 orthodontic force-induced

and 3 non-induced
PDL samples

DLEU2↑ and DNAJC3-AS1↓ in induced PDL
samples (p ≤ 0.05) /

[38] compressive force-induced
and non-induced PDLSCs

72↑ and 18↓ lncRNAs in
compression-induced PDLSCs (adjusted

p < 0.05 and fold-change > 1.5)

↑: FER1L4, HIF1A-AS2, MIAT,
NEAT1, ADAMTS9-AS2, LUCAT1;
↓: MIR31HG and DHFRP1

[39] 5 tension-induced and 5
non-induced PDL cell samples

107↑ and 88↓ lncRNAs in
tension-induced-PDL cells (adjusted p < 0.05) ↑: MIR22HG, CYTOR, SNHG3

[40] 3 H-PDLSC and 3
P-PDLSC samples

ENST00000411904 the most ↑ lncRNA in
strained H-PDLSCs; lncRNA-XIST and

ENST0000051750 the most ↑ and ↓ lncRNAs
in strained P-PDLSCs, respectively.

↓: TCONS_00008604,
ENST00000428781, uc004arq.1, XIST

[41] tensile force-induced and
non-induced PDLSC

799↑ and 540↓ lncRNAs in tension-induced
PDLSC (p < 0.05, fold-change > 2)

↑: TCONS_00103186,
TCONS_00114231, TCONS_00015104,
TCONS_00046925, TCONS_00022234;

↓: TCONS_00195572.

[42] 3 PDLSC and 3
GMSC samples

735↑ and 1427↓ lncRNAs in PDLSCs
(fold-change ≥ 1.2).

↑: NR_038849, TCONS_l2_00010766-
XLOC_l2_005781, ENST00000450854;
↓: n341766, n337408, n385309

(in PDLSCs)

[43] PDL cell and DFC samples
from 4 individuals 385↑ and 460↓ lncRNAs in PDL cells

↑: NR_033917, NR_038367,
NR_026861;

↓NR_102703, NR_110162,
ENST00000430859 (in PDL cells)

↑: increased, ↓: decreased, bone-marrow stem cell (BMSC), cytoskeleton regulator RNA (CYTOR), dental fol-
licle cells (DFC), gingival mesenchymal stem cell (GMSC), hypoxia-inducible factor 1 alpha-antisense RNA 2
(HIF1A-AS2), MIR31 host gene (MIR31HG), periodontal ligament (PDL), periodontal ligament stem cell (PDLSC),
quantitative polymerase chain reaction (PCR), X-inactive-specific transcript (XIST).

3.3. Studies on lncRNAs Involved in the Osteogenic Differentiation of PDL Cells

Table 2 presents 19 studies that investigated the mechanism by which lncRNAs regulate
the osteogenic differentiation of PDL cells. Fifteen of these studies investigated PDL cells from
healthy individuals (henceforth denoted as H-PDL cells or H-PDLSCs) [31–33,44–59], whereas
four of these studies isolated PDL cells from patients with periodontitis (henceforth denoted
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as P-PDL cells or P-PDLSCs) to determine the regulatory role of lncRNAs in osteogenesis
under inflammatory conditions [33,45,50,58].

Table 2. Studies on the regulatory mechanisms of lncRNAs in PDLSCs during osteogenic differentiation.

Study lncRNAs
Increased (↑) or Decreased (↓)

Expression in PDL Cells
upon Stimulation

Effect on
Osteogenesis

Effect on the Associated
Signaling Pathway

[31,44,47] ANCR ↓ upon osteogenic induction ↓
inhibition of miR-758, which upregulates
Notch2- Wnt/β-catenin; inhibition of the

Wnt/β-catenin signaling pathway

[54] DANCR ↓ upon osteogenic induction ↓ /

[52] FER1L4 ↑ upon osteogenic induction ↑ inhibition of miR-874-3p, which regulates
the VEGFA axis

[56] GAS5 ↑ upon osteogenic induction ↑ upregulation of GDF5, which decreases
the phosphorylation of p38/JNK

