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Abstract: The sudden outbreak and worldwide spread of the SARS-CoV-2 pandemic pushed the 
scientific community to find fast solutions to cope with the health emergency. COVID-19 complex-
ity, in terms of clinical outcomes, severity, and response to therapy suggested the use of multifacto-
rial strategies, characteristic of the network medicine, to approach the study of the pathobiology. 
Proteomics and interactomics especially allow to generate datasets that, reduced and represented 
in the forms of networks, can be analyzed with the tools of systems biology to unveil specific path-
ways central to virus–human host interaction. Moreover, artificial intelligence tools can be imple-
mented for the identification of druggable targets and drug repurposing. In this review article, we 
provide an overview of the results obtained so far, from a systems biology perspective, in the un-
derstanding of COVID-19 pathobiology and virus–host interactions, and in the development of dis-
ease classifiers and tools for drug repurposing. 
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1. Introduction 
Coronaviruses (CoVs) are a large family of viruses, causing mild–severe respiratory 

tract infections in mammals [1]. In the past two decades, highly pathogenic CoVs emerged 
from animal reservoirs, such as bats or civets, and caused severe respiratory syndromes 
[2]. Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome 
(MERS) were examples of emerging zoonotic CoV infections capable of person-to-person 
transmission, which resulted in substantial effects on patients’ health and socioeconomic 
factors [3]. Although other human pathogenic coronaviruses cause very mild symptoms, 
patients with SARS-CoV or MERS-CoV infections developed severe acute respiratory 
disease with multi-organ failure. The case fatality rates of SARS and MERS were 
approximately 10% and 35%, respectively [4,5]. By the end of 2019, Chinese health 
authorities informed the World Health Organization (WHO) about a new, severe viral 
pneumonia associated with a novel CoV [6]. This CoV showed nucleotide sequence 
similarity greater than 80% with SARS-CoV [7]. Nevertheless, the new SARS-CoV-2 
appeared soon to be more contagious, with a worldwide spread of 315.3 million 
confirmed cases and 5.5 million deaths as of 14 January 2022 (https://covid19.who.int/; 
accessed on 14 January 2022). Since its first detection (China, December 2019, “Alpha” 
WHO label), four variants of concern (VOC) emerged within two years 
(https://www.ecdc.europa.eu/en/covid-19/latest-evidence/diagnostic-testing; accessed on 
13 January 2022). For VOC (Table 1), clear evidence exists indicating a significant effect 
on transmissibility, severity, and/or immunity, which is likely to have an epidemiological 
impact. One common feature of these variants is the accumulation of mutations in the 
gene encoding the spike protein, which mediates the interaction between the virus and 
the host target cells. The appearance of new variants displaying higher transmissibility, 
causing more severe symptoms, or showing an antigenic profile capable of reducing the 
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sensitivity of diagnostic tests and/or the effectiveness of vaccines, represents the biggest 
challenge of the present pandemic. 

Table 1. SARS-CoV-2 variants of concern (VOC). 

WHO 
Label 

First  
Detection 

Spike Mutations of 
Interest a 

Impact on  
Transmissibility b 

Impact on  
Immunity b 

Impact on 
Severity b 

Beta 
South Africa, 

September 
2020 

K417N, E484K, N501Y, 
D614G, A701V 

Increased [8] Increased [9,10] Increased [11] 

Gamma 
Brazil,  

December 
2020 

K417T, E484K, N501Y, 
D614G, H655Y 

Increased [12] Increased [13] Increased [11] 

Delta 
India,  

December 
2020 

L452R, T478K, D614G, 
P681R 

Increased [14] Increased [15] Increased [16] 

Omicron 

South Africa 
and  

Botswana,  
November 

2021 

A67V, Δ69-70, T95I, 
G142D, Δ143-145, 

N211I, Δ212, 
ins215EPE, G339D, 

S371L, S373P, S375F, 
K417N, N440K, G446S, 
S477N, T478K, E484A, 
Q493R, G496S, Q498R, 
N501Y, Y505H, T547K, 

D614G, H655Y, 
N679K, P681H, 
N764K, D796Y, 
N856K, Q954H, 
N969K, L981F 

Unclear [17–19] Increased [20] Unclear [21,22] 

a The list includes variations in the receptor binding domain (residues 319–541), in the S1/S2 
junction and in a small stretch on S2 (residues 613–705), and any additional unusual changes 
specific to the variant. b “Increased” means that the property is different enough for the variant 
compared with previously circulating variants. “Unclear” means that the current evidence is 
preliminary or contradictory. 

The diagnosis of SARS-CoV-2 infection is currently obtained by several different 
techniques (Table 2), even though nucleic acid amplification tests (NAATs) are the 
reference standard (https://www.who.int/publications/i/item/WHO-2019-nCoV-lab-
testing-2021.1-eng; accessed on 13 January 2022). Indeed, the amplification and detection 
of viral RNA in specimens guarantees the highest diagnostic sensitivity, also in the 
presence of newly emerging variants. Optimal specimens for the detection of SARS-CoV-
2 are collected from the upper respiratory tract (e.g., nasopharyngeal swab, oropharyngeal 
swab, nasopharyngeal aspirate, nasal wash). Saliva was also suggested as a specimen 
when testing for SARS-CoV-2 [23,24]; however, only assays detecting SARS-CoV-2 RNA 
should be used for this specimen type, as the sensitivity of antigenic tests is not sufficient. 
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Table 2. Diagnostic techniques available for SARS-CoV-2 infection. 

