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Abstract: (1) Objective: We aimed to mine cuproptosis-related LncRNAs with prognostic value and
construct a corresponding prognostic model using machine learning. External validation of the model
was performed in the ICGC database and in multiple renal cancer cell lines via qPCR. (2) Methods:
TCGA and ICGC cohorts related to renal clear cell carcinoma were included. GO and KEGG analyses
were conducted to determine the biological significance of differentially expressed cuproptosis-related
LncRNAs (CRLRs). Machine learning (LASSO), Kaplan–Meier, and Cox analyses were conducted to
determine the prognostic genes. The tumor microenvironment and tumor mutation load were further
studied. TIDE and IC50 were used to evaluate the response to immunotherapy, a risk model of LncR-
NAs related to the cuproptosis genes was established, and the ability of this model was verified in an
external independent ICGC cohort. LncRNAs were identified in normal HK-2 cells and verified in four
renal cell lines via qPCR. (3) Results: We obtained 280 CRLRs and identified 66 LncRNAs included in
the TCGA-KIRC cohort. Then, three hub LncRNAs (AC026401.3, FOXD2−AS1, and LASTR), which
were over-expressed in the four ccRCC cell lines compared with the human renal cortex proximal
tubule epithelial cell line HK-2, were identified. In the ICGC database, the expression of FOXD2-
AS1 and LASTR was consistent with the qPCR and TCGA-KIRC. The results also indicated that
patients with low-risk ccRCC—stratified by tumor-node metastasis stage, sex, and tumor grade—had
significantly better overall survival than those with high-risk ccRCC. The predictive algorithm
showed that, according to the three CRLR models, the low-risk group was more sensitive to nine
target drugs (A.443654, A.770041, ABT.888, AG.014699, AMG.706, ATRA, AP.24534, axitinib, and
AZ628), based on the estimated half-maximal inhibitory concentrations. In contrast, the high-risk
group was more sensitive to ABT.263 and AKT inhibitors VIII and AS601245. Using the CRLR
models, the correlation between the tumor immune microenvironment and cancer immunotherapy
response revealed that high-risk patients are more likely to respond to immunotherapy than low-risk
patients. In terms of immune marker levels, there were significant differences between the high-
and low-risk groups. A high TMB score in the high-risk CRLR group was associated with worse
survival, which could be a prognostic factor for KIRC. (4) Conclusions: This study elucidates the
core cuproptosis-related LncRNAs, FOXD2−AS1, AC026401.3, and LASTR, in terms of potential
predictive value, immunotherapeutic strategy, and outcome of ccRCC.

Keywords: ccRCC; lncRNA; cuproptosis; immunotherapy; TMB score

1. Introduction

Renal cell carcinoma (RCC) is a malignant tumor originating from the renal tubular
epithelium, accounting for 80–90% of malignant renal tumors. Annually, approximately
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430,000 new RCC cases are diagnosed and 180,000 deaths occur worldwide [1]. Clear cell re-
nal cell carcinoma (ccRCC) is the most common type of RCC, accounting for approximately
60% of all cases and 75–80% of metastatic cases [2]. Despite advances in surgery, radiother-
apy, and chemotherapy, which have significantly improved over the past decades, there has
been no significant change in the five-year survival rate for ccRCC, and it remains a highly
aggressive cancer with recurrence. Advanced renal cancer, in particular, is not sensitive to
chemotherapy drugs; thus, relevant medical treatment mainly includes immunotherapy
and targeted therapy. Compared with targeted therapy, immunotherapy has a slow onset
and low effective rate, but its effects are long-lasting. Therefore, the best treatment model
for advanced renal cancer may be immunotherapy combined with targeted therapy, which
can rapidly reduce tumor load while allowing patients to survive for a long time.

Cell death induction, including apoptosis, necroptosis, pyroptosis, ferroptosis, and
autophagy, is always the core mechanism of antitumor drugs. Scientists have recently
discovered a new type of cell death—namely, cuproptosis [3]. This occurs through the
direct binding of copper ions to lipoacylated components of the tricarboxylic acid cycle
in mitochondrial respiration, resulting in the aggregation of lipoacylated proteins and
subsequent down-regulation of iron–sulfur cluster proteins, as well as protein-toxic stress,
and ultimately, cell death. Thus, cuproptosis may serve as a possible combination treatment
for cancer [4].