[46] HIF1A-AS2 ↑ upon hypoxia ↓ inhibition of HIF-1α

[58] LncRNA ANRIL ↓ in P-PDLSCs ↑ inhibition of miR-7-5p, which regulates
the IGF-1R axis

[45] LncRNA-POIR ↓ in P-PDLSCs, ↑ upon
osteogenic induction ↑

inhibition of miR-182, which
downregulates the FoxO1/canonical

Wnt pathway

[50] LncRNA-TWIST1 ↓ in P-PDLSCs, ↑ upon
osteogenic induction ↑ activation of the Wnt/β-catenin

signaling pathway

[33] MEG3 ↓ in P-PDLSCs, ↑ upon
osteogenic induction in PDLSCs ↑

inhibition of miR-27a-3p, which regulates
the IGF1 axis-regulated PI3K/AKT

signaling pathway

[49] MEG3 ↓ upon osteogenic induction ↓ competes with BMP2 mRNA for
RBP hnRNPI

[48] PCAT1 ↑ upon osteogenic induction ↑
inhibition of miR-106a-5p, which

regulates the BMP2 and E2F5
feed-forward regulatory network

[59] PWAR6 ↑ upon osteogenic induction ↑ inhibition of miR-106a-5, which regulates
the BMP2 axis

[53] SNHG1 ↓ upon osteogenic induction ↓ activation of H3K27 trimethylation of the
KLF2 promoter

[32,55] TUG1 ↑ upon osteogenic induction ↑
inhibition of miR-222-3p, which

downregulates the Smad2/7 ceRNA
regulatory network; binding the

RNA-binding protein (RBP) Lin28A

[51] XIST ↑ upon osteogenic induction ↑ inhibition of the miR-214-3p axis

[57] XPO5, HOTAIR,
HOTTIP

↓ in PDLSCs with high
osteogenic potentials ↓ /

↑: increased, ↓: decreased, anti-differentiation non-coding RNA (ANCR), antisense non-coding RNA in the INK4
locus (ANRIL), bone morphogenetic protein 2 (BMP2), differentiation antagonizing non-coding RNA (DANCR),
exportin 5 (XPO5), Fer-1-like family member 4 (FER1L4), forkhead box protein O1 (FOXO1), growth arrest-specific
transcript 5 (GAS5), heterogeneous nuclear ribonucleoprotein I (hnRNPI), histone H3 lysine 27 (H3K27), HOX
transcript antisense RNA (HOTAIR), HOXA transcript at the distal tip (HOTTIP), hypoxia-inducible factor 1
alpha-antisense RNA 2 (HIF1A-AS2), insulin-like growth factor 1 (IGF1), Kruppel-like factor 2 (KLF2), Lin-28
homolog A (Lin28A), maternally expressed gene 3 (MEG3), osteogenesis impairment-related lncRNA of PDLSCs
from periodontitis patients (lncRNA-POIR), phosphatidylinositol 3-kinase (PI3K), Prader Willi/Angelman region
RNA 6 (PWAR6), prostate cancer-associated transcript 1 (PCAT1), protein kinase B (AKT), small molecule RNA
host gene 1 (SNHG1), taurine-upregulated gene 1 (TUG1), X-inactive-specific transcript (XIST).

3.4. Studies on lncRNAs in PDL Cells Subjected to Inflammation, Mechanical Stress, and
Other Stimuli

Table 3 presents 18 studies that investigated the role of lncRNAs in regulating cellular
processes in PDL cells in the presence or absence of stimuli, including studies that com-
pared H-PDL and P-PDL cells [60–65]. These studies also explored the role of lncRNAs
in lipopolysaccharide (LPS)-induced inflammation [66–71], tumor necrosis factor-alpha
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(TNF-α)-induced inflammation [72], mechanical stress [73–75], hypoxia [76], and oxidative
stress [77]. To review the outcomes of lncRNA involvement, cell proliferation, apoptosis,
inflammatory responses, autophagy, migration, and root resorption were examined.

Table 3. Studies on the regulatory mechanisms of lncRNAs in PDL cells in response to inflammation,
mechanical loading, and other stimuli.

