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Abstract: Among the histamine receptors, growing evidence points to the histamine H3 receptor as a
pharmacological candidate to counteract the autonomic neuropathy associated with diabetes. The
study aimed to evaluate the effect of PF00868087 (also known as ZPL-868), a CNS-sparing histamine
H3 receptor antagonist, on the autonomic neuropathy of the intestinal tract associated with diabetes.
Diabetes was induced in male BALB/c mice by a single high dose of streptozotocin (150 mg/kg).
Colorectal specimens from control and diabetic mice, randomized to vehicle or PF0086087 (10, 30,
100 mg/kg/day by oral gavage for 14 days), were processed for morphological and immunohis-
tochemical analysis. A significant overproduction of mucus in the intestinal mucosa of diabetic
mice compared to the controls was observed. PF0086087 at the highest dose prevented mucin over-
production. The immunohistochemistry analysis demonstrated that diabetes causes a decrease in
the inhibitory component of enteric motility, measured as the percentage of neuronal nitric oxide
synthase-positive neurons (p < 0.05) and a parallel increase in the excitatory component evaluated as
substance P-positive fibres (p < 0.01). PF0086087 dose-dependently prevented these pathophysiologi-
cal events. In conclusion, PF0086087 may be an essential tool in preventing nitrergic dysfunction in
the myenteric plexus of the distal colon and diabetes-induced gastrointestinal complications.

Keywords: histamine; PF0086087; ZPL-868; diabetes; gastrointestinal neuropathy

1. Introduction

Gastrointestinal (GI) neuropathy, leading to complications such as gastroesophageal
reflux disease (GERD), gastroparesis, diarrhoea, habitual constipation and faecal incon-
tinence, is one of the microvascular complications associated with diabetes [1,2]. Many
pathways are involved in developing the clinical GI symptoms in diabetes [3]. The exces-
sive glucose concentration in the blood causes the production of advanced glycation end
products (AGEs), which promote, in turn, neuronal damage. The reduction in the number
of neurons of the central and autonomic nervous systems (CNS and ANS, respectively)
and the interstitial cells of Cajal (ICC), the physiological gut pacemakers [4], generates a
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dysregulation of motility, accompanied by damage to smooth muscle cells and decreased
contractility [3]. AGEs have been reported to activate mast cells and may contribute to
a vicious cycle increasing the formation of AGEs itself [5] and promoting neurogenic in-
flammation [6]. Histamine may have an active role in the establishment of this vicious
circle. Binding to its receptor RAGE on mast cells, AGEs induce histamine exocytosis and
the production of reactive oxygen species (ROS). ROS participates in a feedback loop on
AGE production [5], while histamine activates histamine-sensitive fibres, generating an
orthodromic action potential in which substance P (SP) and other neurotransmitters are
released with consequent further mast cell degranulation [6].

At the hypogastric ganglion level, Atencio et al. (2020) hypothesized that SP mediates
the vicious circle between histamine and the noradrenergic sympathetic response via no-
radrenaline release [7]. Among the four histamine receptor subtypes, numerous reports
demonstrated the presence of presynaptic histamine H3 receptors in the autonomic nervous
system. These heteroreceptors negatively control the release of several neurotransmitters,
including acetylcholine, dopamine, noradrenaline, and serotonin in the GI tract [8–11].
Furthermore, histamine H3 receptors act as autoreceptors and negatively affect histamine
release itself [12–14]. Therefore, the presynaptic histamine H3 receptor could be crucial in
regulating the peripheral sympathetic reflex [7]. Consistently, Silver et al. (2001) demon-
strated that activation of histamine H3 receptors in the peripheral sympathetic terminal
inhibits the Na+/H+ exchanger (NHE) activity, thus reducing the noradrenaline release
during myocardial ischemia [15]. Targeting the presynaptic histamine H3 receptor could
represent an intriguing strategy to counteract diabetic autonomic neuropathy. However, the
activity of histamine H3 receptors appears to differ according to their central and peripheral
distribution. In pain modulation, for example, when histamine is injected directly into vari-
ous brain areas, it attenuated pain [16,17]; on the contrary, in the peripheral nervous system,
histamine is released in response to tissue injury/damage and contributes to the generation
of pain hypersensitivity [12,18]. The role of the histamine H3 receptor is controversial also
in diabetes, with both histamine H3 receptor agonism [19,20] and inverse agonism, via
pitolisant [21], demonstrating improved glucose tolerance in obese mice. Consistently,
histamine H3 receptor-deficient mice displayed a metabolic syndrome characterized by
obesity, hyperphagia, and increased leptin and insulin levels [19,22].