A long non-coding RNA (lncRNA) has a length greater than 200 nucleotides but is
unable to code for proteins. Abnormal lncRNA expression plays an important role in
ccRCC occurrence, development, metastasis, and prognosis [5,6]. This provides a new
direction for the study of the molecular mechanisms, diagnosis, and treatment of RCC [7].
When a new lncRNA meets the new method of cell death—that is, cuproptosis—and the
associated new immunotherapy, it is reasonable to speculate that the new combination will
inevitably lead to the emergence of new treatment and prevention strategies for ccRCC.

Machine learning (ML), a branch of artificial intelligence, is widely defined as a group
of computer-aided strategies. ML automatically determines the methods and parameters
needed to obtain the best solution to a given research problem [8]. ML classifiers cur-
rently provide new research methods for interdisciplinary big data research [9,10]. For
example, ML methods have been used to try to improve the accuracy of clinical research
predictions [11,12].

In this study, we mined the ccRCC database in TCGA to analyze the correlation be-
tween cuproptosis-related genes, LncRNAs, and the tumor microenvironment using ma-
chine learning and bioinformatic analyses. Subsequently, 12 potential target drugs—inhibitors
of Akt, BCL2, PARP, VEGFR, TKI, JNK, and Raf—were selected as being correlated with the
cuproptosis-related LncRNAs (CRLRs) and immune microenvironment. In this way, we
reveal the potential prognostic value, immunotherapeutic strategy, and ccRCC outcomes.

2. Materials and Methods
2.1. ccRCC Data Collection

ccRCC patient data (72 normal patients and 539 ccRCC patients) were downloaded
from the TCGA database. We collected clinical information on patients with ccRCC,
including age, sex, stage, tumor-node-metastasis stage, grade, survival status, and follow-
up time. The ICGC (International Cancer Genome Consortium) database includes 45 normal
tissues adjacent to primary tumors and 91 primary tumor solid tissues.

2.2. Identification of CRLRs

Cuproptosis-related genes (CRGs) were selected according to previously published
methods [3]. Our study identified ten CRGs—namely, FDX1, LIAS, DLD, LIPT1, DLAT,
PDHA1, PDHB, MTF1, GLS, and CDKN2A. Based on the CRGs and lncRNA expression
profiles, Spearman correlation coefficients were calculated to identify the CRLRs (|R| > 0.5;
p < 0.05). Utilizing R and the packages “cluster profile”, “ggplot2”, and “enrichplot”,
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we analyzed the biological significance of differentially expressed CRLRs using GO and
KEGG data.

2.3. Construction of the CRLR Prognostic Model by a Machine Learning Algorithm

LASSO is a machine learning algorithm based on regression. In this method, a regular-
ization function is introduced to punish over-fitting on the basis of logistic regression, and
the regression coefficient is compressed such that unnecessary or insignificant covariates
can be automatically removed and refined model variables can be obtained [10,13,14].

Using the R package glmnet, the LASSO Cox regression technique demonstrated that
CRLRs were distinctly associated with the overall survival (OS) of patients with ccRCC.
Combining univariate and multivariate Cox regression analyses, CRLRs were associated
with significant increases. The equation of risk score = (β1 × CRLR-1) + (β2 × CRLR-2)
+ . . . + (βn × CRLRs-n). By combining the CRLR prognostic signature with independent
TCGA-KIRC factors, we developed a hybrid nomogram. Patients with ccRCC were divided
into risk groups according to their CRLR expression levels. Based on the clinical variables
and the CRLRs in the hybrid nomogram, ROC analyses were conducted to estimate the
accuracy of the 1-, 3-, and 5-year OS.

2.4. Kaplan–Meier (K–M) Survival Analysis and Principal Component Analysis (PCA)

We examined patients with ccRCC based on CRLR signatures using K–M survival curves
and PCA. In our analysis of the TIDE model for immunotherapy, we used half-maximal in-
hibitory concentrations (IC50) from the GDSC web pages to estimate the therapeutic response
where the TIDE model could predict whether immunotherapy would succeed.

2.5. Cell Culture

Human renal cortex proximal tubule epithelial cells (HK-2) and RCC cell lines (786-O,
SN12C, UO31, and Caki-1) were purchased from the Chinese Academy of Sciences and
cultured in 1640 medium (Gibco, New York, NY, USA) with 10% fetal bovine serum (FBS;
Ausgenes, Australia) at 37 ◦C and 95% humidity in a 5% CO2 cell incubator.

