
����������
�������

Citation: Crislip, G.R.; Wohlgemuth,

S.E.; Wolff, C.A.; Gutierrez-Monreal,

M.A.; Douglas, C.M.; Ebrahimi, E.;

Cheng, K.-Y.; Masten, S.H.; Barral, D.;

Bryant, A.J.; et al. Apparent Absence

of BMAL1-Dependent Skeletal

Muscle–Kidney Cross Talk in Mice.

Biomolecules 2022, 12, 261. https://

doi.org/10.3390/biom12020261

Academic Editors: Daria Ilatovskaya

and Krisztian Stadler

Received: 20 December 2021

Accepted: 28 January 2022

Published: 5 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Apparent Absence of BMAL1-Dependent Skeletal
Muscle–Kidney Cross Talk in Mice
Gene Ryan Crislip 1,2, Stephanie E. Wohlgemuth 3, Christopher A. Wolff 1 , Miguel A. Gutierrez-Monreal 1,
Collin M. Douglas 1 , Elnaz Ebrahimi 4, Kit-Yan Cheng 1, Sarah H. Masten 5, Dominique Barral 5,
Andrew J. Bryant 4 , Karyn A. Esser 2,6 and Michelle L. Gumz 1,2,5,7,*

1 Department of Physiology and Functional Genomics, College of Medicine, University of Florida,
Gainesville, FL 32610, USA; gcrislip@ufl.edu (G.R.C.); cwolff@ufl.edu (C.A.W.);
miguel.gutierrez@ufl.edu (M.A.G.-M.); cmdouglas@ufl.edu (C.M.D.);
kit-yan.cheng@medicine.ufl.edu (K.-Y.C.)

2 Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation,
College of Medicine, University of Florida, Gainesville, FL 32610, USA; kaesser@ufl.edu

3 Department of Aging and Geriatric Research, College of Medicine, University of Florida,
Gainesville, FL 32610, USA; steffiw@ufl.edu

4 Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine,
University of Florida, Gainesville, FL 32610, USA; e.ebrahimi@ufl.edu (E.E.);
andrew.bryant@medicine.ufl.edu (A.J.B.)

5 Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida,
Gainesville, FL 32610, USA; sarahmasten@ufl.edu (S.H.M.); dbarral@ufl.edu (D.B.)

6 Myology Institute, University of Florida, Gainesville, FL 32610, USA
7 Center for Integrative Cardiovascular and Metabolic Disease, University of Florida,

Gainesville, FL 32610, USA
* Correspondence: michelle.gumz@medicine.ufl.edu; Tel.: +1-352-273-8821

Abstract: BMAL1 is a core mammalian circadian clock transcription factor responsible for the
regulation of the expression of thousands of genes. Previously, male skeletal-muscle-specific BMAL1-
inducible-knockout (iMS-BMAL1 KO) mice have been described as a model that exhibits an aging-like
phenotype with an altered gait, reduced mobility, muscle weakness, and impaired glucose uptake.
Given this aging phenotype and that chronic kidney disease is a disease of aging, the goal of this
study was to determine if iMS-BMAL1 KO mice exhibit a renal phenotype. Male iMS-BMAL1 KO
and control mice were challenged with a low potassium diet for five days. Both genotypes responded
appropriately by conserving urinary potassium. The iMS-BMAL1 KO mice excreted less potassium
during the rest phase during the normal diet but there was no genotype difference during the active
phase. Next, iMS-BMAL1 KO and control mice were used to compare markers of kidney injury
and assess renal function before and after a phase advance protocol. Following phase advance, no
differences were detected in renal mitochondrial function in iMS-BMAL1 KO mice compared to
control mice. Additionally, the glomerular filtration rate and renal morphology were similar between
groups in response to phase advance. Disruption of the clock in skeletal muscle tissue activates
inflammatory pathways within the kidney of male mice, and there is evidence of this affecting other
organs, such as the lungs. However, there were no signs of renal injury or altered function following
clock disruption of skeletal muscle under the conditions tested.