The CNS-sparing histamine H3 receptor antagonist, 4-(5-([1,4′-bipiperidin]-1′- yl)-
1,3,4-thiadiazol-2-yl)-2-(pyridin-2-yl)morpholine (PF00868087, also known as ZPL-868) [23],
was initially developed and tested for the treatment of allergic rhinitis [24]. Interestingly,
PF00868087 also showed promising antidiabetic effects [21]. Herein, we decided to evaluate
the effect of PF00868087 on the autonomic neuropathy of the intestinal tract associated
with diabetes in a mouse model of short-term diabetes, induced by a single high-dose
(150 mg/kg i.p.) streptozotocin (STZ) injection, previously shown to induce a robust and
early neuropathic phenotype [25].

2. Materials and Methods
2.1. Animals

Six-week-old male BALB/c mice were maintained in compliance with the European
Council directives (No. 2010/63/EU) and with the Principles of Laboratory Animal Care
(NIH No. 85-23, revised 2011). The animals were kept at constant environmental and
nutritional conditions at 25 ± 2 ◦C, with alternating 12 h light and dark cycles, and fed
a standard diet during a 5-day adaptation period. They were fed a standard pellet diet
(Piccioni, Settimo Milanese, Milan, Italy) and watered ad libitum. The scientific project
was approved by the Ethical Committee of Florence University and the Italian Ministry of
Health (Authorization N. 192/2017).

2.2. Experimental Protocol

Diabetes was induced by a single dose of STZ (150 mg/kg i.p.). Diabetes was defined
as a fasting blood glucose level ≥200 mg/dL, and the onset of diabetes was evaluated
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by measuring 6 h fasting blood glucose using a Glucocard MX Blood Glucose Meter.
After the onset of diabetes, PF0086087, CNS-sparing histamine H3 receptor antagonist, was
administered daily for 14 days by oral gavage at 10, 30, 100 mg/kg. Weight, food, and water
intake were recorded daily. At the end of the experimental period, mice were sacrificed,
and distal colon specimens were collected for morphological analysis. The distal colon was
quickly removed from the abdomen, washed with ice-cold physiological saline solution,
and fixed in 4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS) pH 7.4. After
embedding in paraffin, full-thickness cross-sections (5 µm thick) were cut and used for
morphological analysis.

2.3. Histological Staining

Haematoxylin and eosin (H/E) staining and periodic acid-Shiff (PAS) reaction were
performed in a single session to minimize artefactual staining differences, and at least
three sections per animal were analysed. H/E staining was used for evaluation of the
distal colon morphology, whilst PAS reaction was used for semi-quantitative morphometric
analysis of the mucins. Analyses were carried out acquiring at 20× and 40× objectives, of
at least 10 regions of interest (ROIs) randomly taken for each section with a microscope
equipped with a camera (Leica DFC310 F× 1.4-megapixel camera, Leica Microsystems,
Mannheim, Germany). Histological assessment of the submucosal oedema was performed,
measuring the space interposed between the mucosa and muscularis propria, as previously
described [26]. PAS-positive area and intensity were measured by the ImageJ software
(NIH, Bethesda, ML, USA), and reported as integrated density (mean grey value*positive
area/total area of ROI).

2.4. Immunohistochemistry

For immunofluorescence analysis, rehydrated sections were submerged in Tris buffer
(10 mM) with EDTA (1 mM, pH 9.0) for 20 min at 90–92 ◦C for antigen retrieval. The sections
were then washed in PBS, blocked with 1.5% bovine serum albumin (BSA, Applichem,
Darmstadt, Germany) in PBS to minimize non-specific binding and incubated overnight at
4 ◦C with primary antibodies (Table 1).

Table 1. Primary and secondary antisera used in immunohistochemistry.