2.6. qPCR and RNA Isolation

Total RNA was isolated using RNAiso Plus Reagent (9108, Shanghai, China), according
to the manufacturer’s instructions. Total RNA was used for cDNA synthesis using the
PrimeScript RT Reagent Kit (RR037A, Shanghai, China). Gene expression was quantified
using TB Green Premix Ex TaqII (RR820A, Shanghai, China). Sangon Biotech Co., Ltd.
(Shanghai, China) synthesized all primers for qPCR (see Table 1). The PCR procedure was
as follows: 40 cycles of 98 ◦C for 30 s, 98 ◦C for 5 s, and 60 ◦C for 5 s. β-Actin served as
the internal reference for normalization. The expression levels were calculated using the
2−∆∆Ct method.

Table 1. Primers for qPCR.

Gene Forward Primer Reverse Primer

LASTR 3′-GCAAGAGAGAAGACAGTGGGTGAAG-5′ 3′-CCAGTGAAGGGCTGAAGGGTTTAG-5′

FOXD2−AS1 3′-TGGGTTGAGGGTCTGTGACTGTAG-5′ 3′-GCTGCCGCTGGAGTATTCTTGG-5′

AC026401.3 3′-AGTGGGAAATCTGACCTCTTTTGGC-5′ 3′-TCCTGTTCTTAGTGGCTGCATTACC-5′

β-Actin 3′-CGGGAAATCGTGCGTGAC-5′ 3′-CAGGAAGGAAGGCTGGAAG-5′

2.7. Statistical Analysis

We used the R statistical package (version 4.0.2) for our analyses. A Wilcoxon test was
conducted to compare the proportion of tumor-infiltrating immune cells. Chi-square tests
were used to analyze the differences in the proportions of clinical characteristics. PCR data
were analyzed with an independent sample t-test using the GraphPad Prism 8.0 software.
Statistical significance was defined as p < 0.05.
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3. Results
3.1. Identification of the Prognostic CRLR Signature in ccRCC

According to TCGA and previously published literature, 280 CRLR genes were identi-
fied (252 up-regulated and 28 down-regulated). Together with a multivariate Cox analysis,
a univariate Cox analysis revealed 66 significant increases in CRLRs (Figure 1). The
expression of three LncRNAs (AC026401.3, FOXD2-AS1, and LASTR) was found to be
independent of prognosis in ccRCC by LASSO (Figure 2A,B). Figure 2C shows the network
diagram for CRGs and CRLRs. Figure 2D shows the correlation heatmap of CRLRs and
CRGs. Molecular correlation of the three CRLRs in TCGA-KIRC showed a significantly
positive correlation (Figure 3A–C), whereas the KM prognostic curve (Figure 3D–F), overall
survival event (Figure 3G), progression-free interval (Figure 3H), disease-specific survival
(Figure 3I), and TMN stage (Figure 3J–L) presented significant differences. The multivariate
Cox analyses revealed that CRLRs (hazard ratio (HR): 1.039, 95% confidence interval (CI):
1.023–1.056), age (HR: 1.036, CI: 1.021–1.052), grade (HR: 1.496, CI: 1.182–1.892), and stage
(HR: 1.671, CI: 1.434–1.949) were prognostic factors for OS (Figure 4A). The univariate Cox
analyses revealed that CRLRs (HR: 1.050, CI: 1.034–1.065), age (HR: 1.032, CI: 1.018–1.046),
grade (HR: 2.32, CI: 1.879–2.864), and stage (HR: 1.905, CI: 1.666–2.178) were independent
prognostic factors for OS (Figure 4B). Figure 4C shows the associations between CRLRs and
CRGs. Based on the Oncomine database, we found that the expression of real hub genes
was significantly elevated in renal carcinoma compared with normal tissues. Moreover,
immunohistochemistry staining obtained from The Human Protein Atlas database also
demonstrated the de-regulation of real hub gene expression (Figure 4D–I).
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Figure 2. Identification of CRLRs. (A) The LASSO tuning parameters. (B) The CRLR LASSO
coefficient profile. (C) Diagram of the coexpression network for cuproptosis genes and cuproptosis-
related LncRNAs. (D) The heatmap for 10 cuproptosis genes with 3 cuproptosis-related LncRNAs.
(** p < 0.01, *** p < 0.001).