Diagnostic 
Strategy Techniques Description 

Detection of 
viral RNA 

Manual or automated 
nucleic acid amplification 

tests (NAAT): real time 
reverse transcription 

polymerase chain reaction 
(rRT-PCR) 

Detection of structural (envelope (E), 
nucleocapsid (N), spike (S)) and non-

structural (RNA-dependent RNA polymerase 
(RdRP)) protein-encoding viral genes; high 

sensitivity; high specificity; efficient detection 
of VOC; time consuming; moderate costs. 

Detection of 
viral antigens 

Immunodiagnostic 
techniques: lateral flow 
assay (LFA), commonly 

called rapid diagnostic tests 
or Ag-RDTs 

Detection of viral proteins (mainly spike) 
through the interaction with a specific 

antibody; low sensitivity; high specificity; 
reduced efficiency in detection of VOC; rapid; 

low costs. 

Detection of 
host 

antibodies 

Serological techniques: LFA, 
enzyme linked 

immunosorbent assay 
(ELISA), chemiluminescent 

immunoassay (CLIA) 

Detection of host antibodies against SARS-
CoV-2; moderate sensitivity; high specificity; 

uncertain efficiency in detection of VOC; 
either rapid or time consuming, depending 

on the technique; low–moderate costs; useful 
for epidemiologic purposes; not 

recommended for diagnosis. 

The disease caused by SARS-CoV-2 (coronavirus disease 2019; COVID-19) 
immediately appeared to be heterogeneous in terms of transmission [25], severity [26], 
and outcome predictability [27]. With rapid antigenic tests being available [24,28–31], a 
thorough screening allowed the identification of several subjects being infected with 
SARS-CoV-2 and showing a very mild form of COVID-19 or no symptoms at all [32,33]. 
By contrast, hospitalization and intensive care are needed for severe COVID-19 patients, 
whose symptoms are sometimes difficult to treat with available anti-inflammatory drugs 
and can ultimately lead to death [34]. Moreover, the risk of morbidity and mortality due 
to COVID-19 increases dramatically in the presence of some coexisting illnesses, such as 
hypertension, asthma, diabetes mellitus, cardiovascular or cerebrovascular disease, 
chronic kidney disease, and malignancy [35]. 

When a perturbation is applied to a complex, non-linear system, the expected 
outcome is a highly variable inter-individual response, which reflects different severities 
of the disease and different responses to treatment [36,37]. This suggests taking advantage 
of “omics” approaches and systems biology to understand the pathobiology and 
implement predictive tools for disease subtype classification. Indeed, omics strategies 
(e.g., transcriptomics, proteomics, metabolomics) can be used for the unbiased analysis of 
any complex biological samples (nasopharyngeal swabs, saliva, biofluids, tissues) aimed 
at the identification of pathogenetic mechanisms and/or specific biomarkers for disease 
severity. As an example, by comparing mild and severe COVID-19 patients, proteins, 
cytokines, and metabolites, whose levels in biofluids correlate with the presence of severe 
symptoms, can be identified, thus guiding patient stratification and the choice of the most 
appropriate pharmacological treatment. Such information cannot be obtained with 
classical targeted approaches, because the molecular factors involved are not known a 
priori. 

In addition, the worldwide health emergency requires the quick availability of 
effective therapeutic strategies, which suggests the use of drug repurposing tools to 
identify candidate novel therapies [38].  

As a whole, the effort of omics strategies (especially proteomics and interactomics) 
and systems biology in the battle against SARS-CoV-2 and COVID-19 is targeted to these 
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main objectives: (i) the comprehension of the pathogenetic mechanisms following SARS-
CoV-2 infection; (ii) the understanding of the complex system where the virus meets the 
host cell, based on protein–protein interactions; (iii) the definition of predictors and/or 
classifiers for the identification of disease subtypes with distinct outcome; (iv) the 
implementation of artificial intelligence (AI) procedures for drug repurposing (Figure 1). 
Here, we provide a review of the results obtained in these four fields so far. 

 
Figure 1. The four main objectives of the battle against SARS-CoV-2 and COVID-19 from a sys-
tems biology perspective. PPIs—protein–protein interactions. 

2. The Pathobiology of COVID-19 Investigated by Proteomics 
The advent of the big data era recently imposed a shift in the scientific thought and 

approach, switching from the classical hypothesis-driven deductive approach to a data-
driven inductive approach. Indeed, “omics” techniques (e.g., proteomics, genomics, tran-
scriptomics, metabolomics) generate huge datasets from which the significant experi-
mental observations are extracted by data reduction and then used to draw inferences on 
the perturbed mechanisms. Correlation among observations can identify pathways be-
hind them thanks to complex statistical algorithms [39], and meaningful models can be 
obtained at the network complexity level [40]. Indeed, omics datasets are efficiently rep-
resented and analyzed in the form of networks where nodes represent the observations 
(proteins, genes), and edges represent the associations among them. Notably, the combi-
nation of genomics and quantitative approaches to network-based analysis contributed to 
pushing forward the frontiers of network medicine [41]. The multiplicity of factors that 
can alter a complex system require, indeed, a multifactorial approach, characteristic of 
network medicine, to identify functional connections that link the clinical phenotype to 
such multiple factors [42]. 

Proteomics and interactomics rely on the mass spectrometry (MS)-based identifica-
tion and quantification of proteins. The COVID-19 MS coalition was launched aiming at 
providing molecular level information on SARS-CoV-2 in the human host and revealing 
pathophysiological and structural information to treat and minimize COVID-19 [43]. This 
consortium is constituted by about 600 scientists from 60 countries and made all studies 
publicly available in open-access databases such as the PRIDE repository 
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(http://www.ebi.ac.uk/pride; accessed on 13 January 2022) [44]. Thousands of papers have 
been published within the last two years reporting the results of proteomics studies per-
formed in different patient groups (mild, moderate, and severe COVID-19), using differ-
ent experimental models and specimens (from SARS-CoV-2 infected cells to biofluids col-
lected from patients), employing and developing different strategies with different aims 
(biomarker research, patient stratification, discovery of therapeutic targets). 

