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Abstract: The misuse and abuse of antibiotics in livestock and poultry seriously endanger both human
health and the continuously healthy development of the livestock and poultry breeding industry.
Plant-derived bioactive compounds (curcumin, capsaicin, quercetin, resveratrol, catechin, lignans,
etc.) have been widely studied in recent years, due to their extensive pharmacological functions and
biological activities, such as anti-inflammatory, antioxidant, antistress, antitumor, antiviral, lowering
blood glucose and lipids, and improving insulin sensitivity. Numerous studies have demonstrated
that plant-derived bioactive compounds are able to enhance the host’s ability to resist or diminish
diseases by regulating the abundance of its gut microbiota, achieving great potential as a substitute
for antibiotics. Recent developments in both humans and animals have also highlighted the major
contribution of gut microbiota to the host’s nutrition, metabolism, immunity, and neurological
functions. Changes in gut microbiota composition are closely related to the development of obesity
and can lead to numerous metabolic diseases. Mounting evidence has also demonstrated that
plant-derived bioactive compounds, especially curcumin, can improve intestinal barrier function
by regulating intestinal flora. Furthermore, bioactive constituents can be also directly metabolized
by intestinal flora and further produce bioactive metabolites by the interaction between the host
and intestinal flora. This largely enhances the protective effect of bioactive compounds on the host
intestinal and whole body health, indicating that the bidirectional regulation between bioactive
compounds and intestinal flora has great application potential in maintaining the host’s intestinal
health and preventing or treating various diseases. This review mainly summarizes the latest research
progress in the bioregulation between gut microbiota and plant-derived bioactive compounds,
together with its application potential in humans and animals, so as to provide theoretical support for
the application of plant-derived bioactive compounds as new feed additives and potential substitutes
for antibiotics in the livestock and poultry breeding industry. Overall, based on this review, it can
be concluded that plant-derived bioactive compounds, by modulating gut microbiota, hold great
promise toward the healthy development of both humans and animal husbandry.

Keywords: plant-derived bioactive compounds; gut microbiota; interactions; health benefits; feed
additives; antibiotic substitute

1. Introduction

Antibiotics play an important role in ensuring the healthy development of both hu-
mans and animal husbandry, and have promoted the rapid recovery of the livestock
and poultry breeding industry. In the past 70 years, the use of therapeutic and growth-
promoting antibiotics has increased dramatically throughout the world. In the United
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States, the annual use of antibiotics is up to 16 million kg, about 70% of which is mainly
used in animal husbandry and aquaculture [1]. In China, antibiotics used in aquaculture
account for 46.1% of the total annual production, so as to ensure adequate aquaculture
production. The misuse or abuse of disease-controlling and growth-promoting antibiotics
together with their residue have raised significant concerns recently because of the potential
serious threats to the health and safety of humans and the sustainable development of
animal husbandry. Therefore, gradually reducing or even prohibiting the use of antibiotics
and other drugs as additives to produce nonresistant livestock and poultry products is
an inevitable trend for the development of the livestock and poultry industry worldwide.
In addition, with the continuous improvement of consumer safety awareness, society’s
demand for “nonresistant” livestock and poultry products is growing daily, thus, there is
an urgent need to find alternatives to antibiotics. Moreover, Announcement No. 194 of the
Ministry of Agriculture and Rural Affairs of the People’s Republic of China also requires
that, beginning in 2020, the addition of antibiotics (except Chinese herbal medicine) to
feed should be completely prohibited to reduce the harm caused by the misuse or abuse
of antibiotics. Therefore, in the post-antibiotic era, to develop a new type of feed additive,
which is drug free, nontoxic, and residue free that can replace antibiotics to improve the
production performance of livestock and poultry, has become a research hotspot for schol-
ars throughout the world. Under these circumstances, plant-derived bioactive compounds
have become the first choice of antibiotic substitutes because of their unique advantages,
such as rich resources, comprehensive functions, good biological safety, and various nutri-
tional values, low toxicity and few side effects, less resistance, and low residue. Abundant
evidence has shown that plant-derived bioactive compounds are able to promote the in-
testinal health of hosts by regulating the structure and abundance of intestinal microbiota
and metabolites of bacterial flora. Moreover, as a very important part of the host, intestinal
microbiota and its metabolites are involved in several physiological functions of the host by
regulating various endocrine, neural, and immune pathways, including digestion, energy
metabolism, and inflammation [2], thus playing remarkable roles in maintaining the health
of their hosts.