Antigen Species Source Concentration

Primary Antisera
nNOS Rabbit Millipore (Bedford, MA, USA) 1:2000
PGP9.5 Mouse Santa Cruz Biotech (Santa Cruz, CA, USA) 1:500

SP Rat Santa Cruz Biotech (Santa Cruz, CA, USA) 1:500
VIP Mouse Santa Cruz Biotech (Santa Cruz, CA, USA) 1:200

Secondary Antisera
Alexa Fluor 594 Mouse Jackson ImmunoResearch (Ely, Cambridgeshire, UK) 1:175
Alexa Fluor 488 Rabbit Jackson ImmunoResearch (Ely, Cambridgeshire, UK) 1:175

nNOS = neuronal nitric oxide synthase; PGP 9.5 = protein gene product 9.5; SP = Substance P; VIP = vasoactive
intestinal peptide.

On the following day, the sections were incubated for 2 h at RT with appropriate
fluorochrome-conjugated secondary antibodies diluted in BSA 0.15% PBS. The omission
of the primary antibodies was used as the negative control. Sequential staining of the
two antibodies, protein gene product 9.5 (PGP9.5) and neuronal nitric oxide synthase
(nNOS), was performed for the double labelling reactions. Subsequently, the specimens
were rinsed with PBS and mounted with an aqueous medium (FluoroshieldTM with
DAPI, Thermo Fisher Scientific). The immunolabeled sections were observed under an
epi-fluorescence Olympus BX40 microscope coupled to analySIS∧B Imaging Software
(Olympus, Milan, Italy) using excitation filters for Alexa 594 red and Alexa 488 green with
20× and 40× objectives.
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The total number of PGP9.5- and nNOS-immunoreactive cells was evaluated within the
myenteric ganglia along the entire section by two independent observers (A.P., P.N.) blind to
each other, and the results are expressed as the ratio of nNOS and PGP9.5 positive neurons
per sections ± S.E.M (at least three sections per animal). The quantification of SP and
vasoactive intestinal peptide (VIP) positive structures (nerve fibres) was morphometrically
assessed within the myenteric ganglia on digitized images acquired with 40× objective
using the threshold tool of ImageJ software (at least 3 sections/animal). The results are
expressed as the ratio between the VIP positive area and the total area of myenteric ganglia
considered in the analysis.

2.5. Data Analysis and Statistical Tests

The data are expressed as the mean ± S.E.M. of seven animals per group. Statistical
analysis was performed using GraphPad Prism 9.0 software (GraphPad, San Diego, CA,
USA). The analysis of variance (one-way ANOVA) followed by Newman–Keuls was carried
out to compare the groups, and a p-value ≤ 0.05 was considered significant.

When the data were not representative of a normal distribution, the non-parametric
Kruskal–Wallis test was performed.

3. Results

Three days after STZ injection, all mice developed diabetic status (≥200 mg/dL),
measured by the 6 h fasting glycaemia. At the end of experimental period, a severe
hyperglycaemia was reached in STZ group (599 ± 2 mg/dL vs. 119 ± 11 mg/dL of
controls), accompanied by a significant weight loss; PF0086087 administration did not affect
hyperglycaemic status (576 ± 17 mg/dL, 537 ± 62 mg/dL, 552 ± 48 mg/dL, respectively)
(Figure 1), nor body weight gain (Figure 2).

Figure 1. Effect of PF0086087 on glycaemic status. The STZ-induced mice showed severe hypergly-
caemia. PF0086087 administration was not able to prevent hyperglycaemic status. One-way ANOVA
test, the significance of difference # p < 0.01 vs. CTRL.
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Figure 2. Effect of PF0086087 on body weight gain. Body weight was monitored daily from diabetes
development, and weight gain was calculated. The one-way ANOVA test was applied. No significant
differences were found among the STZ-induced mice of the different experimental groups.

3.1. Effects of PF0086087 on the Distal Colon Morphology

The effect of short-term STZ-induced hyperglycaemia on the anatomical structure
of the distal colon was examined using morphological techniques. The H/E staining
performed on the descending colon mucosa of the induced mice revealed folded mucosal
villi, regular inter-cryptic distances and an almost continuous lining epithelium (Figure 3).
In contrast, histological assessment of the submucosal layer revealed the presence of
oedema in STZ-induced mice compared with control (Figure 3, asterisks and Figure 4).
PF0086087 administration significantly reduced oedema in the colon submucosa in a dose-
dependent manner (Figure 4).