Keywords: circadian clock genes; renal function; integrative physiology

1. Introduction

Circadian rhythms are prominent in most physiological processes. The control of these
rhythms is mediated in part by a central clock that resides in the superchiasmatic nucleus
of the brain, but peripheral circadian clocks also influence rhythms in physiological func-
tion [1]. The molecular clock consists of a transcription translation feedback loop. In brief,

Biomolecules 2022, 12, 261. https://doi.org/10.3390/biom12020261 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12020261
https://doi.org/10.3390/biom12020261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-5129-5692
https://orcid.org/0000-0002-7601-3508
https://orcid.org/0000-0001-9433-3049
https://doi.org/10.3390/biom12020261
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12020261?type=check_update&version=2


Biomolecules 2022, 12, 261 2 of 14

the core proteins aryl-hydrocarbon-receptor-nuclear-translocator-like protein (ARNTL; or
BMAL1) and circadian locomotor output cycles kaput (CLOCK) positively regulate the
transcription of the Period and Cryptochrome genes; the Period (PER) and Cryptochrome
(CRY) proteins feedback on and inhibit the activity of BMAL1/CLOCK (reviewed in [2,3]).
The disruption of circadian-controlled processes is associated with many pathologies, in-
cluding cardiovascular and kidney diseases [4,5]. To date, the cross talk between different
organ systems following targeted circadian disruption is not well understood. This study
focuses on the deletion of the core clock protein BMAL1 in skeletal muscle and the potential
ramifications this clock disruption has on the kidney.

The skeletal-muscle-specific BMAL1-inducible-knockout (iMS-BMAL1 KO) mouse
model has previously been described to possess characteristics similar to those seen in
aging. These mice exhibit an altered gait, reduced mobility, muscle weakness, and impaired
glucose uptake [6,7]. Kidney disease is synonymous with aging as the prevalence of kidney
diseases increase along with age [8]. Another characteristic reported in the iMS-BMAL1
KO mice is that they display increased tendon calcification [6]. The role of kidneys in the
acid–base balance and mineral homeostasis directly links bone health with kidney disease.
Consequently, we hypothesized that iMS-BMAL1 KO mice could potentially be a model of
kidney disease.

The goal of this study was to determine if disruption of the clock in skeletal muscle
leads to renal dysfunction. The deletion of BMAL1 in skeletal muscle causes an increase in
inflammatory markers in the kidney. However, neither renal function nor kidney histology
appear to be affected by iMS-BMAL1 KO. These data suggest that the consequence of
clock disruption in skeletal muscle leads to minimal changes in the kidney under the
conditions tested.

2. Materials and Methods

Animals. The mouse model used in this study was generated using floxed exon
8 BMAL1 mice [9] crossed with skeletal-muscle-specific, Cre-recombinase mice (human
skeletal actin–Cre). Cre was activated by injections of tamoxifen (made in 15% ethanol
in sunflower seed oil) 5 weeks prior to studying (2 mg/day; 5 days ip.) to create iMS-
BMAL1 KO. Vehicle (15% ethanol in sunflower seed oil)-injected Cre+ mice were used
as controls. Male virgin young mice were studied at 17–19 weeks, and aged mice were
studied at 13–14 months. All experiments were conducted in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals and approved and
monitored by the University of Florida Institutional Animal Care and Use Committee and
the North Florida/South Georgia Veterans Administration Institutional Animal Care and
Use Committee. Mice were housed in temperature- (20–26 ◦C) and humidity-controlled,
12:12 h light–dark cycled rooms. Mice were provided ad libitum access to water and
standard 18% protein rodent chow (no. 2918, Harlan Teklad/Envigo, Madison, WI, USA)
unless otherwise noted.

Metabolic Cage Study. A cohort of young male mice (5 control and 5 KS-BMAL1 KO)
were maintained in metabolic cages to collect urine and monitor food/water intake [10].
A powder base gel diet (Envigo Teklad Custom Diet) containing 1% agar was prepared
and used throughout the metabolic cage collections. Mice were given 3 days to acclimate
to the metabolic cages prior to the beginning of collections on a control diet (0.25% NaCl;
0.6% K; Envigo 99131). Following one day of recording with a control diet, mice were then
treated with a potassium-deficient diet (0.25% NaCl; 0.0001% K; Envigo 99134) for five days.
Urine samples were collected every 12 h at the end of the daylight and nighttime periods
(Zeitgeber time 0 and 12). Urine output, food intake, and water intake were recorded. Urine
electrolyte concentrations were measured by a flame photometer (Cole-Parmer Model 2655-
00, Vernon Hills, IL, USA) according to manufacturer’s instructions. Mice were euthanized,
and tissue was collected at Zeitgeber time 6.