Study lncRNAs
Increased (↑) or
Decreased (↓)

Expression in PDLSCs
upon Stimulation

Effect on PDLSCs
upon Stimulation

Regulatory
Mechanism

Associated Signaling Pathways or
Biomarkers

[73] DANCR ↑ in H-PDL cells under
compressive force ↑ root resorption miR-34a-5p/jagged1

silences DANCR, downregulates
number of TRAP-positive osteoclasts

and the expression of RANKL.

[65] DCST1-AS1 ↓ in P-PDL cells ↓ proliferation miR-21/PLAP-1 ↓ CDK4, CDK6, CCND1; ↑ PLAP-1

[75] FER1L4 ↑ in H-PDLSC under
compressive force ↑ autophagy AKT/FOXO3 signaling

pathway
↑ LC3 II/I, Beclin 1, autophagosomes,
autolysosomes; ↓ p-FOXO3, p-AKT

[66] FGD5-AS1 ↓ in P-PDL cells and
LPS-induced H-PDL cells

↑ proliferation; ↓
apoptosis

miR-142-
3p/SOCS6/NF-κB

pathway

↓ p/t-p65, BAX/Bcl-2,
cleaved/pro-caspase-3,

cleaved/pro-caspase-9, TNF-α, IL-6,
IL-1β, and IL-8; ↑ p/t-IκBα

[72] H19 ↑ in TNF-α and
LPS-induced H-PDL cells ↑ autophagy PI3K/AKT

signaling pathway.
↑ Beclin-1, LC3 II/I, TNF-α, and

IL-6; ↓ p-AKT

[77] JHDM1D-
AS1

↓ in H2O2-induced
H-PDLSC ↓ apoptosis

DNAJC10/p-
eIF2α/Bcl-2

regulatory axis

↓ cleaved-caspase 3, cleaved-caspase
9, BAK, ROS, DNAJC10; ↑ p-PERK,

p-eIF2α, Bcl-2/BAX

[69] LINC01126 ↑ in LPS-induced
H-PDL cells

↑ inflammation;
↓migration

MEK/ERK
signaling pathway ↓ p/t-MEK and p/t-ERK.

[76] LINC01126 ↑ in hypoxia-induced
H-PDL cells

↑ apoptosis,
inflammation;↓

proliferation

miR-518a-5p/HIF-
1α/MAPK
pathway

↑ p38, ERK1/2, JNK, IL-1β, IL-6,
IL-8, TNF-α.

[64] Linc-RAM ↓ in P-PDLSC ↑ proliferation
inhibits the effect of

overexpression of FGF2
on proliferation

/

[63] MAFG-AS1 ↓ in P-PDLSC ↑ inflammation; ↓
proliferation miR-146a/TLR4 axis ↑ TLR4

[60] MALAT1 ↑ in P-PDLSC ↑ proliferation FGF2 axis ↑ FGF2

[70] MALAT1 ↑ in LPS-induced
H-PDL cells

↑ apoptosis,
inflammation
↓ proliferation

miR-769-
5p/HIF3A axis

↑ IL-6, IL-1β, TNF-α, BAX, and
caspase-3; ↑ Bcl-2.

[68] MEG3 ↓ in P-PDL cells and
LPS-induced H-PDL cells

↑ proliferation;↓
apoptosis,

inflammation

miR-143-3p
AKT/IKK pathway

↓ p-AKT/AKT, p-IKK/IKK, p-p65,
IL-6, IL-18, IL-1β, TNF-α.

[74] MIR31HG ↓ in H-PDLSC under
compressive force ↑ proliferation

DNMT1 and DNMT3B
inhibited expression

of MIR31HG

silences MIR31HG, inhibits
cell viability.

[62] MORT ↓ in P-PDLSC ↓ proliferation inhibits cell viability

[61] PTCSC3 ↓in P-PDL cells ↓ proliferation TLR4 ↓ TLR4

[67,71] TUG1 ↓ in P-PDL cells and
LPS-induced H-PDL cells

↑ proliferation;↓
apoptosis,

inflammation

miR-498/RORA axis
and Wnt/β-catenin
signaling pathway;

miR-132 axis

↓ β-catenin, p/t-GSK-3β, p21, TNF-α,
IL-1β, IL-6, and IL-8; ↑ CDK2 and

cyclin D1.