Figure 3. H/E staining of the mouse distal colon. The general morphology of the distal colon
was preserved in all animals of the different experimental groups (A–E), with no relevant signs of
degeneration, except for oedema in the submucosa of STZ-induced mice (asterisk). Scale bar = 200 µm.
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Figure 4. Histological assessment of submucosal oedema. The evaluation of oedema in the colon
submucosal layer was performed measuring the space interposed between the mucosa and muscularis
propria. Morphometrical analysis revealed increased oedema in STZ-induced mice compared with
control (A,B,F). PF0086087 administration at the highest doses significantly reduced the oedema
(D,E,F). One-way ANOVA test, significance of difference # p < 0.01 vs. CTRL; * p < 0.05 vs. STZ. MU,
mucosa. SM, submucosa. MP, muscularis propria. Scale bar = 50 µm.

The expression of mucins was also evaluated using the PAS reaction. Surprisingly,
the semi-quantitative analysis of PAS staining revealed increased production of mucins in
the STZ-induced animals in respect to controls (Figure 5, panels A, B and F), at least partly
explainable by a goblet cell hyperplasia in response to colon dysmotility. Once again, the
treatment with PF0086087 at the highest dose suppressed mucin overproduction (Figure 5,
panels B, E and F).

Figure 5. PAS reaction on the mouse distal colon. (A–E): representative micrographs at 20× mag-
nification of PAS-stained distal colon sections. Scale bar = 200 µm. F: densitometric analysis of
PAS reaction. Kruskal–Wallis test, significance of difference # p < 0.05 vs. CTRL; * p < 0.05 vs. STZ.
Semi-quantitative analysis revealed that STZ significantly increased PAS staining area, indicating
mucin overproduction. PF0086087 administration at the highest dose restored mucin synthesis to the
level of control (A,E,F).



Biomolecules 2022, 12, 184 7 of 13

3.2. Effects of PF0086087 on the STZ-Induced Alteration of the Myenteric Plexus Neurons

The impact of STZ-induced hyperglycaemia upon the myenteric neuronal population
in the distal colon was also evaluated. PGP 9.5, a pan-neuronal marker, was used to identify
and count the neuronal cell bodies. No significant difference was found in the total number
of PGP9.5 positive neurons among the experimental groups (Figure 6).

Figure 6. Quantification of PGP9.5 positive neurons. The pan-neuronal marker, PGP 9.5, was used to
count the neuronal bodies per section. The one-way ANOVA test was used. No significant difference
was found among the experimental groups.

However, specific differences were revealed while evaluating the neuronal sub-populations
of the myenteric plexus. The nNOS-positive neurons were counted in the myenteric ganglia,
and the nNOS/PGP9.5 percentage was calculated.

In STZ-induced mice, a significant decrease in nNOS/PGP9.5 ratio was observed,
compared to controls (Figure 7, panels A, B and F). The administration of PF0086087
at 100 mg/kg prevented the STZ-induced effect upon the nNOS neuron subpopulation
(Figure 7 panels B, E and F).

Figure 7. PGP9.5 and nNOS double labelling in the myenteric ganglia of mice. (A–E): Micrographs
are representative, at 40× magnification, of PGP9.5 positive neurons (in red) and nNOS positive
neurons (in green). DAPI labelling stained nuclei (blue). All the nNOS positive neurons are also
PGP9.5 positive. Scale bar = 50 µm. (F): quantification of nNOS neurons. The nNOS neurons are
expressed as a percentage of the PGP9.5 neuron number (nNOS/PGP9.5 ratio). One-way ANOVA
test, significance of difference # p < 0.05 vs. CTRL; * p < 0.05 vs. STZ. STZ induced a significant
decrease in nNOS/PGP9.5 ratio compared to controls. PF0086087 administration at 100 mg/kg was
able to preserve NOS neuronal expression.
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As SP is one of the most frequent initiators of neurogenic inflammation [27], its
expression and density (fluorescence intensity) were measured in the myenteric ganglia
of different experimental groups. A significant increase in the signal of SP nerve fibres
was revealed in STZ-induced mice compared with controls (Figure 8, panels A, B and F);
the histamine H3 receptor antagonist at 30 and 100 mg/kg was able to counteract this
alteration, restoring SP signal to the level of controls (Figure 8, panels B, D, E and F).

Figure 8. SP labelling in the myenteric ganglia of mice. (A–E): Micrographs are representative,
at 40×magnification, of SP positive expression (in red). DAPI labelling stained nuclei (blue).
Scale bar = 50 µm. (F): densitometric analysis of SP positive area per ganglion. Kruskal–Wallis test,
significance of difference # p < 0.01 vs. CTRL; * p < 0.01 vs. STZ. A significant increase in SP nerve
fibres was revealed in STZ-induced mice. PF0086087 administration at 30 and 100 mg/kg restored SP
signal to the level of controls.