From clinical observations, it is now clear that severe COVID-19 is associated with 
an acute phase response, often termed as “cytokine storm”, prothrombotic immuno-
pathology, and lymphopenia, which can culminate in multiple organ dysfunction and, in 
some cases, death [45]. Moreover, the viral infection can result in lung, heart, and brain 
damage, which increases the risk of long-term illnesses. Notably, it has also been proposed 
that SARS-CoV-2 infection may trigger autoimmunity (Guillain-Barré syndrome, systemic 
lupus erythematosus) through cross-reactivity with host cells [46]. In this context, the 
main impact of proteomics studies was the possibility to shed light on molecular mecha-
nisms underlying the pathobiology of COVID-19—partially explaining the high hetero-
geneity in clinical outcomes. Early proteomics studies of the diseased tissue (lung) [47,48] 
unveiled cathepsin B, cathepsin L, proteins involved in the NF-κB pathway, several inter-
leukins, matrix metalloproteases, and other proteins secreted by neutrophils and macro-
phages as biomarkers for COVID-19 disease severity. These molecules correlate with the 
pathogenetic mechanisms of neutrophil extracellular traps (a process that allows for se-
lective elimination of the pathogens minimizing host cell damage), overproduction of pro-
inflammatory cytokines, increased risk of clot formation, platelet activation, and fibrosis 
associated with severe COVID-19. The proteomics analysis of SARS-CoV-2-infected cells 
(e.g., Caco-2 cells) unveiled the main molecular pathways driving the infection: protein 
translation, RNA splicing, glycolysis, and nucleotide synthesis [49,50]. Strikingly, the use 
of specific inhibitors (i.e., chemicals routinely used for the general inhibition of protein 
translation, glycolysis, and nucleotide synthesis for research use) at non-toxic concentra-
tions has been proven to prevent viral replication. However, these drugs cannot be used 
as therapeutics. Eventually, the proteomics of patient-derived biofluids unveiled some bi-
omarkers for patient stratification and disease grade classification. In blood samples, Shu 
and coworkers demonstrated a significant enrichment in processes involved in inflamma-
tion, migration, and degranulation of immune cells, complement system, coagulation cas-
cade, and energy metabolism [51]. Of note, platelet degranulation and the complement 
and coagulation cascades were the most enriched, with proteins involved in these pro-
cesses more significantly altered in severe cases versus mild cases. 

3. Understanding Virus–host Interaction in a Complex System View 
3.1. The Network-Based Analysis of Omics Data 

The multifactorial approach of network medicine is based on the identification of 
functional connections that link the clinical phenotype to multiple factors. This aim is 
achieved by integrating protein–protein interactions (PPIs), expression data, and gene 
regulatory circuits [41]. Protein networks are usually built starting from a list of selected 
proteins, which often is the result of a feature selection/extraction procedure applied to 
omics datasets. Namely, among all proteins identified and quantified by MS (typically 
one thousand or more), those that are significant to describe the system must be fished 
out by using a strategy for data reduction [39]. Several methods exist, classified as (i) fea-
ture subset selection methods (e.g., filters, wrappers, embedded methods), which select a 
subgroup of the original dataset by removing non-relevant or redundant proteins, and (ii) 
feature extraction methods (e.g., discriminant analysis, principal component analysis), 
which create new variables as combination (aggregation, transformation) of the existing 
ones. Independently of the method of choice, the result is a reduced dataset of selected 
proteins that are used to query a suitable database to retrieve protein–protein interaction 
information; the latter is used to create associations (edges) among the proteins (nodes) 
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within the network. It is worth noting that, depending on the database of choice, the in-
teraction between two proteins does not necessarily mean they are physically binding to 
each other. Indeed, an edge can represent not only a known physical interaction (experi-
mentally determined, retrieved from curated databases) but also a predicted interaction 
(gene neighborhood, gene co-occurrence, co-expression, protein homology, text mining). 
The result is a PPI network that may be further expanded by adding first interactors that 
might join isolated or distant nodes. The rationale of this approach is that false-positive 
proteins, i.e., proteins that were identified as phenotype-correlated by chance, are likely 
excluded from the network, whereas proteins that for several reasons were not detected 
as phenotype-correlated are now reconnected to the network [36,40]. A functional analysis 
of the resulting network is eventually performed with the aim of identifying biochemical 
pathways and processes significantly related to the selected proteins. A standard func-
tional analysis usually consists of an over-representation analysis (ORA) based on the 
Fisher’s exact test or a gene set enrichment analysis (GSEA) [52]. Briefly, in ORA the hy-
pergeometric Fisher’s test is used to compute a p-value for each overrepresented pathway; 
this p-value is calculated from the number of proteins in the experimental list (network) 
and in a reference database, assigned or not to a given pathway. Instead, GSEA works by 
ranking all proteins in the experimental list according to a parameter (usually the level of 
differential expression) and tests whether any annotated gene set is ranked unexpectedly 
high or low through running sum statistic. Independently of the approach chosen, the 
result of the functional analysis of the network is a list of significantly enriched pathways, 
which may help in highlighting crucial mechanisms related to the system under study. 