Body Composition. Body composition was quantified in conscious young male mice
before and five days after administration of a potassium-depleted diet. Measurements
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were carried out at Zeitgeber time 4–6 using an EchoMRI Quantitative Magnetic Resonance
Body Composition Analyzer (Echo Medical Systems, Houston, TX, USA) [11].

Phase Advance Protocol. A separate cohort of aged male mice were singly housed in
cages equipped with a running wheel with ad libitum access to chow (no. 2918, Harlan
Teklad) and water. The cages were stored in a light-controlled box with constant air
exchange (Actimetrics, Wilmette, IL, USA). The lighting schedule was maintained on a
12:12 h light–dark cycle using a green LED (~200 lux) light source. After one week of
baseline, the dark cycle was advanced by 7 h, and the mice were maintained on this new
12:12 h light–dark cycle schedule for one week. This process was repeated a second time to
produce a 14-h phase advance. Mice were euthanized at Zeitbeger time 2 in groups of 2–3,
and tissue was collected 7–10 days after the second week of phase advance.

Measurement of Glomerular Filtration Rate. Glomerular filtration rate (GFR) was
measured in aged male mice before and 6–8 days after the 14-h phase advance protocol
using a transdermal monitor (MediBeacon GmbH, St. Louis, MO, USA). Mice were removed
from light-controlled boxes but maintained in the dark. Using only red light, transcutaneous
measurement of fluorescein isothiocyanate (FITC)-labeled sinistrin was injected via the tail
vein to assess GFR at Zeitgeber time 18–21 (7.5 mg sinistrin/100 g body weight made up to
100 µL in saline).

Recombination Specificity. To confirm the specificity of Bmal1 recombination, we
completed PCR using 40 ng of skeletal muscle genomic DNA and primers for the recom-
bined and non-recombined alleles. (fwd primer: ACTGGAAGTAACTTTATCAAACTG,
rev primer: CTGACCAACTTGCTAACAATTA, recombination primer: CTCCTAACTTG-
GTTTTTGTCTGT). The forward and reverse primers for the floxed Bmal1 allele yield a
431-bp product. The second forward primer 5′-CTCCTAACTTGGTTTTTGTCTGT-3′ was
included to detect the recombined product, which shows a band at 572 bp. PCR reaction
products were run on a 1.7% agarose gel, and identification of a genomic band and a
recombination-specific band confirmed all tamoxifen-treated animals were tissue-specific
KO as previously described [7,12].

Immunohistochemistry. Upon anesthetization with inhalant isoflurane, right kidneys
were collected and immediately transversely cut in half then stored in periodate-lysine-
2% paraformaldehyde for approximately 48 h at 4 ◦C. Fluid was then changed to PBS to
prepare for processing. Kidney samples from each animal were embedded in paraffin, and
4-micrometer-thick sections were cut and mounted on glass slides. Sections were either
stained with hematoxylin and eosin or stained with a 3,3′-diaminobenzidine chromogenic
substrate (Vector) to target BMAL1 (D2L7G Cell Signaling; 1:3000; RRID: AB_2728705,
Danvers, MA, USA). Sections were observed by light microscopy (Nikon E600 equipped
with a Nikon DXM1200F digital camera, Melville, New York, NY, USA). Group identifiers
were removed from each slide, and BMAL1 expression was examined or slides were scored
for tubular injury using the following as criteria: percentage of tubules that showed signs
tubular necrosis, a lack of brush border, tubular dilation, and protein cast formation.

Immunoblotting. The cortical regions of the kidneys from young male mice were
dissected. Tissue was homogenized using T-PER Tissue Protein Extraction Reagent and a
protease–phosphatase inhibitor cocktail (Thermo Scientific, Waltham, MA, USA). Protein
concentration for each sample was determined by BCA (Pierce, Thermo Scientific). Protein
(25 µg) was separated on a 4–20% Tris–HCL precast gel (Bio-Rad, Hercules, CA, USA)
and transferred to a polyvinylidene difluoride membrane. The membrane was stained
with Ponceau for 5 min and imaged before washing with Tris-buffered saline (TBS). The
membrane was blocked overnight at 4 ◦C with 5% BSA in TBS plus 0.1% Tween (TBS-
T) and then incubated overnight at 4 ◦C with anti-uncoupling protein 1 (UCP1; U6382
MilliporeSigma; 1:1000; RRID: AB_261838, St. Louis, MO, USA) or anti-GAPDH (14C10 Cell
Signaling 2110; RRID: AB_561053). The membrane was washed for 30 min in TBS-T then
incubated with horseradish-peroxidase-conjugated anti-rabbit secondary antibody. After
an additional wash with TBS-T for 30 min, detection was performed using SignalFire ECL
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reagent (Cell Signaling Technology) with a 30 s exposure time for imaging. Densitometry
was performed using Fiji, and protein abundance was normalized to Ponceau staining.