No significant changes were observed in either the density or fluorescence intensity of
VIP nerve fibres among the myenteric plexus of different animal groups (Figure 9).

Figure 9. VIP labelling in the myenteric ganglia of mice. (A–E): Micrographs are representative, at
40× magnification, of VIP positive expression (in red). DAPI labelling stained nuclei (blue). VIP
labelling was detected as small granules located within the myenteric plexus. Scale bar = 50 µm.
(F): densitometric analysis of VIP positive area per ganglion. Kruskal–Wallis test was applied. No
changes were revealed in VIP positive nerve fibres among the myenteric ganglia of different groups.
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4. Discussion

The data we report herein indicate that the histaminergic system, and more specifically
the antagonism of the peripheral histamine H3 receptor, may play a role in preventing
diabetes-induced gastrointestinal complications.

Along with the other complications, diabetic neuropathy causes alterations in the
sympathetic and parasympathetic nervous systems, leading to GI symptoms. GI func-
tions are regulated by a specific and independent system, known as the enteric nervous
system (ENS), embedded in the gastrointestinal tract wall [28]. The ENS consists of a
complex network of neurons and enteric glial cells (EGCs), which bi-directionally com-
municate with enteroendocrine cells, other epithelial cells, blood vessels, and immune
effector cells [29], mast cells included. In particular, mast cells, the primary endogenous
source of histamine, exert excitatory effects on human submucous neurons, creating a
functional axis with the ENS in the human intestine [30]. Enterochromaffin-like (ECL)
endocrine cells, mast cells and neurons express the histamine H3 receptor. Although Sander
L.E. et al. (2006), by immunostaining, revealed that histamine H3 receptor is absent in
the healthy human ENS [31], the functional/pharmacological evaluation by Breunig E.
et al. (2007) demonstrated that the histamine H3 receptor mediates excitatory effect in
human submucous plexus [32]. Our results further support these findings, as follows:
PF0086087, a CNS-sparing histamine H3 receptor antagonist, with low penetration to the
blood–brain barrier ([Brain](free)/[plasma](free) ratio = 0.1 vs. 1.6 for PF008608 or the fully
brain-penetrant reference antagonist, respectively, both administered to rats after 6 h iv
infusion [24]), acting on the myenteric plexus of the distal colon, preserved the functional
state of its glandular epithelium, as well as the excitatory (SP) and inhibitory (nNOS)
components of the myenteric plexus, negatively affected by STZ exposure. Due to its
pharmacodynamics, the effects observed for PF008608 can be ascribed to the only histamine
H3 receptor binding. Indeed, in the study by Lunn G. et al. (2012), PF008608 showed a
human histamine H3 receptor binding affinity and functional Ki < 10 nM (ranging from
0.832 nM for the cell-based functional response up to 9.6 nM for the binding assay in the
presence of the 3H-N-alpha-methyl histamine agonist). Nevertheless, the Kis of PF-0868087
for the histamine H1, H2, and H4 receptors were >4 µM. The authors also confirmed no
significant other pharmacological targets—the Ki measured for the sigma receptor and the
hERG ion channel were 3.9 µM and >40 µM, respectively.

The STZ model is reminiscent of type 1 diabetes mellitus, inducing hyperglycaemia
by damaging pancreatic ß-cells [33]. Moreover, this model has been previously reported
to raise the level of histamine in different tissues [34,35], intestine included [36]. Due to
the hyperglycaemic status, the extrinsic sympathetic supply is more sensitive to the ENS,
via the coeliac and superior mesenteric ganglia than the superior cervical ganglion [37].
This condition causes marked structural remodelling of the gastrointestinal tract wall and
its neuronal support leading to alteration of GI function [29]. In our study, the general
morphology of the distal colon was preserved in STZ-induced mice, with no relevant signs
of degeneration, except for the presence of oedema in the submucosa, prevented by the
highest doses of the treatment. Nonetheless, increased production of mucins, revealed
with the PAS reaction, in the STZ-induced animals compared to controls. This biochemical
change was previously in STZ-induced diabetic rats [38], and by Domenec A et al. (2011),
who reported that the crypts of diabetic RIP-I⁄hIFNb transgenic mice tend to contain more
mucus in the lumina [39]. The observed over-production of mucin may be due, in part, to
goblet cell hyperplasia in response to colon dysmotility to accelerate the replenishment of
the mucus layer. In light of these considerations, it appears reasonable that the protective
effect provided by PF0086087 on the neurochemical changes of the enteric neurons could
counteract colon dysmotility, preventing goblet cell hyperplasia.