3.2. A Network of Known Physical Interactions between Human and SARS-CoV-2 Proteins 
The International Molecular Exchange (IMEx) Consortium provided researchers 

with a dedicated collection of over 4400 binarized interactions between human proteins 
and SARS-CoV/SARS-CoV-2 proteins extracted from 151 publications, as of November 
2020 [53]. Uniprot dedicated a specialized database for SARS-CoV-2 or COVID-19-related 
proteins (https://covid-19.uniprot.org/; accessed on 14 January 2022), with 120 annotated 
entries (89 human, 16 SARS-CoV-2, and 15 SARS-CoV proteins, to date). Based on a query 
performed on 14 January 2022, 4410 interactions were found in IMEx between the 16 an-
notated SARS-CoV-2 proteins and human proteins. This search identified 1933 human 
protein interactors and 2525 non-redundant edges (Figure 2). 
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Figure 2. The protein–protein interaction network obtained from IMEx. Dark green nodes repre-
sent SARS-CoV-2 proteins, whereas light green nodes are human proteins. 

Usually, proteins are supposed to interact because they are observed to accordingly 
change in their levels when the system is perturbed. Instead, one may identify which are 
the interactors of specific proteins, such as the SARS-CoV-2 spike protein, to get a more 
dynamic and complete picture of viral protein–host protein interactions. In this frame, 
interactomics approaches are essential to study the assembly of specific protein complexes 
and to highlight interaction changes that can discriminate between two conditions or, 
more specifically, that are involved in the development of diseases [54]. Several ap-
proaches have been recently developed to detect PPIs and populate specific interactomes. 
These approaches can be roughly classified as follows: (i) in silico methods, which consist 
of text mining and computer simulation; (ii) in vivo methods (e.g., yeast two-hybrid, pro-
tein-fragment complementation assay, mammalian protein–protein interaction trap), 
which can be performed on intact living organisms; (iii) in vitro methods (e.g., tandem 
affinity purification-mass spectroscopy, protein microarray), which are performed in a 
controlled environment outside a living system [55]. The resulting interactomes can be 
then represented as networks and functionally analyzed with the tools of systems biology. 

SARS-CoV-2 requires host receptor proteins such as angiotensin-converting enzyme 
2 (ACE2) to bind with the spike protein. ACE2 naturally protects against acute lung injury 
[56], which explains the increased lung pathophysiology and pathobiology (e.g., acute 
respiratory distress syndrome, pneumonia, and lung injury) due to dysregulation of 
ACE2 resulting from binding to the spike protein of SARS-CoV-2 [57]. To better under-
stand the regulatory network behind ACE2, Lite and coworkers built a PPI network by 
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retrieving ACE2 first and second interactors and mapped with RNA-Seq lung expression 
data [58]. Overall, the interactome data revealed that AGT (angiotensinogen), LAMAS 
(laminin subunit alpha 1), NTS (neurotensin) and GHRL (ghrelin and obestatin prepro-
peptide) represent direct mediators, which are assumed to be activated upon viral binding 
of the SARS-CoV-2 with the ACE2 receptor. More recently, Bamberger and coworkers de-
veloped a novel proteome-based cell-type set enrichment analysis (pCtSEA), in order to 
hypothesize how the tropism of the virus might change due to mutations in the spike 
protein. The rationale of this approach is that the host interactome determines whether an 
infection is productive or not. With pCtSEA they concluded that the host interactome of 
the spike protein may extend the tropism of SARS-CoV-2 beyond epithelial airway cells 
to other cell types, including macrophages and epithelial cells in the nephron [59].  

Gordon and coworkers built a SARS-CoV-2 PPI map for the identification of drugga-
ble human proteins or host factors, relying on affinity-purification mass spectrometry. 
Out of the 332 PPI identified, 66 components were known to be targeted by 69 antiviral 
agents, mainly belonging to mRNA translation inhibitors and regulators of sigma-1 and 
sigma-2 receptors [60]. Previously published protein–protein interaction and gene expres-
sion data from other human coronavirus infections have been essential in the first phases 
of the pandemic to define functionally enriched host–pathogen network models, allowing 
the prediction of the SARS-CoV-2 interactome. In this context, Perrin-Cocon et al. [61] se-
lected a set of molecules from published in vitro screenings of chemical libraries that were 
identified for their antiviral activity against at least one coronavirus and relied on the 
Drug Repurposing Hub database (https://clue.io/repurposing; accessed on 14 January 
2022) [62], developed by the Broad Institute to search for their cellular targets. Results 
overlapping with the previously generated list of host proteins interacting with corona-
viruses have been used to identify candidate antiviral drugs for SARS-CoV-2. Further-
more, the network-based model developed by Messina et al. provided an in-depth com-
parison of the 3D structure of the SARS-CoV-2 S-glycoprotein to the corresponding SARS-
CoV, MERS-CoV, and HCoV-229E [63]. 

4. Computational Methods and Omics for COVID-19 Research 
4.1. Predictors and Classifiers for COVID-19 Severity and Outcome 

Systems biology provides a variety of models and methodologies to extract predic-
tive features from holistic datasets, such as those arising from proteomics, metabolomics, 
or RNA-seq. In particular, “omics” analysis of either affected tissue (lung) or peripheral 
biofluids and specimens (serum, plasma, or blood cells) may lead to AI tools to predict 
disease severity and outcome, or to classify subjects in terms of drug response.  