Multiplex Immunoassays. Cortical and medullary regions were dissected from half
a kidney from aged male mice. Tissue was homogenized in either 300 µL (cortex) or
250 µL (medulla) of buffer (1% protease–phosphatase inhibitor cocktail (Thermo Scientific)
1% 1 M ethylenediaminetetraacetic acid, 0.1% Tween 20 in phosphate-buffered saline). Pro-
tein concentration for each sample was determined by BCA (Pierce, Thermo Scientific).
Homogenates were measured in duplicate for selected analytes using commercial multi-
plex immunoassay kits (cat#’s MCYTOMAG-70K, MBNMAG-41K, and MKI1MAG-94K;
EMD MilliporeSigma) on a MILLIPLEX® Analyzer 3.1 xPONENT System (Luminex 200,
Austin, TX, USA) with data analysis via MILLIPLEX Analyst software. The average intra-
assay CVs were <5%, and the average inter-assay CVs were <15%. The data were converted
from pg/mL to pg/mg, using the previously determined protein concentrations.

Renal Mitochondria Isolation and Respirometry. Fresh renal cortical tissue was dis-
sected from mice following phase advance. Mitochondria were isolated using the Mito-
chondria Isolation Kit for Tissue (#ab110169; Abcam, Waltham, MA, USA) following the
manufacturer’s instructions. Protein concentration of the mitochondrial preparation was
determined using a BCA Protein Assay Kit (Pierce, Thermo Scientific). Mitochondrial
respiration of the isolate was determined in duplicate in a previously calibrated oxygraph
chamber maintained at 37 ◦C (Oroboros O2K; Oroboros Instruments, Innsbruck, Austria)
containing respiration buffer (MiR05; 0.5 mM EGTA, 3 mM MgCl2·6H2O, 60 mM lacto-
bionic acid, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM D-sucrose, and
1 g/L BSA essentially fat acid-free, pH 7.1) [13]. Oxygen concentration of the respira-
tion buffer was kept between air saturation (~200 µM) and 50 µM. Oxygen consumption
rate (OCR; ρmol O2/s/mg mitochondrial protein) was measured using the following
substrate-uncoupler-inhibitor-titration (SUIT) protocol (concentration of reagents noted
in parenthesis are final within chambers): (1) LEAK (L) respiration was assessed after
TCA cycle stimulation with NADH-linked substrates pyruvate (5 mM), malate (2 mM),
and glutamate (10 mM) to support electron flow through complex I (CI) of the electron
transport system (ETS; E); (2) oxidative phosphorylation (OXPHOS; P) was stimulated
with adenosine diphosphate (ADP; 2.5 mM) and recorded as PCI; (3) addition of succinate
(10 mM) supported convergent electron flow through complexes I and II of the ETS (PCI+II);
(4) quality of the mitochondrial preparation was assessed through testing mitochondrial
outer membrane integrity by adding cytochrome c (10 µM); (5) the uncoupler carbonyl
cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 0.5 µL-steps of a 0.1 mM stock
solution) was titrated step-wise until maximum uncoupled respiration was reached and
recorded as maximum ETS capacity (ECI+II); (6) addition of rotenone (0.5 µM) inhibited
complex I of the ETS, and the remaining OCR was recorded as maximum ETS capacity
supported by complex II substrate (ECII); (7) addition of antimycin A (2.5 µM) inhibited
complex III of the ETS and thereby all electron transport to complex IV, and the remain-
ing OCR was recorded as residual, non-mitochondrial oxygen consumption (ROX) and
subtracted from all preceding OCRs; (8) oxygen consumption was then stimulated again
with the addition of N,N,N′,N′-Tetramethyl-p-phenylenediamine dihydrochloride (TMPD;
0.5 mM; in the presence of ascorbate (2 mM) to avoid uncontrolled autoxidation of TMPD)
as an artificial substrate for reducing cytochrome c; (9) the chemical background oxidation
rate in the presence of TMPD/ ascorbate was assesed by adding the complex IV inhibitor
sodium azide (100mM), and was subtracted from the preceding flux, resulting in maximal
capacity of cytochrome c oxidase activity (ECIV). Oxygen consumption data were acquired
and analyzed using DatLab vs. 7.4 (Oroboros Instruments). Flux control ratios (FCR)
were calculated as oxygen consumption at any given respiratory state relative to maximal
ETS capacity (ECI+II).