↑: increased, ↓: decreased, differentiation antagonizing noncoding RNA (DANCR), DNA methyltransferase
1 (DNMT1), DNA methyltransferase 3B (DNMT3B), domain containing 1-antisense (DCST1-AS1), eukaryotic
translation initiation factor 2 subunit alpha (eIF2α), Fer-1-like family member 4 (FER1L4), FGD5-antisense RNA 1
(FGD5-AS1), fibroblast growth factor 2 (FGF2), hypoxia-inducible factor 3 alpha (HIF3A), Linc-RNA activator of
myogenesis (Linc-RAM), lipopolysaccharide (LPS), MAF bZIP transcription factor G antisense RNA 1 (MAFG-
AS1), maternally expressed gene 3 (MEG3), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1),
MIR31 host gene (MIR31HG), mortal obligate RNA transcript (MORT), papillary thyroid carcinoma susceptibility
candidate 3 (PTCSC3), periodontal ligament-associated protein-1 (PLAP-1), protein kinase-like endoplasmic
reticulum kinase (PERK), protein kinase B (AKT), taurine-upregulated gene 1 (TUG1), toll-like receptors (TLR),
tumor necrosis factor alpha (TNF-α).
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4. Discussion

This study systematically reviewed studies exploring the expression of lncRNAs and
their role in the regulation of a variety of biological activities in PDL cells, such as os-
teogenesis and cell response to inflammation and mechanical stress. LncRNAs regulate
gene expression at transcriptional and post-transcriptional levels. At the transcriptional
level, lncRNAs may directly bind to DNA or act on transcriptional complexes, result-
ing in cis or trans gene activation or silencing [78,79]. LncRNAs can recognize and bind
to complementary RNA sequences, which enables highly specific interactions that can
regulate various post-transcriptional processes, such as mRNA splicing, transport, trans-
lation, and stabilization, thereby affecting various biological processes [78,80]. LncRNAs
can also specifically recruit and integrate with RNA binding proteins (RBPs) to regulate
their biological functions, thereby affecting the expression of downstream genes [81]. In
addition to regulating mRNAs via independent mechanisms, lncRNAs can act as com-
peting endogenous RNAs (ceRNAs) by competitively binding to miRNAs via miRNA
response elements. This binding attenuates the ability of miRNAs to downregulate mRNA
expression and thus indirectly regulates mRNA expression [82]. LncRNA-mediated ceRNA
interactions have been identified in various cancers and inflammatory diseases, including
periodontitis [83–85].

4.1. Studies on lncRNA Expression Profiling in PDL Cells

In the 13 studies that explored lncRNA expression profiles in PDL cells, 6 used microar-
ray analysis and 7 used RNA-seq methods [27–30,35–43]. Recent developments in RNA-seq
techniques offer enormous potential for transcriptome characterization as they are reliable
tools for elucidating genetic and metabolic pathways involved in biological processes.
RNA-seq provides more comprehensive information about the characteristics of transcripts
as this information is not limited to the known genes represented on a microarray and
novel transcription variants can be detected via alternative splicing [86].

Three of these thieteen studies compared lncRNA expression profiles in PDLSCs
with the lncRNA expression profiles of other cell types, such as BMSCs, GMSCs, and
DFCs [27,42,43]. Moreover, 5 of these 13 studies examined the lncRNA expression profiles of
PDLSCs under osteogenic induction [28–30,35,36]. The results varied, showing differently
up- and downregulated lncRNAs during the osteogenic differentiation process. These
variations may be attributable to differences between samples and periods of induction.
For example, Qu et al. [35] and Zhang et al. [29] examined three osteogenic-induced and
three non-induced samples, whereas some authors did not mention the number of samples
tested, and the period of osteogenic induction varied widely (3, 5, 7, or 14 days) between
studies. It has been suggested that aging can affect the characteristics of the regenerative
potentials of dental-derived stem cells [87,88]. Moreover, differences in library preparation,
sequencing techniques, and methods of analysis may also have led to the variations in the
results. Five of the thirteen studies explored the lncRNA profile of PDL cells subjected
to mechanical stress [37–41]. Three of these studies applied tensile force on cells (10% or
12% equibiaxial strain) [37,39,40] and one applied compressive force on cells (2 g/cm2)
for 12 h [38]. After microarray or RNA-seq, most studies performed only PCR to validate
the expression of several genes. Further in-depth studies are warranted to explore the
regulation of the identified lncRNAs.