Overall, gut microbiota perform some basic functions in the immunological, metabolic,
structural, and neurological landscapes of the host’s intestine and whole body, though
it is dynamic. An in-depth understanding of gut microbiota function has led to some
very exciting developments in therapeutics, such as prebiotics, probiotics, drugs and
fecal transplantation leading to improved health. In particular, plant-derived bioactive
compounds can regulate intestinal flora and have great application potential in maintaining
host intestinal health and preventing or treating numerous diseases.

2. Gut Microbiota
2.1. Biological Functions of Gut Microbiota

As the largest immune organ in the mammalian body, the intestinal tract comprises
cells from nonhemopoietic and hemopoietic origin. It is also a dwelling (mainly located in
the small bowel and colon) for trillions of microbes collectively known as the gut microbiota,
including bacteria, archaea, fungi, and viruses [3,4]. The gut microbiota is a central regulator
of host metabolism and can be considered a crucial “organ” of the host body because of
its role in the maintenance of the balance between health and diseases. Numerous studies
both in humans and animals have demonstrated that the gut microbiota has evolved along
with their hosts and is an integral part of the host body, which is acquired at birth, develops
in parallel as the host develops, and maintains its temporal stability and diversity through
adulthood until death. These large and diverse intestinal microorganisms are always in
a dynamic balance with the host, which is critical to stabilize the physiological functions
and health of the host organism and can positively or negatively regulate its health [5].
However, intestinal microbiota composition is not constant, and the imbalance between
intestinal microbiota and host is also considered to be one of the important factors inducing
numerous diseases.
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Intestinal microbiota can also benefit the host by transforming dietary nutrients into
bioactive metabolites and play a role in maintaining gastrointestinal homeostasis together
with the resident microbiota. In human and animals, gut microbiota ferments dietary
nondigestible carbohydrates into short-chain fatty acids (SCFA), which are the major
metabolites of intestinal microbiota, including acetate, propionate, and butyrate. Recent
findings show that SCFAs, and in particular butyrate, also have important intestinal and
health-modulatory functions. The different SCFA-producing intestinal microbiota has
significant different potential in forming SCFAs, among which Firmicutes are the main
microbiota producing butyrate [6]. In addition, other intestinal butyrate-producing bacteria
include members of Ruminococcus, Clostridium, Eubacterium, and Coprococcus genera [7,8],
while acetate is mainly produced by Bifidobacterium [9]. Additionally, acetate and propionate
can also be formed by Akkermansia muciniphila [10]. Furthermore, different intestinal
microbiota have interaction in the process of producing SCFAs; for example, Bacteroides
theiotaomicron produces acetate, which can be further used by Eubacterium hallii to produce
butyrate [11]. From these results, it can be concluded that SCFAs play a key role in
providing energy sources [12], enhancing the integrity of the intestinal epithelial barrier [13],
promoting the generation of regulatory T cells, and maintaining homeostasis in the host
intestine [14], so as to strengthen the gut barrier functions as well as host health.

2.2. Main Factors Affecting the Composition of the Animal Gut Microbiota

The unbalanced symbiotic relationship among intestinal microbiota and the animal
host and intestinal microbiota is called intestinal dysbiosis. The occurrence of this phe-
nomenon is related to numerous factors, such as host conditions, surrounding environment,
dietary changes, pathological conditions, antibiotic abuse, etc. (Figure 1). Host conditions
mainly include different breeds (such as broilers and laying hens), sex, age, development
level of the immune system, intestinal morphology, and intestinal movement. The environ-
mental factors mainly include farm management level, breeding density, ventilation, light
conditions, temperature control, etc. From the perspective of diet, the quality, change, parti-
cle size, and water source of the feed are extremely important to the intestinal microecology,
and the antinutritional factors, heavy metals, toxic substances, bacterial toxins, herbicides,
and antibiotics in the feed can all lead to the destruction of the intestinal microbiota, result-
ing in local inflammation, systemic infection, and even the emergence of typical poisoning
symptoms [15]. In addition, pathological changes in diseases and drugs used in disease
treatment, such as antibiotics, probiotics, prebiotics, and plant-derived active ingredients,
can also lead to alterations in the intestinal microbiota.
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2.3. Relationship between Gut Microbiota and Numerous Diseases

The gut microbiota is now considered as one of the key elements contributing to
numerous diseases, including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel
diseases, and several types of cancer, by regulating the gut microbiota and host health.
A previous study showed that the intestinal microbiota of obese mice was significantly
different from that of lean mice, indicating that obesity can affect the balance of intestinal
microbiota [16]. In turn, obesity can be partially inhibited by improving intestinal micro-
biota. Studies in obese animal models also showed that gut microbiota can affect energy
metabolism and energy storage by changing the production of SCFA or the secretion of
intestinal cells [12,17,18]. In addition, the relative abundance of Firmicutes and Bacteroidetes
in the intestinal microbiota is closely related to obesity, and their ratio is significantly
positively related to animal obesity; furthermore, this feature is transmissible [19].