Flow cytometry. Lung tissue was digested, and flow cytometric analysis was per-
formed as previously described [14].
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Statistical analyses. Graphical data are presented as mean ± SEM. Two-way ANOVA,
with repeated measures when possible, was used to analyze differences between four
groups. Sidak’s multiple comparisons test was used to compare mouse groups within treat-
ment groups. Student’s t-test was used to compare two groups. Analysis was performed
using GraphPad Prism version 9.2 software (GraphPad Software Inc., San Diego, CA, USA).
Statistical significance was defined as p < 0.05.

3. Results
3.1. Verification of the iMS-BMAL1 KO Model

The knockout for the mouse model in this study was induced by tamoxifen; therefore,
the effectiveness of this injection was assessed for all mice. Recombination PCR for BMAL1
on male skeletal muscle tissue from iMS-BMAL1 KO yielded two bands to confirm recom-
bination by tamoxifen injection, one 431 bp band that represents the floxed Bmal1 allele
and a 572 bp band that represents the recombination product [12] (Figure 1A). A single
431 bp band indicates lack of recombination as seen in vehicle-treated mice. Knockout was
verified in all mice via recombination PCR following euthanasia. In this mouse model,
BMAL1 should only be knocked out within skeletal muscle. BMAL1 protein expression
was assessed in kidney sections to ensure there was no effect. Analysis of immune-labeled
BMAL1 (brown stain) demonstrated that BMAL1 expression in the kidney is unaffected in
iMS-BMAL1 KO mice (Figure 1B). Brown BMAL1 nuclear staining was found in all renal
cells in both groups.
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Figure 1. BMAL1 expression is not altered in the kidneys of iMS-BMAL1 KO. (A) Recombination PCR
assay in skeletal muscle tissue. The forward and reverse primers for the floxed Bmal1 allele yielded
a 431 bp band, which was seen in iMS-BMAL1 KO and control mice. A second forward primer
detected the recombined product with a 572 bp band, which was only seen in iMS-BMAL1 KO. Arrow
indicates band found in knockout mice. (B) Representative images of kidney sections demonstrating
BMAL1 protein expression in control and iMS-BMAL1 KO mice. Figure shows the renal cortex.
Markers indicate positively BMAL1-stained cells. Scale bar represents 0.05 mm. Mice shown in figure
are from the phase advance cohort. S = standards ladder; CL = control mice; KO = iMS-BMAL1
KO mice.

3.2. Fluid and Solute Handling under Basal Conditions and Following Potassium Depletion

Because the kidney is so resilient to physiological perturbation, especially in C57Bl/6
mice [15], we challenged a cohort of mice using dietary potassium deprivation. We have
previously shown that kidney-specific BMAL1 male KO mice exhibit a sodium handling
phenotype in response to a zero K diet [10]. Both control and iMS-BMAL1 KO mice excreted
34% less sodium following a potassium-depleted diet compared to baseline; however, there
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was no difference in sodium excretion between the two groups from urine collected during
the active or inactive periods (Figure 2A,B). As expected, potassium excretion dropped to
minimal levels within 24 h following potassium depletion during the active and inactive
periods (Figure 2C,D). There was no difference between control and iMS-BMAL1 KO mice
in potassium excretion. Total body water increased by 6% following potassium depletion in
both groups (Figure 2E). Additionally, there was a trend for iMS-BMAL1 KO mice to have
more total body water than control with iMS-BMAL1 KO mice with 2–3% higher levels
than controls, although this was not significant (p = 0.06).
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Figure 2. There was no difference in sodium handling between groups following potassium depletion.
Sodium excretion during the (A) nighttime and (B) daytime from male control and iMS-BMAL1 KO
mice treated with normal and five days of a potassium-depleted diet. Potassium excretion during
the (C) nighttime and (D) daytime in the same mice. Urine collections were carried out every 12 h.
(E) Total body water normalized to body weight from mice before and after the five-day treatment
with a potassium-depleted diet. (F) Statistical analysis for each panel in Figure 2. n = 4–5. Values are
mean ± SEM. Two-way ANOVA with was used to compare groups. Sidak’s multiple comparisons
test was used to compare between control and KO within treatment groups. * = p < 0.05, ** = p < 0.001;
UNaV = urinary sodium excretion; UKV = urinary potassium excretion; Normal = normal diet; Low
K = day of potassium-depleted diet treatment.