4.2. Studies on lncRNAs Involved in the Osteogenic Differentiation of PDL Cells

PDL cells are expected to play an important role in the clinical application of peri-
odontal tissue regeneration as they offer new solutions for the treatment of periodontal
diseases [19]. Studies have significantly expanded our knowledge of the potential reg-
ulatory role of lncRNAs in the osteogenic differentiation of PDL cells. Nineteen of the
included studies explored the mechanism by which lncRNAs regulate the osteogenic dif-
ferentiation of PDL cells [31–33,44–59]. The lncRNAs TUG1, prostate cancer-associated
transcript 1 (PCAT1), X-inactive specific transcript (XIST), Fer-1-like family member 4
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(FER1L4), growth arrest-specific transcript 5 (GAS5), Prader Willi/Angelman region RNA 6
(PWAR6), osteogenesis impairment-related lncRNA of PDLSCs from periodontitis patients
(lncRNA-POIR), Twist1, and antisense non-coding RNA in the inhibitor of cyclin-dependent
kinase 4 (INK4) locus (ANRIL) have been reported to enhance osteogenic differentiation of
PDL cells [32,45,48,50–52,55,56,58,59]. Whereas the lncRNAs ANCR, small molecule RNA
host gene 1 (SNHG1), differentiation antagonizing non-coding RNA (DANCR), hypoxia-
inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2), exportin5 (XPO5), HOX transcript
antisense RNA (HOTAIR), and homeobox A (HOXA) transcript at the distal tip (HOT-
TIP) have been reported to negatively correlate with the osteogenic differentiation of PDL
cells [31,44,46,47,53,54,57].

TUG1 was initially identified as an important gene in retinal development and the
formation of photoreceptors [89]; later, it was reported to be abnormally expressed during
tumorigenesis [90]. It was observed that TUG1 can bind to lin-28 homolog A, an RBP,
thereby promoting the expression of osteogenesis-related markers and the osteogenic
differentiation of PDLSCs [32]. Wu et al. reported a post-transcriptional regulatory mecha-
nism by which TUG1 enhanced the osteogenic differentiation of PDLSCs: TUG1 sponges
microRNA-222-3p, which promotes osteogenic differentiation by upregulating Smad 2/7,
which are the main signal transducers for receptors of transforming growth factor beta.
The knockdown of TUG1 or overexpression of microRNA-222-3p inhibited this upregula-
tion [55]. MEG3, initially known as a tumor suppressor, is another lncRNA that has received
much attention due to its association with the osteogenic differentiation of MSCs, DFCs,
and PDL cells [33,49,91,92]. In PDL cells, MEG3 attenuates bone morphogenetic protein 2
(BMP2) expression by competing with BMP2 for binding to the RBP heterogeneous nuclear
ribonucleoprotein I [49]. Furthermore, four studies have investigated the regulatory role of
lncRNAs in the osteogenesis of P-PDL cells isolated from the extracted teeth of patients
with periodontitis [33,45,50,58]. P-PDL cells were first isolated in 2010 and have since at-
tracted much attention [93]. However, P-PDL cells have been shown to have less osteogenic
differentiation potential than H-PDL cells [94–97]. Wang et al. used microarray analysis
to identify a novel lncRNA, lncRNA-POIR, which is differentially expressed in P-PDLSCs.
They found that LncRNA-POIR regulates Forkhead box O (FOXO)1 by sponging miR-182
and, thus, inhibits the canonical Wnt pathway and promotes osteogenesis [45].