Biomolecules 2022, 12, 1890 6 of 21 
 

 

Figure 3. The clinical correlations analysis of the three CRLRs. (A) The molecular correlation of 

LASTR and FOXD2-AS1 in TCGA-KIRC. (B) The molecular correlation of LASTR and AC026401.3 

in TCGA-KIRC. (C) The molecular correlation of FOXD2-AS1 and AC026401.3 in TCGA-KIRC. (D) 

K‒M curves of AC026401.3 between the different expression level groups in TCGA-KIRC. (E) K‒M 

curves of FOXD2-AS1 between the different expression level groups in TCGA-KIRC. (F) K‒M 

curves of LASTR between the different expression level groups in TCGA-KIRC. (G) Expression 

level of three CRLRs in OS event. (H) Expression level of three CRLRs in DSS event. (I) Expression 

level of three CRLRs in PFI event. (J) Expression level of three CRLRs in T stage. (K) Expression 

level of three CRLRs in M stage. (L) Expression level of three CRLRs in N stage. (* p < 0.05, ** p < 

0.01, *** p < 0.001). 

Figure 3. The clinical correlations analysis of the three CRLRs. (A) The molecular correlation of
LASTR and FOXD2-AS1 in TCGA-KIRC. (B) The molecular correlation of LASTR and AC026401.3 in
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TCGA-KIRC. (C) The molecular correlation of FOXD2-AS1 and AC026401.3 in TCGA-KIRC. (D) K–M
curves of AC026401.3 between the different expression level groups in TCGA-KIRC. (E) K–M curves
of FOXD2-AS1 between the different expression level groups in TCGA-KIRC. (F) K–M curves of
LASTR between the different expression level groups in TCGA-KIRC. (G) Expression level of three
CRLRs in OS event. (H) Expression level of three CRLRs in DSS event. (I) Expression level of three
CRLRs in PFI event. (J) Expression level of three CRLRs in T stage. (K) Expression level of three
CRLRs in M stage. (L) Expression level of three CRLRs in N stage. (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 4. Independent prognostic analysis and validation of the effect of expression of real hub
genes on transcriptional and translational level using TCGA database and The Human Protein Atlas
database. (A) Univariate Cox with clinical variables and CRLRs. (B) Multivariate Cox with clinical
variables and CRLRs. (C) Correlations between CRLRs and CRGs (p < 0.05). (D) Comparison of DLD
in TCGA-KIRC tumor and normal kidney tissue. (E) Comparison of DLAT in TCGA-KIRC tumor
and normal kidney tissue. (F) Comparison of CDKNA2 in TCGA-KIRC tumor and normal kidney
tissue. (*** p < 0.001).

3.2. Construction of the Hybrid Nomogram and GO Analysis

A GO enrichment analysis revealed the involvement of many immune-related bi-
ological processes (Figure 5A). The novel CRLRs were involved in the production of
immune-response molecular mediators, the defense response to bacteria, the humoral
immune response, the immunoglobulin complex, the external side of plasma membrane
antigen binding, and receptor–ligand activity. In Figure 5B, we present the correlations
between CRLR features and clinical variables. Figure 6A illustrates the distribution of
risk grades between the low- and high-risk groups. The survival statistics and survival
times of the patients in the two risk groups are shown in Figure 6B. For each patient,
Figure 6C shows the relative expression standards for the three CRLRs. Figure 6D shows
that the low-risk group’s OS was greater than that of the high-risk group (p < 0.001). Using
a uniform formula for every patient in the test set and for the entire data set, we calcu-
lated the risk scores for this established model in order to test its prognostic capabilities.
Figure 7A–D illustrate the risk grades, survival times, survival status, and CRLR expression
within the testing set and the entire KIRC sample (Figure 7E–H). Three CRLRs’ prognostic
signatures and independent factors were combined to construct a hybrid nomogram for
ccRCC (Figure 8A). The area under the curve (AUC) of OS was predictive for 1 year (0.741),
3 years (0.68), and 5 years (0.70) (see Figure 8B). Figure 8C shows the calibration plot of the
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nomogram. Additionally, the CRLR signature outperformed traditional clinical variables
in predicting ccRCC patients (Figure 8D). As depicted in Figure 8E, the concordance index
showed that the risk model performed better than the other clinical factors.
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Figure 5. Enrichment analysis for CRLRs obtained from GO and correlation analysis. (A) GO
enrichment analysis. (B) Heatmap of clinicopathological and biological characteristics of two different
risk group subtypes of samples divided by the CRLR model. Differences in clinicopathologic features
and expression levels of CRLRs between the two different risk groups. Red represents the high-risk
group and blue represents the low-risk group. High lncRNA expression levels are shown in red and
low lncRNA expression levels are shown in green. The three CRLRs showed a high expression trend
in the high-risk group. CRLRs, cuproptosis-related lncRNAs. (** p < 0.01, *** p < 0.001).
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Figure 6. Development of a CRLR risk model in ccRCC. (A) The distribution of the risk grades
between the low- and high-risk groups. (B) The survival statistics and survival times of the patients
in the two risk groups. (C) The relative expression standards for the three CRLRs. (D) K–M survival
curves of ccRCC in the low-risk group and the high-risk group (p < 0.001).