3.3. Mitochondrial Function Assessment

Previously, metabolic inefficiencies have been shown to be linked to BMAL1
deletion [7,12,16,17]. To determine if an effect of skeletal muscle BMAL1 knockout in-
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fluenced renal mitochondria, we first evaluated the expression of the mitochondrial uncou-
pling protein 1 (UCP1) in the renal cortex of iMS-BMAL1 KO mice compared to control.
Basal renal cortical UCP1 protein expression tended to be higher in the iMS-BMAL1 KO
mice compared to controls but did not reach significance (Figure 3A,B; p = 0.058). Due
to the subtle differences in cortical UCP1, a more rigorous approach to assess the effect
of iMS-BMAL1 KO on renal mitochondrial function was carried out by performing high-
resolution respirometry assays on isolated mitochondria from cortical regions of kidneys.
Renal cortical mitochondrial respiratory function in any respiratory state measured (L,
PCI, PCI+II, ECI+II, ECII, ECIV) as well as flux control ratios were similar between the groups
(Figure 3C,D). Respiratory control ratio, an indicator of coupled respiration (PCI/L), av-
eraged 3.4 and 3.3 for control and iMS-BMAL1 KO mice, respectively. Spare (or reserve)
capacity, the difference between maximal OXPHOS (PCI+II) and maximal ETS capacity
(ECI+II), was 22% and 19% of ECI+II for controls and iMS-BMAL1 KO mice, respectively, and
did not significantly differ.
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Figure 3. There was no change in renal mitochondrial function in mice with BMAL1 disrupted in
skeletal muscle. (A) Western blot analysis of basal UCP1 (top panel) and GAPDH (middle panel)
protein expression in renal cortical tissue from control and iMS-BMAL1 KO mice. (B) Densitometry
analysis of uncoupling protein 1 immunoblot normalized to total protein from Ponceau staining
(bottom panel in (A)). (C) Oxygen consumption rates with carbohydrate substrates only from mi-
tochondria isolated from renal cortical tissue from control and iMS-BMAL1 KO mice. (D) The
ratio of oxygen consumption rates normalized to the maximum (ECI+II). n = 4–5. All data are pre-
sented as mean ± SEM. Student’s t-test was used to compare control vs. KO. CL = control mice;
KO = iMS-BMAL1 KO mice; UCP1 = uncoupling protein 1; L = LEAK; P = oxidative phosphorylation;
CI = complex I; CII = complex II; E = electron transport system; CIV = complex IV.

3.4. Inflammatory Markers in the Kidney

Skeletal muscle has previously been demonstrated to cause an increase in inflammation
in the kidney by the release of metabolic wastes. Panels of inflammatory and injury
markers were measured in the renal cortex and medulla of iMS-BMAL1 KO and control
mice. Cortical interleukin (IL) 6 levels were over 7 times greater in iMS-BMAL1 KO mice
compared to controls (Table 1). Similarly, there was a trend for IL-6 levels to be higher
in the medullary tissue of iMS-BMAL1 KO mice versus controls, but this did not reach
significance (p = 0.07). The medullary tissue inhibitor of metalloproteinase 1 (TIMP-1) levels
was also found to be higher in iMS-BMAL1 KO mice, at nearly 2 times that of controls
(Table 1). There was no difference in fibroblast growth factor 23, IL-10, renin, or kidney
injury molecule levels in cortical or medullary tissue from iMS-BMAL1 KO versus control
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mice. Additionally, no difference was found in cortical IL-5, IL-17, or TIMP-1 levels between
the two groups (Table 1).

Table 1. Analytes measured via multiplex immunoassays in renal cortical and medullary tissue from
control and iMS-BMAL1 KO mice following phase advance. Values are mean ± SEM with (number
of animals per group). Student’s t-test.