4.3. Studies on lncRNAs in PDL Cells Subjected to Inflammation, Mechanical Stress, and
Other Stimuli

Inflammation-stimulating factors released by bacteria, such as LPS and TNF-α, activate
the immune response in PDL cells, thereby aggravating the destruction of alveolar bone.
Among the 18 studies that investigated the regulatory role of lncRNAs in PDL cells in
response to inflammation and other stimuli, 6 studies compared the inflammatory responses
of H-PDL and P-PDL cells [66–71], 7 studies stimulated PDL cells with LPS or/and TNF-
α to mimic periodontal inflammation [66,68–72,74], 3 studies stimulated PDL cells with
mechanical stress [73–75], 1 study subjected PDL cells to hypoxia [76], and 1 study subjected
cells to oxidative stress [77]. Under these stimuli, the biological activities of PDL cells,
including cell proliferation, apoptosis, inflammatory responses, osteogenic differentiation,
and autophagy, were explored.

LPS is an endotoxin and a major component of the cell membranes of Gram-negative
bacteria, such as Porphyromonas gingivalis and Escherichia coli, where it performs various
biological activities. It is mediated by the toll-like receptors (TLR) 2, and TLR4 and triggers
cytokine-mediated immune-inflammatory responses in the host, which results in the release
of a wide range of pro-inflammatory cytokines. Several lncRNAs, including TUG1, MEG3,
metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), FGD5-antisense RNA
1 (FGD5-AS1), and LINC01126, have been reported to modulate the inflammatory response
of PDL cells to LPS challenge. Huang et al. and Han et al. reported that the expression
of TUG1 is decreased in PDL cells upon LPS challenge, but they ascribed this to different
regulatory mechanisms [67,71]. Han et al. reported that TUG1 competes with miR-132
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to promote the proliferation and inhibit the apoptosis of PDL cells under inflammatory
stimuli [67]. More recently, Huang et al. suggested that TUG1 is a sponge of miR-498,
which allows it to regulate the expression of RAR-related orphan receptor A and attenuate
LPS-induced activation of the Wnt/beta-catenin pathway [71].

There has been extensive research on the regulatory mechanisms of orthodontic tooth
movement. PDL cells subjected to mechanical stress are widely used to mimic in vivo
conditions. Three lncRNAs, DANCR, MIR31 host gene (MIR31HG), and FER1L4, have
been investigated for their role in the regulation of compressive force-induced biological
activities in PDL cells [73–75]. It was suggested that the knockdown of DANCR inhibits
the osteoclast formation and root resorption that is induced by compressive force via
miR-34a-5p/jagged1 [73]. In addition, lncRNAs also regulate force-induced autophagy
in PDL cells. For example, FER1L4 mediates compression-induced autophagy via the
AKT/FOXO3 signaling pathway [75]. Notably, these studies have focused only on the
effects of compressive stress on the regulation of lncRNAs in PDL cells; there have been no
investigations on the effects of other types of stress loadings, such as tensile or shear forces,
on the regulation of lncRNAs in PDL cells.

4.4. Future Perspectives

Non-coding RNAs possess critical biological functions that were initially discovered
in cancer research and then in stem cell studies, and an increasing number of lncRNAs
have been discovered in the field of regenerative medicine. With the rapid development of
high-throughput sequencing, it is critical to screen diverse lncRNAs and further investigate
their roles in various biological functions. With more in-depth research, lncRNAs and their
target genes may be identified as possible therapeutic targets in clinically relevant diseases.
This review summarizes current research on lncRNAs in PDL cells, with a focus on the
expression profile of lncRNAs, their regulation of osteogenic differentiation and the effect
upon stimulations. However, most of these recent developments are still in the in vitro
stage, and clinical application remains a challenge.

5. Conclusions

PDL cells have significant potential for use in the clinical application of periodontal
and bone regeneration. This study systematically reviewed studies exploring the expression
and regulatory roles of lncRNAs in the diverse biological processes of PDL cells, such as
osteogenic differentiation and cellular responses to inflammation, mechanical stress, and
other stimuli. However, most of these studies were focused on in vitro analyses; more
in vivo investigations are required in this promising translational field.
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