3.3. Survival Analysis and Principal Component Analysis

Figure 9 provides diagrams showing the gene expression profiles of 2 types of ccRCC
patients (Figure 9A), 10 cuproptosis genes (Figure 9B), 280 CRLR genes (Figure 9C), and
3 lncRNA risk models (Figure 9D). The three CRLR models can be seen to be excellent tools
for distinguishing high- from low-risk patients with ccRCC. As shown in Figure 10A–N, by
stratifying patients by tumor-node metastasis stage, sex, age, and grade, the K–M curve indicated
that low-risk patients had a significantly better OS than high-risk patients (p < 0.001).

3.4. TIDE Algorithm and IC50 for Assessing Therapeutic Response

A prophetic algorithm was used to assess potential drug targeting for ccRCC using the
three CRLR models. Low-risk participants were more sensitive to the 12 compounds, with
significant differences based on the estimated IC50 values. The 12 different compounds in
Figure 11A–L can thus be used to further analyze patients with ccRCC. The low-risk group
was more sensitive to nine target drugs (A.770041, AG.014699, AMG.706, ATRA, AP.24534,
axitinib, AZ628, ABT.888, and A.443654), based on the estimated IC50, and the high-risk
group was more sensitive to ABT.263 and AKT inhibitors VIII and AS601245.
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Figure 7. Validation of a CRLR risk model using the testing data set and the entire TCGA-KIRC data
set. (A) Risk score distribution in the testing set. The red dots represent the high-risk group and the
blue dots represent the low-risk group. (B) OS status for the testing set. The red dots represent dead
patients and the blue dots represent living patients. (C) Heatmap for the testing set. (D) Kaplan–Meier
curve for OS for the testing set. (E) Risk score distribution for the entire data set. (F) OS status for
the entire TCGA-KIRC data set. (G) Heatmap for the entire TCGA-KIRC data set. (H) Kaplan–Meier
curve for OS for the entire TCGA-KIRC data set. The red and blue lines represent high and low
expressions, respectively. All p values are shown in Figure 7.
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Figure 8. Nomogram, AUC, and DCA analysis. (A) Based on the selected CRLR prognostic signature
and independent factors in ccRCC (* p < 0.05, *** p < 0.001). (B) The OS of AUC predictive for 1 year,
3 years, and 5 years. (C) Calibration plot of the CRLR nomogram. (D) The AUC of CRLRs and
traditional clinical variables. (E) DCA plot of the CRLRs and traditional clinical variables.
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Figure 9. PCA analysis. (A) PCA of all genes. (B) PCA of 10 cuproptosis genes. (C) PCA of 280 CRLR
genes. (D) PCA of three CRLRs.

In TCGA-KIRC, we estimated the immunotherapy response based on the CRLR model.
High-risk patients responded better to immunotherapy than low-risk patients, indicating
that the cuproptosis-based classifier index may be useful in predicting tumor immune
dysfunction and exclusion (Figure 12A). As shown in Figure 12B, the high- and low-
risk groups expressed immune indicators differently. Maftools was used to analyze and
summarize the mutation data; mutations were categorized according to the variant effect
predictor. Figure 12C,D show the top 20 driver genes that were altered most frequently
between the high- and low-risk sub-groups, and TMB scores were calculated based on
the TGCA somatic mutation data. There was no difference between the high- and low-
risk groups, indicating that the CRLR classifier index did not correlate well with TMB
(Figure 12E). High TMB in KIRC was associated with a lower survival rate in high-risk
patients (Figure 12F). Therefore, the results show that the CRLR model may be more
predictive than the TMB status.