Analyte (pg/mg) Kidney Region Control iMS-BMAL1 KO

Interleukin 6
Cortex 1.8 ± 0.9 (4) 13.2 ± 4.0 (4) *

Medulla 1.7 ± 0.1 (3) 6.2 ± 1.7 (4)

Fibroblast Growth
Factor 23

Cortex 7.0 ± 1.2 (4) 6.2 ± 0.4 (5)
Medulla 5.6 ± 3.4 (4) 7.4 ± 1.3 (5)

Interleukin 5 Cortex 0.8 ± 0.1 (4) 0.7 ± 0.2 (5)

Interleukin 10
Cortex 2.4 ± 0.3 (4) 1.9 ± 0.2 (5)

Medulla 3.3 ± 0.4 (4) 3.6 ± 0.6 (5)

Interleukin 17 Cortex 0.3 ± 0.08 (4) 0.3 ± 0.04 (5)

Renin
Cortex 2710 ± 465 (4) 2620 ± 134 (5)

Medulla 3082 ± 233 (4) 3937 ± 626 (5)

Kidney Injury
Molecule 1

Cortex 112 ± 5.3 (4) 115 ± 11.1 (5)
Medulla 251 ± 43 (4) 282 ± 29 (5)

Tissue Inhibitor of
Metalloproteinase 1

Cortex 122 ± 14 (4) 193 ± 30 (5)
Medulla 42 ± 5 (4) 82 ± 12 (5) *

* p < 0.05 vs. control of same kidney region.

3.5. Renal Injury and Function

Behavioral circadian stress, such as jet lag, leads to deleterious effects on overall
health [18,19]. Since the dietary potassium deprivation did not appear to differentially
affect the iMS-BMAL1 KO mice in terms of renal excretory function, we hypothesized that
behavioral circadian disruption might alter renal function in iMS-BMAL1 KO compared to
control mice. Phase advance is a common method for causing circadian disruption [20,21].
Mice underwent a 2-week, 14-h phase advance protocol to shift their night/day time
periods. GFR was similar between iMS-BMAL1 KO and control mice before and after the
phase advance (Figure 4A). There was minimal tubular injury observed in iMS-BMAL1 KO
mice and controls following the histological assessment of kidney sections collected after
the phase advance (Figure 4B).

3.6. Extra-Renal Effects of iMS-BMAL1 KO

Given the lack of a phenotype in the kidney of iMS-BMAL1 KO mice, we tested
the lung to determine if skeletal-muscle-specific loss of BMAL1 adversely affects other
tissue. Lungs were collected from mice following the phase advance protocol for flow
cytometry to assess inflammatory markers [14]. We found that bone-marrow-derived
cells’ fitting profile of immunomodulatory monocytic and neutrophilic myeloid-derived
suppressor cell (Mo-MDSC and PMN-MDSC, respectively) infiltration was increased in the
lungs of iMS-BMAL1 KO mice versus controls (Figure 5). These findings suggest potential
reprogramming of the immune cell population with disruption in BMAL1 signaling in
skeletal muscle.
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Figure 4. Clock disruption in skeletal muscle does not affect renal function or cause tubular injury.
(A) Glomerular filtration rate measured via a subcutaneous monitor before and after phase advance
in control and iMS-BMAL1 KO mice. n = 5. (B) Representative images of kidney sections stained with
hematoxylin and eosin from control and iMS-BMAL1 KO mice following phase advance. Cortical
region is shown. Scale bar represents 0.05 mm. (C) Percentage of tubules that exhibit signs of
injury seen in stained kidney sections from both groups of mice. n = 4–5. All data are presented
as mean ± SEM. Two-way ANOVA was used to compare groups’ glomerular filtration rate data.
Student’s t-test was used to compare groups from tubular injury assessment data. GFR = glomerular
filtration rate; NS = not significant.
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Figure 5. Lungs from iMS-BMAL1 KO had increased immunomodulatory immune cell infiltration.
(A) Percentage of monocytic and (B) polymorphonuclear myeloid-derived suppressor cells in lung
tissue from control and iMS-BMAL1 KO mice assessed via flow cytometry. (C) Chemokine receptor
CXCR2 expression was determined per PMN-MDSC population. n = 5. All data are presented as
mean± SEM. The Student’s t-test was used for comparisons between groups. Mo-MDSC = monocytic
myeloid-derived suppressor cells; PMN-MDSC = polymorphonuclear myeloid-derived suppressor
cells; CXCR2 = CXC motif chemokine receptor 2; MFI = mean fluorescence intensity.