By comparing serum profiles of 28 severe COVID-19 patients, 28 healthy subjects, 25 
non-COVID-19 patients with similar symptoms and 25 non-severe COVID-19 patients, 
Shen and coworkers built a random forest machine learning model to predict disease se-
verity [64]. The approach was based on proteomics and metabolomics data from 18 non-
severe and 13 severe patients, leading to the identification of 93 proteins and 204 metabo-
lites showing differential abundance in severe COVID-19 patient sera. Among them, 29 
important variables, including 22 proteins and 7 metabolites, were used to build the clas-
sifier. This model showed an Area Under the receiver operator characteristic (ROC) Curve 
(AUC) of 0.957 in the training set and led to two misclassifications in a test cohort of 10 
unknown subjects. The significance of the 29 molecules signature was assessed by random 
resampling.  

The integration by computational methods of clinical measurements, immune cells 
characterization, and plasma multi-omics of serial blood samples of 139 COVID-19 pa-
tients representing all levels of disease severity allowed Su and coworkers to identify a 
major shift between mild and moderate disease [65]. Specifically, the authors constructed 
a cross-omics interaction network that revealed an orchestration between increasing 
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COVID-19 severity, elevated inflammation, and loss of key circulating nutrients. Moreo-
ver, the plasma multi-omics profiles described a marked similarity between moderate and 
severe COVID-19, whereas a sharp difference between mild and moderate infections was 
observed. This major shift consisted in the preferential loss of lipids, amino acids, and 
xenobiotic metabolism, with concomitant elevation of inflammatory cytokines. With a 
similar approach, Shu and coworkers obtained plasma proteomics profiles of COVID-19 
patients to train a classifier for clinical outcome prediction [51]. A biomarker panel com-
posed of 11 proteins was identified and several protein combinations were tested in the 
prediction of distinct outcome parameters based on the highest AUC after 5-fold cross-
validation. Several differentially abundant host proteins were directly connected to plate-
let degranulation, complement cascade, and inflammation, as assessed by GSEA and also 
reported by Messner and coworkers [66]. In this paper, the authors described an ultra-
high-throughput proteomics platform to screen serum or plasma of 180 subjects per day. 
Using this platform, they identified a panel of 27 biomarkers for the classification of se-
verity grade. This panel included complement factors, the coagulation system, modula-
tors of inflammation, and pro-inflammatory factors upstream and downstream of inter-
leukin 6 [66]. Chen and colleagues added extracellular RNA in the integration of prote-
ome, transcriptome, and clinical data, observing different activation of the inflammatory 
response in mild and severe disease [67]. Significantly changing molecules allowed the 
definition of a classifier to predict the prognosis of COVID-19. The combination of prote-
omics and immunology through computational tools was also exploited by Tilocca and 
coworkers, who described present immunoinformatics approaches and their potential in 
contrasting COVID-19, in particular through the prediction of B- and T-epitopes [68]. 

Serum proteomics profiling can also lead to specific disease classifiers able to distin-
guish between early stage COVID-19 and flu. Hou and coworkers identified a set of 132 
differentially expressed proteins dealing with inflammation and immune signaling in 15 
patients diagnosed with SARS-CoV-2 compared with a group of 6 patients with FluA, 3 
patients with Flu-B and 4 patients with respiratory syncytial virus (RSV). They also found 
that neutrophils and lymphocytes levels correlated with the CCL2- and CXCL10-mediated 
cytokine signaling pathways [69].  

4.2. Discovery of Therapeutic Targets from Proteome Profiling of Infected Tissue 
Cells respond to viral infection by dysregulating the levels of several host proteins. 

Therefore, proteome profiling followed by a functional enrichment analysis with systems 
biology tools may indicate potential therapeutic targets. 

It is known that SARS-CoV-2 replicates in intestinal cells [70] and it is frequently de-
tected in feces [71]. Since human colon epithelial carcinoma Caco-2 cells were widely used 
to investigate host cell response to SARS-CoV infection [72], Bojkova and coworkers in-
vestigated the proteome of Caco-2 cells infected with SARS-CoV-2 [73]. The proteome 
profile of host cells was monitored at different time points after infection. Results indi-
cated several pathways that include druggable targets, with a focus on host cell translation 
inhibitors. Leng and coworkers, on the other hand, profiled the proteome of fresh lung 
tissue obtained from deceased patients, showing an extensive dysregulation [48]. Results 
were interpreted in terms of structural changes in the lung tissue that correlate with dis-
ease symptoms, in particular, those involving the extracellular matrix, surfactant proteins 
that allow gas exchange, and the coagulation pathway.  

In order to define the host immune response implicated in COVID-19 fatality, a 166-
gene signature was designed by analyzing over 45,000 transcriptomics datasets of viral 
pandemics using ACE2 as a seed gene [74]. A subset of 20 genes was proposed as a signa-
ture for disease severity. This study led to the identification of neutralizing antibodies or 
directly acting antiviral agents (e.g., EIDD-2801/Molnupiravir, now approved for the 
treatment of mild-to-moderate COVID-19 in adults with high risk for progression to se-
vere COVID-19) as signature modifiers. 
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Very recently, Liu and coworkers exploited a MS-based interactomics approach to 
identify candidate targets for antiviral therapy among proteins involved in the processing 
of viral proteins, which is a crucial aspect for productive infection [75]. In order to map 
the PPIs relevant to viral processing, they applied both affinity purification mass spec-
trometry and the complementary proximity-based labeling MS method on 29 viral ORFs 
and 18 host proteins with roles in viral replication. The result was a list of 693 hub proteins 
sharing interactions with both viral and host baits; functional enrichment analysis high-
lighted 3 main pathways, namely RNA transportation, endocytosis, and protein pro-
cessing in the endoplasmic reticulum. This list of candidate targets also served as a re-
source for rational drug repurposing via a virtual screening approach, by which the au-
thors suggested repurposing of 59 antiviral compounds for 15 protein targets. 