3.5. Validation of CRLRs by qPCR and ICGC Database

We evaluated the expression levels of the three core CRLRs using qPCR. The results
showed that, compared with that in the proximal tubular cell line HK-2, the AC026401.3
level was significantly higher in the ccRCC cell lines (p < 0.01) UO31 and Caki-1. However,
there was no significant change in the 786-O and SN12C cells (p > 0.05). The FOXD2-AS1
level was significantly higher in the UO31 and Caki-1-cell lines (p < 0.01), but again, there
was no significant change in the 786-O and SN12C cells (p > 0.05). In particular, the LASTR
level was very high in all four ccRCC cell lines (p < 0.01), ranging from 3.6 to 24.5 times
that in the control cells. We further evaluated the expression levels of the CRLRs using the
ICGC (RECA-EU) cohort. The expression of FOXD2-AS1 and LASTR was consistent with
the PCR and TCGA-KIRC results (Figure 13).
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3.4. TIDE Algorithm and IC50 for Assessing Therapeutic Response 

A prophetic algorithm was used to assess potential drug targeting for ccRCC using 

the three CRLR models. Low-risk participants were more sensitive to the 12 compounds, 

with significant differences based on the estimated IC50 values. The 12 different com-

pounds in Figure 11A–L can thus be used to further analyze patients with ccRCC. The 

low-risk group was more sensitive to nine target drugs (A.770041, AG.014699, AMG.706, 

Figure 10. K–M curves of different clinical variables between the high-risk and low-risk groups of
ccRCC patients in TCGA. (A) K–M curves for age ≥ 65 for the different risk groups of ccRCC patients.
(B) K–M curves for age < 65 years for the different risk groups of ccRCC patients. (C) K–M curves
for female for the different risk groups of ccRCC patients. (D) K–M curves for male for the different
risk groups of ccRCC patients. (E) K–M curves for stages G1–2 for the different risk groups of ccRCC
patients. (F) K–M curves for stages G3–4 for the different risk groups of ccRCC patients. (G) K–M
curves for stage M0 for the different risk groups of ccRCC patients. (H) K–M curves for stage M1
for the different risk groups of ccRCC patients. (I) K–M curves for stage N0 for the different risk
groups of ccRCC patients. (J) K–M curves for stage N1 for the different risk groups of ccRCC patients.
(K) K–M curves for stages I–II for the different risk groups of ccRCC patients. (L) K–M curves for
stages III–IV for the different risk groups of ccRCC patients. (M) K–M curves for stages T1–2 for the
different risk groups of ccRCC patients. (N) K–M curves for stages T3–4 for the different risk groups
of ccRCC patients.
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Figure 11. IC50 and therapeutic response analysis. The low-risk group is shown in blue on the
abscissa, and the high-risk group is shown in red. The IC50 value of drug target sensitivity is shown
on the ordinate. (A) A.443654. (B) A.770041. (C) ABT.263. (D) ABT.888. (E) AG.014699. (F) AKT
inhibitor VIII. (G) AMG.706. (H) AP.24534. (I) AS601245. (J) ATRA. (K) Axitinib. (L) AZ628. The
detailed p values are shown in Figure 11.
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Figure 12. TIDE, Immunotherapy, Mutations, TMB, and Kaplan–Meier survival analysis. (A) TIDE
analysis for the high- and low-risk groups (*** p < 0.001). (B) Immune indicators for the high- and
low-risk groups. (C) Top 20 driver genes for the high-risk group. (D) Top 20 driver genes for the
low-risk group. (E) TMB analysis for the two risk groups. (F) Kaplan–Meier survival with TMB status
and risk level.
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Figure 13. Validation of CRLRs in renal cancer. (A) Expression of CRLRs in TCGA-KIRC. (B) qPCR
validation of CRLR expression levels in normal and renal cancer cells and expression levels of three
CRLRs in HK-2, UO31, 786-O, SN12C, and Caki-1 cells (** p < 0.01, *** p < 0.001). (C) Expression of
CRLRs in the ICGC (RECA-EU) cohort.