Many studies indicated that the different neuronal subpopulations of the GI tract are
differentially susceptible to the development of neuropathy following hyperglycaemia.
Therefore, to study the STZ-induced neuronal alteration at the myenteric plexus, we in-
vestigated the expression of SP (released by excitatory neurons), NO and VIP (released by
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inhibitory neurons). Pathological changes in these pathways led to detrimental effects on
motor control with delayed emptying, impaired accommodation, and gastric dysrhyth-
mia [40]. Being involved in both neurotransmission and immunomodulation, SP and VIP
are known to initiate neurogenic transmission [27]. We could not observe any variations
in the density or fluorescence intensity of VIP nerve fibres among the different animal
groups, while increased SP immunoreactivity was observed in the myenteric ganglia of
STZ-treated mice.

The undecapeptide SP, belonging to the family of the tachykinin/neurokinin, is a small
neuropeptide acting as a neurotransmitter and neuromodulator. SP is widely expressed
in different tracts of ENS, including the oesophagus, stomach, duodenum and colon [41],
across all intestinal layers of the submucosa and myenteric plexus [42]. Although primarily
linked to the modulation of proper sensory and nociceptive perception, SP further modu-
lates the intestine’s immunological, vascular, and motor phenomena and exerts functions
as a pro-inflammatory molecule [43,44]. Dysregulation in SP expression at the GI level has
been described in diabetic conditions, as follows: SP content in the rectal mucosa of diabetic
patients was significantly higher than that of non-diabetic controls, and neuropeptide levels
were more than double in diabetics with constipation [45]. Similarly, SP immunoreactivity
was observed in the GI tract of different diabetic animal models [46] and mice exposed
to a high-fat diet [47]. In our hands, we observed increased SP immunoreactivity in the
myenteric ganglia of STZ-treated mice, a state dose-dependently ameliorated by the his-
tamine H3 receptor antagonist, PF0086087. The use of H3 receptors antagonists have been
described to effectively reduce allodynia and hyperalgesia in neuropathic and inflammatory
pain [6,48–50], and evidence suggests that SP released from peripheral sensory neurons is
involved in both inflammatory and neuropathic pain [51]. Accordingly, in our model, the
histamine H3 receptor antagonist, PF0086087, designed not to cross the blood–brain barrier,
acting on the myenteric plexus of the distal colon, could reduce SP immunoreactivity.

The increased tachykininergic tone in the enteric glia appears to be involved in the
onset of enteric motor alterations [47]. NO generated by enteric neurons is known to
regulate the non-adrenergic non-cholinergic relaxation of smooth muscle, thus modulating
colonic motility [52]. The selective loss of nNOS in humans’ diabetic colon [53] has been
reported. However, according to Cellek’s biphasic model, the nitrergic neurons of the GI
tract undergo a two-step degenerative process during diabetes, as follows: in the first phase,
nNOS expression decreases without neuronal loss, while, in the second phase, the nitrergic
neurons activate apoptotic processes [54]. In our study, two weeks after diabetes induction
by STZ, we observed a reduction in the expression of the nNOS positive neurons, while
the pan-neuronal marker PGP9.5 remained unchanged. The observed prominent nitrergic
dysfunction without neuronal loss in the myenteric plexus of the distal colon is reminiscent
of the first phase of Cellek’s biphasic model, before the so defined “point of no return” [54].
The preventive administration of PF0086087, dose-dependently, counteracted the effects of
STZ on nNOS expression, at least removing the “point of no return” and, consequently, the
occurrence of the neuronal loss in the myenteric plexus.

5. Conclusions

In conclusion, our data indicate that the histaminergic system plays a vital role in the
onset of hyperglycaemia health complications and that the use of the CNS-sparing his-
tamine H3 receptor may be an essential tool in the prevention of nitrergic dysfunction in the
myenteric plexus of the distal colon and, therefore, in diabetes-induced GI complications.
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