5. Artificial Intelligence and Network Medicine for a Therapy to Cure COVID-19 
5.1. Drug Repurposing 

To date, 4101 interventional studies related to COVID-19 have been reported on clin-
icaltrials.gov (14 January 2022). Among the 1720 clinical studies where the intervention is 
classified as “drug”, 126 involve monoclonal antibodies mostly aimed at targeting SARS-
CoV-2 proteins or inflammatory cytokines. The vast majority of studies concerning small-
molecule drugs is focused on compounds that were discovered and developed prior to 
the COVID-19 pandemic, already marketed and approved for at least one clinical indica-
tion. Only a few study medications have been designed ad hoc with the primary aim to 
target COVID-19. Given the impetuous nature of the pandemic, it is not surprising that 
most drugs under clinical investigation belong to a repurposing program. The journey to 
bring a new medication from de novo discovery to the marketplace takes at least 10 years 
and the average cost for the whole R&D process is estimated to be around USD 2.6 billion. 
Drug repurposing (sometimes also called drug repositioning, re-profiling, or re-tasking) 
is a time- and cost-effective strategy for discovering new clinical indications for approved 
(and investigational) drugs that were originally developed for a different medical condi-
tion, not necessarily belonging to the same therapeutic area. Approved drugs guarantee 
already established pre-clinical and clinical safety, toxicological, and pharmacokinetics 
data, allowing researchers to speed up non-clinical assessments and optimizations (espe-
cially when molecular targets are the same) and to avoid drug testing in healthy volun-
teers (phase I clinical trials). This de-risking strategy is particularly effective when no ad-
ditional chemistry, manufacturing, and controls (CMC) effort (e.g., a new formulation, 
different delivery route, and/or release profile) must be taken into account. 

It is not uncommon for big pharmaceutical companies to structure alternative posi-
tioning plans of their new drug candidates while still in the clinical trials process for the 
original indication, especially in the oncology space. An example is Merck’s programmed 
death receptor-1 (PD-1) inhibitor pembrolizumab (sold under the brand name Keytruda®), 
which was originally approved for previously treated unresectable or metastatic mela-
noma in 2014 and is now approved for the treatment of a total of 18 cancer types, including 
non-solid tumors, such as Hodgkin lymphoma. 

Many blockbuster drugs are the result of a repurposing process, with serendipity 
being a frequent part of such discoveries, especially in the past century. Amantadine was 
first approved in the 1960s for flu prophylaxis [76] but is now no longer recommended as 
an antiviral agent. Indeed, amantadine is now mostly known as an antiparkinsonian 
agent. In 1968, a 58-year-old woman affected by Parkinson’s Disease (PD) had noticed an 
improvement in rigidity, tremor, and akinesia while taking amantadine for the treatment 
of a flu infection and reported that her symptoms worsened upon stopping the medication 
[77]. Several animal and human studies were performed to shed light on such an effect 
and led to the FDA approval of amantadine for the treatment of motor symptoms in PD 
in 1973, which was also followed by the FDA approval of an extended-release formulation 
(Gocovri®) for levodopa-induced dyskinesia in 2017. Further outstanding examples 
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among several successful repurposing stories are certainly the phosphodiesterase-5 
(PDE5)-inhibitor, sildenafil (commercially known as Viagra®, approved in 1998 for the 
treatment of erectile dysfunction, but originally designed to treat systemic hypertension 
and angina), and the well-known immunomodulatory drug thalidomide (Thalomid®, ap-
proved in 2006 for the treatment of multiple myeloma in combination with dexame-
thasone, but marketed—and subsequently withdrawn—in the 1950s as a sedative). 

However, despite its versatility, the repurposing approach has been often ignored by 
healthcare investors, mainly due to misperceptions related to intellectual property protec-
tion, pricing strategies, and discovery approaches: during 2004–2013, nearly 80% of ven-
ture capital funding went toward novel R&D of new chemical entities with no prior reg-
ulatory approval, as opposed to improvements of approved drugs (including delivery, 
repurposing, and reformulation) [78]. In the last few years, thanks to the development of 
high-throughput screenings, the release of drug and signatures databases and the ad-
vancements in computational biology methods, drug repositioning has become a viable 
business model, and AI-based drug repositioning is now the core proposition of a large 
number of platform companies. Moreover, the need for accelerated discovery of therapeu-
tic candidates for COVID-19 has turned the spotlight on the value of this drug develop-
ment strategy to address worldwide emergency situations.  

5.2. Systems Biology Approaches for Drug Repurposing for COVID-19 Treatment 
At the very beginning of the COVID-19 pandemics, Zhou and coworkers developed 

a network medicine platform for antiviral drug repurposing [79]. The platform set the 
relationships between the virus–host interactome and drug targets in the human PPI net-
work. All human proteins associated with known CoVs were collected from literature and 
used to generate a global host–CoVs network. Then, the proximity between proteins in 
the network and drug targets was calculated to select candidate repurposable drugs for 
human CoVs. Network-based predictions were validated by GSEA [80] and top candi-
dates were further prioritized for drug combinations using a network-based method. Al-
together, the rationale was that proteins that are functionally associated with CoVs are 
localized in the corresponding subnetwork within the comprehensive human PPI net-
work, and proteins that serve as drug targets for a specific disease may also be suitable 
drug targets for potential antiviral infection if they are members of the same “community” 
[81]. Eventually, the methodology led to the identification of potentially repurposable 
drug classes, such as selective estrogen receptors modulators, angiotensin receptors block-
ers, immunosuppressant or antineoplastic agents, and anti-inflammatory agents, either 
alone or in combination [79]. Indeed, the number of possible drug pairs is increasing 
quickly; therefore, a network-based methodology is necessary to identify and validate ef-
fective combinations [82].  