4. Discussion

With the rapid popularization of artificial intelligence (AI) technology, it has shown
strong application prospects in medicine. As such, artificial intelligence is gradually leading
a revolution in the medical field. For example, in recent years, artificial intelligence has
also garnered considerable interest in the field of tumor data processing [15,16]. The latest
developments in biological sequencing technologies provide opportunities for a large
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amount of data mining in cancer research. However, due to the large amount of clinical
data, it is difficult to carry out tumor research using traditional statistical analysis methods.
How to use these clinical data to better carry out tumor research is a current focus of
scientific research. Artificial intelligence technology based on machine learning technology
allows for the extraction of data features from massive quantities of data and more accurate
construction of risk stratification models for tumor patients, thereby assisting physicians
in clinical decision making. Therefore, with the help of machine learning technology, the
collection and mining of the available tumor data to find internal connections and rules has
brought unprecedented opportunities to tumor research and diagnosis [9–12,17,18].

Machine learning is an interdisciplinary subject, especially in the statistical analysis
of clinical medicine, which has become a research hotspot. Researchers think LASSO is
a branch of regression analysis in machine learning. Of course, the application of the
LASSO algorithm would be more appropriately described as a feature screening algorithm
in machine learning. After screening variables, we retained the three most meaningful
LncRNAs to build a prediction model. The expression of the three lncRNAs related to
cuproptosis was verified in the TCGA, ICGC, and several tumor cell lines, consistent
with the model prediction. We confirmed the expression of the three LncRNA indicators
in tumor cells in the model, which was compatible with the expression in the database.
According to the ROC curves for ccRCC in the TCGA database for 1 year, 3 years, and
5 years, the model’s prediction accuracy was 0.74, 0.68, and 0.70, respectively. In addition,
compared with the traditional tumor risk assessment indicators, such as the ROC curve for
TNM stage and age prediction, the risk model in this study had the best predictive ability
(AUC = 0.741).

FOXD2-AS1 is a cancer-related gene [19] which is aberrantly expressed in various
cancers and has been linked to cancer progression [20], targeting P53 [21], Akt/E2F1 [22],
miR-25-3p/Sema4C [23], the microRNA-98-5p/CPEB4 axis [24], and PI3K/Akt [25]. More-
over, FOXD2-AS1 over-expression has been shown to lead to antitumor drug resistance in
various cancers, including esophageal squamous-cell carcinoma [26] and hepatocellular car-
cinoma [27]. Thus, FOXD2-AS1 is an oncogene involved in a wide range of biological effects
in cancer. We found that FOXD2-AS1 was present at high levels in ccRCC cells, indicating
that FOXD2-AS1 is a potential target of cuproptosis in ccRCC, and that its mechanism is
associated with signal alteration in the tumor microenvironment. Furthermore, FOXD2-AS1
reinforces the progression of rheumatoid arthritis by regulating the miR-331-3p/PIAS3
pathway [28]. In oral squamous-cell carcinoma, FOXD2-AS1 is negatively associated with
B cells, DCs, iDCs, and mast cells [29].

LASTR is an lncRNA associated with the regulation of splicing by SART3. It plays
an essential role in regulating plant metabolisms. However, research has demonstrated
that LASTR modulates the activity of the U4/U6 recycling factor SART3 to boost cancer
fitness [30], and also modulates the activity of the miR-137/TGFA/PI3K/AKT axis to
accelerate lung cancer progression [31]. However, no study has reported a direct correlation
between LASTR and immunity. Interestingly, LASTR has also been used as a ferroptosis-
related marker in stomach adenocarcinoma [32]. Therefore, there are some connections
between cuproptosis and ferroptosis, and LASTR could be involved in the cross-talk
between them, thus playing an essential role in the immunological therapy of cuproptosis
and ferroptosis.

According to previous studies, AC026401.3 is a glycolysis-based lncRNA predictor for
prognosis in kidney [33] and liver cancer [34]. AC026401.3 regulates the immune response,
as tumor-cell-induced glucose deprivation inhibits T-cell glycolysis and immunogenic
functions [35]. Although we confirmed that AC026401.3 expression was elevated in ccRCC
cell lines, the function of AC026401.3 is far from known at present.