4. Discussion

The major finding from this study is that BMAL1 deletion in skeletal muscle did
not contribute to changes in kidney function or lead to visible kidney injury under the
conditions tested. There are various ways by which skeletal muscle can negatively affect
kidney function, including the release of metabolic wastes and contributions to insulin
resistance [22,23]. Furthermore, disruption of the clock in skeletal muscle produces an
aging phenotype in mice (another characteristic of kidney disease development) [6,16].
Despite iMS-BMAL1 KO mice exhibiting characteristics of aging and signs of increased
renal inflammation, there was no renal injury or decrease in renal function detected.

Age-induced renal pathological changes include the development of glomeruloscle-
rosis, interstitial fibrosis, and tubular loss [24]. These progressions in kidney injury lead
to a decline in GFR and dysfunction in solute and water handling. In this study, GFR and
solute handling were assessed to determine kidney function. Mice were challenged with
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(1) a change in dietary potassium to alter solute handling or (2) a change in the night/day
schedule to expose any potential abnormalities in kidney function. Studies in mice and
humans consistently show that dietary potassium depletion leads to an increase in sodium
retention [25–28]. Both groups of mice in this study demonstrated sodium retention follow-
ing a potassium-depleted diet, as expected, but there was no difference in solute handling
between the groups before or after dietary manipulation. GFR was also similar between
the groups before and after phase advance. We did not observe any signs of renal injury.
Importantly, there was no reported difference in feeding or activity between these groups
of mice from previous studies [7,12]. Overall, there were no renal function changes similar
to what is seen in an aged phenotype.

There is a high abundance of mitochondria in the kidney associated with high oxygen
consumption, which is second only to the heart [29]. A supply of ATP is extremely impor-
tant for renal function, and mitochondrial impairment has been linked to the progression
of kidney disease [22,30]. Based on previous reports on metabolic inefficiencies in skeletal-
muscle-specific and global BMAL1-KO mice [7,12,16,17], we evaluated renal mitochondrial
function. The absence of BMAL1 in skeletal muscle and the associated changes in this
mouse model did not affect mitochondrial respiratory function in the kidney.

Electrolyte homeostasis is heavily influenced by the actions of skeletal muscle, par-
ticularly in response to potassium deprivation [31]. The potential role of skeletal muscle
BMAL1 in the intracellular shift of potassium balance in response to potassium depletion
was not assessed here. This study focused on the kidney, which is the final regulator of elec-
trolyte balance. Interestingly, iMS-BMAL1 KO mice exhibited lower potassium excretion
during the rest phase under a normal diet compared to control mice. It should be noted
that there was no difference seen during the active phase, which is when the majority of
excretion takes place. Additionally, when the active and inactive phase data are combined,
there is no difference in 24 h excretion. A limitation of this study is that we were unable
to assess serum potassium at the end of the dietary potassium depletion study. This is
an important parameter to consider when evaluating cross talk between skeletal muscle
and kidney.

The iMS-BMAL1 KO mice exhibited many characteristics of an unhealthy and aged
phenotype, including an altered gait, reduced mobility, muscle weakness, and impaired
glucose uptake [6,7,12,16]. Indicators for a negative impact of BMAL1 deletion in skeletal
muscle on other organs were apparent. This study examined the effect on the kidney.
Although elevated levels of TIMP-1 and IL-6 have been associated with the development
of kidney disease [32,33], data in this study indicate that kidney function is not affected
despite a significant increase in these markers. As demonstrated by an increase in monocyte
and neutrophil infiltration of lung tissue from iMS-BMAL1 KO mice, additional organs
including the lungs may demonstrate altered function.

Tamoxifen administration has been demonstrated to cause adverse side effects. Tamox-
ifen has been shown to induce hernia development in male mice [34]. On the other hand,
tamoxifen has demonstrated anti-fibrotic characteristics in a kidney disease model [35].
In this study, low-dose tamoxifen treatment was needed for only five days to sufficiently
induce knockout of BMAL1 from skeletal muscle. The mice were not maintained on ta-
moxifen for a long period of time. Additionally, experiments were not conducted on mice
until five weeks post-tamoxifen treatment. It is unlikely that tamoxifen affected results for
this study.

5. Conclusions

In conclusion, male mice with skeletal muscle BMAL1 deletion did not exhibit altered
renal function or kidney injury under the conditions tested. The finding of inflammation in
the lungs indicates that extra-renal organs may be affected by clock disruption in skeletal
muscle, independent of any changes in the kidney. Overall, the kidney exhibits resilience
to the aging phenotype exhibited by iMS-BMAL1 KO mice.
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