In their further paper, Zhou and coworkers described a more thorough investigation 
of COVID-19 biology by means of bioinformatics and network medicine [35]. They made 
inference on COVID-19 pathogenesis and symptoms by building a global SARS-CoV-2 
virus–host interactome by merging three sources: differential transcriptomics data from 
primary human bronchial epithelial cells infected with SARS-CoV-2, differential prote-
omics data of SARS-CoV-2-infected Caco-2 cells, and the global host-CoVs PPI network 
described above [79]. Drug repurposing modeling over all these networks led to the iden-
tification of 34 drugs that were significantly associated with the SARS-CoV-2 datasets. 

CovMulNet19 is a comprehensive COVID-19 network to be used as a network med-
icine tool to explore drug repurposing by taking into account several factors, from molec-
ular interactions to symptoms, in a multivariate way [83]. The network was constructed 
by retrieving all available interactions involving SARS-CoV-2 proteins, human proteins 
interacting with them, diseases and symptoms that are related to these human proteins, 
and compounds that can potentially target them. The authors highlighted the over-repre-
sentation of GO terms, symptoms, diseases, and drugs. Among the latter, several BCL-2 
inhibitors (e.g., A-385358, obatoclax mesylate, abossipol, sabutoclax, and ABT-737) were 
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indicated as repurposable for antiviral drug development. Additionally, two Janus kinase 
inhibitors (momelotinib and XL-019) were identified as top-scoring candidates. 

Another case of a potential drug candidate for COVID-19 identified using symbolic 
AI and deep neural networks is that of baricitinib, a Janus kinase inhibitor [84]. The meth-
odology used is based on Monte Carlo tree search and symbolic AI for the discovery of 
retrosynthetic routes to plan the synthesis of small organic molecules [85]. This method-
ology evidenced AP-2 associated kinase 1 (AAK1), cyclin g-associated kinase (GAK), and 
Janus kinase 1/2 (JAK) as top-scoring targets, and fedratinib, erlotinib, sunitinib, and bar-
icitinib as top drug candidates, the latter having the highest score [84]. To date, 21 clinical 
trials (interventional studies) were registered for treatment of COVID-19 with baricitinib 
alone or as part of combination therapy (NCT04320277, NCT04321993, NCT04340232, 
NCT04346147, NCT04358614, NCT04373044, NCT04381936, NCT04390464, 
NCT04393051, NCT04399798, NCT04401579, NCT04421027, NCT04640168, 
NCT04693026, NCT04890626, NCT04891133, NCT04970719, NCT04832880, 
NCT05056558, NCT05074420, and NCT05082714).  

Table 3 summarizes all drugs that emerged from one or more network-based predic-
tion. Several clinical trials include now one or more of these drugs. A comprehensive list 
of finished or ongoing interventional studies that evaluate candidates for drug reposition-
ing can be downloaded from clinicaltrials.gov in tabular form. 

Table 3. Repurposable drugs prioritized by network-based prediction. 

Class Drug Reference 

Antibiotic 

Azithromycin [35] 
Tetracycline [35] 

Cefdinir [35] 
Cefaclor [35] 

Anti-inflammatory 

Dexibuprofen [35] 
Liftegrast [35] 

Hydrocortisone [35] 
Mesalazine [79] 
Colchicine [79] 

Antimalaric 
Chloroquine [35] 
Quinacrine [79] 

Antineoplastic 

Dacarbazine [35] 
Dactinomycin [79] 

Mercaptopurine [79] 
Toremifene [35,79] 

Hormone 

Equilin [79] 
Megestrol acetate [35] 

Melatonin [35] 
Oxymetholone [79] 

JAK inhibitors 
Baricitinib [84] 

Momelotinib  [83] 
XL-019 [83] 

β-Blockers 

Carvedilol [35,79] 
Timolol [35] 
Sotalol [35] 

Bisoprolol [35] 
Penbutolol [35] 

β-Agonists 
Procaterol [35] 
Salbutamol [35] 
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Terbutaline [35] 

Anti-apoptotic 

Obatoclax mesylate [83] 
Abossipol  [83] 
Sabutoclax [83] 
ABT-737 [83] 
A-385358 [83] 

Angiotensin-receptor blocker Irbesartan [35,79] 

Immunosuppressant 

Sirolimus [79] 
Temsirolimus [35] 
Cyclosporin [35] 
Thalidomide [35] 
Pimecrolimus [35] 

Antiarrhythmic Bretylium [35] 

Antidepressant Amitriptyline [35] 
Brexpiprazole [35] 