Using the three CRLR models, potential drug targets for ccRCC were determined using
the TIDE algorithm, and it was shown that low-risk patients were more sensitive to the
12 target drugs based on IC50 estimates. However, the results from the model of the tumor
immune microenvironment and immunotherapy response showed that immunotherapy
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was more likely to work for high-risk patients than low-risk patients, suggesting that
the cuproptosis-based classifier index could be used to predict immune response. Using
somatic mutation data from TGCA, we calculated TMB scores. The low-risk group did not
surpass the high-risk group, suggesting poor correlation with the CRLR classifier index. In
ccRCC, a high TMB score with high risk was associated with a worse outcome and could
be used as a prognostic marker. Thus, these findings demonstrate that the CRLR model
has a higher prognostic value than TMB status. Therefore, AC026401.3, FOXD2−AS1, and
LASTR might be useful indicators for investigating different drug treatments with different
TMN stages and mutation load burdens, providing a foundation for the precise treatment
of ccRCC. It should be emphasized that the specific functions and mechanisms of these
three molecules (i.e., FOXD2−AS1, AC026401.3, and LASTR) in renal cancer still require
further experimental studies.

According to the three CRLR models, the low-risk group was more sensitive to nine
target drugs (A.770041, AG.014699, AMG.706, ATRA, AP.24534, axitinib, AZ628, ABT.888,
and A.443654) based on the estimated IC50, whereas the high-risk group was more sensitive
to ABT.263 and AKT inhibitors VIII and AS601245. The results showed that ccRCC patients
with different expression levels of the three CRLRs presented different sensitivities to
different target drugs, reflecting individual differences and tumor heterogeneity in kidney
cancer patients. Considering the heterogeneity in immune response, it is suggested that
targeted therapy combined with immunotherapy can provide precision treatment in ccRCC
patients, based on different levels of the LncRNAs FOXD2−AS1 and AC026401.3. Thus,
this study can provide a reference paradigm for various tumors, facilitating the mining
of cuproptosis-related LncRNAs based on TCGA data. We must point out that although
AC026401.3, FOXD2−AS1, and LASTR were confirmed to be highly expressed in ccRCC
cell lines, most of the results in this study were only based on our CRLR models. Hence,
more experimental studies are needed, especially regarding how the three CRLRs regu-
late cuproptosis-related genes. It is important to determine how the signal transduction
pathways are regulated by AC026401.3, FOXD2−AS1, and LASTR, as well as the relation-
ships between CRLRs and apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy.
In addition, we investigated whether there were synergistic effects between each of the
12 targeted drugs and immunotherapy drugs. Moreover, the roles of these three CRLRs in
the diagnosis, treatment, and prognosis of ccRCC need to be studied in multiple clinical
centers and with a large number of samples.

There are also some limitations to this study. First of all, all the analyses are based on
data from public databases, and all the samples used in this study were retrospectively
obtained. Therefore, the inherent bias in case selection may have affected the outcome. It
is necessary to conduct large-scale prospective studies as well as additional experiments
in vitro and in vivo in order to confirm our findings. Moreover, many datasets did not
include key clinical variables such as surgery, radiotherapy, and neoadjuvant chemotherapy,
which may have affected accuracy.

5. Conclusions

We identified cuproptosis-related LncRNAs using a machine learning approach and
investigated their potential value in ccRCC immunotherapy. We verified 280 CRLRs and
identified 66 significant increments associated with CRLRs, according to multiple analysis
models. The enrichment results demonstrated that CRLRs are involved in the produc-
tion of immune responses molecular mediators, the defense responses to bacteria, the
humoral immune response, the immunoglobulin complex, and receptor–ligand activity.
Subsequently, we revealed that three different LncRNAs (FOXD2−AS1, AC026401.3, and
LASTR) are prognostic predictors in TCGA-KIRC. The three molecules were further val-
idated via qPCR and were found to be over-expressed in ccRCC cell lines. The ICGC
includes 89 projects in 17 administrative regions of Asia, Australia, Europe, North America,
and South America, including 25,000 cancer genomes. FOXD2−AS1 and LASTR were
validated in the ICGC (RECA-EU) cohort. The results of the above two verification studies
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were consistent. In summary, we revealed that the core cuproptosis-related LncRNAs,
FOXD2−AS1, AC026401.3, and LASTR, have potential prognostic value and can be used in
a potential immunotherapeutic strategy to improve ccRCC outcomes.
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