More recently, Morselli Gysi and coworkers developed a network–medicine frame-
work for drug repurposing for the treatment of COVID-19 by assembling a human in-
teractome from 21 public databases and implementing three algorithms relying on AI, 
network diffusion, and network proximity to prioritize and screen FDA-approved drugs 
[86]. The group combined the predictions of the different pipelines in a multimodal ap-
proach in which the network communities prioritization algorithm CRank [87] offered the 
most reliable performance. The top-ranked drug was ritonavir, which is currently under 
investigation in more than 30 active interventional clinical trials to treat COVID-19. Ri-
tonavir is being evaluated mainly in combination with other protease inhibitors, such as 
lopinavir (even though previous studies concluded that this combination is not signifi-
cantly beneficial to severe COVID-19 patients) [88]) or PF-07321332 (also known as nirma-
trelvir), a 3CL protease inhibitor developed by Pfizer. Ritonavir/PF-07321332 was recently 
shown to reduce the risk of hospitalization or death when administered within 3 or 5 days 
of symptom onset in non-hospitalized patients with mild-to-moderate COVID-19, who 
were at high risk of progression to severe disease. The US FDA recently issued an emer-
gency use authorization for ritonavir/PF-07321332, marketed under the name Paxlovid™ 
(nirmatrelvir tablets and ritonavir tablets, co-packaged for oral use) for the treatment of 
mild-to-moderate COVID-19 in adult and adolescent patients who are at high risk of pro-
gression to severe COVID-19 [89]. EMA is currently evaluating Paxlovid™ for a condi-
tional marketing authorization for the same indication [90]. Among the top 200 consensus 
predictions of the drug-repurposing pipelines aggregated using CRank, 13 drugs showed 
efficacy against SARS-CoV-2 in VeroE6 cells in a large experimental screening conducted 
by the same group, and 6 of them reduced viral load in Huh7 cells infected with SARS-
CoV-2 (auranofin, azelastine, digoxin, vinblastine, fluvastatin, and methodextrate).  

While virtual screenings by molecular docking are limited to molecules that are sup-
posed to directly bind a certain viral protein and/or its host target, network-based ap-
proaches allow for the identification of drugs whose mechanism of action relies on other 
targets (e.g., host protein targets which induce network perturbations), which is a key 
feature for drug development in the context of complex diseases.  

A combination of different techniques can provide constructive insight, as shown by 
De Siqueira Santos and coworkers [91], who exploited machine learning and network 
medicine as complementary approaches for drug repositioning for COVID-19. For the first 
purpose, the group developed a matrix decomposition algorithm to rank broad-spectrum 
antivirals and predict effective drug–virus relationships. The network-inspired approach 
was based on the interactome built by Morselli Gysi et al. and allowed to rank FDA-ap-
proved drugs with known targets using five different kernels on graphs and weighting 
the host proteins with differential gene expression data to understand and quantify the 
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relevance of the perturbations induced on the COVID-19 disease module. Lastly, the 
group released the online tool CoREx (https://paccanarolab.org/corex; accessed on 14 Jan-
uary 2022), allowing users to submit a list of drugs and explore the effects on the SARS-
CoV-2 host protein subnetwork by performing functional and interactome analyses. It is 
also possible to consider drug combinations as they may have synergistic effect. 

A novel pipeline based on graph neural networks has been proposed by Hsieh and 
coworkers to prioritize repurposable drugs to treat COVID-19 [92]. The proposed pipeline 
systematically integrates the interaction between COVID-19 and drugs, deep graph neural 
networks, and in vitro/population-based validations. This approach allowed the authors 
to identify 22 top-ranked drugs, including azithromycin, atorvastatin, aspirin, and salbut-
amol, and potentially active drug combinations from several drug categories, with com-
plementary exposure patterns (etoposide and sirolimus, mefloquine and sirolimus, losar-
tan and ribavirin, and hydroxychloroquine and melatonin). 

Another recent tool that can be exploited for drug discovery and development is the 
COVID-19 Disease Map (C19DMap), an open access repository of computational dia-
grams and models of molecular mechanisms assembled by over 20 independent biocura-
tion teams [93].  

6. Perspectives and Future Directions 
The effort of the scientific community in understanding the pathobiology of COVID-

19 and identifying novel therapeutic strategies is the response to an urgent need to face 
the present pandemic and reduce its impact not only on human health but also on eco-
nomics and society in general terms. This urgency boosted the development of integrated 
omics strategies, systems biology instruments, and drug repurposing tools that look very 
promising, not only in the context of the COVID-19 pandemic. 

A relevant example of such integrated approaches is the recent development of the 
3D-SARS2 structural interactome browser by Wierbowski and coworkers [94]. To facili-
tate the exploration of how pathogen–host interactions might affect SARS-CoV-2 trans-
mission and virulence, they performed interface prediction followed by molecular dock-
ing to generate a 3D structural interactome between SARS-CoV-2 and a human. This tool 
(http://3D-SARS2.yulab.org; accessed on 13 January 2022) represents a key resource in in-
forming hypothesis-driven exploration of the mechanisms of SARS-CoV-2 pathology and 
host response. Moreover, this web server will continue to grow with the results of ongoing 
and future interactome studies between SARS-CoV-2 and human proteins. Given the high 
mutation rate of the Omicron variant and the availability of a structural model of the Omi-
cron spike protein [95], the server could help in the investigation of variant-specific pa-
thology. Eventually, the framework might also be rapidly deployed to analyze future vi-
ruses. 

The recent emergence of the Omicron variant (see Table 1 and references therein) will 
for sure affect the interactome scenario, which is evolving at a fast speed and could lead 
to the identification of new mechanisms for host–virus interplay. On the other hand, the 
possibility to apply omics strategies to investigate disease pathobiology or to develop clas-
sifiers as prognostic markers or surrogate endpoints is not influenced by the presence of 
variants. 

Overall, independently of the field of application, future directions of biomedicine 
are on the route of the integration of omics data at different levels by means of systems 
biology tools, to generate complex networks representing a disease state or a patient-spe-
cific condition. Significant information about molecular pathogenesis, prognosis, and 
drug response can be obtained by querying these networks with properly designed tools. 
Additionally, the systems biology approach may provide a useful tool for the identifica-
tion of antigens to be considered for the development of new vaccines [96]. 
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