The occurrence and development of diabetes are closely related to the imbalance
of intestinal microbiota, and the composition change in intestinal microbiota may cause
probiotics to have an antidiabetes effect. Zhang et al. [20] reported that Ruminococcus
bromii could reduce blood glucose by inhibiting the biotransformation of Deoxycholic acid.
Furthermore, it has been shown that probiotics can significantly reduce the abundance of
Firmicutes and increase the abundance of Bacteroidetes and GLP-1 and GLP-2 produced by
enteroendocrine L cells to improve the glucose tolerance, leptin sensitivity, and metabolism
level of mice [21], indicating that beneficial flora has an important influence on leptin signal
transmission. In addition, in a mouse model, Cani et al. [22] showed that Bifidobacterium
species can significantly improve diabetes.

Intestinal microbiota also has therapeutic effects on inflammation and diarrhea. Hung
et al. [23] found that Lactobacillus casei can significantly inhibit intestinal inflammation in
children to improve diarrhea. Yang et al. [24] found that Lactobaccilus plantarum CCFM1143
can significantly reduce the abundance of Bacteroides and Eggerthella and enrich the abun-
dance of Akkermansia, Anaerostipes, and Terrisporobacter in human intestinal microbiota,
thereby inhibiting the increase in inflammatory factors such as IL-6, so as to improve
inflammation and chronic diarrhea.

In humans, the number of pathogenic bacteria such as Enterobacteria and Enterococcus
faecalis in the intestinal microbiota of the elderly is high, while the number of Lactobacillus is
low, which may not only result in poor health but also lead to increased risk of infection [25].
It has also been shown that the mechanism of intestinal microbiota affecting bone mineral
density may involve the immune system, which in turn regulates osteoblast production [26].
In addition, it was found that SCFAs can regulate inflammation and indirectly regulate
osteoclast production by affecting T cells in the colon, thus affecting bone formation [27].
Thirdly, intestinal microbiota can inhibit the generation of osteoblasts and enhance the
absorption and synthesis of various vitamins and minerals, including vitamins K and B12,
calcium, and magnesium, which increase bone density and strength [28].

3. The Effect and Application Potential of Plant-Derived Bioactive Components on
Gut Microflora
3.1. Effect of Curcumin on Gut Microflora

Curcumin, a bioactive substance originating from the rhizomes of Zingiberaceae and
Araceae plants, is the main active ingredient in the spice curcuma. It has a long history
of use as herbal medicine, dietary spice, and food colorant in East Asia. The dietary cur-
cumin entering into the intestine is usually difficult to be directly absorbed, but it can
be decomposed by intestinal microbiota after entering into the host, and affects health
by changing the abundance of intestinal microbiota. Common curcumin-decomposing
bacteria include Escherichia, Blautia, Bifidobacterium, Lactobacillus, Pichia anomala, Bacillus
megaterium dumb-002, etc. [29]. Mounting evidence has shown that curcumin can not only
significantly reduce the abundance of pathogenic bacteria such as Prevotellaceae, Enter-
obacteria, and Rikenellaceae in the intestinal microbiota, but also can significantly increase
the abundance of beneficial bacteria such as Bacteroides, butyrate-producing bacteria, and
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Lactobacillus, so as to realize the biological functions of curcumin in regulating intestinal
health [30,31]. In addition, in the dietary-induced obese mice, it was shown that curcumin
can be metabolized into curcumin-O-glucuronide by the intestinal microbiota, and can
significantly increase the relative abundance of Lactococcus, Parasutterella, and Turicibacter in
the intestinal microbiota, so as to play an important role in reducing inflammation [32]. Li
et al. [33] have demonstrated that dietary curcumin treatment (0.2%) in HFD-fed obese mice
is able to change the intestinal microbiota composition by both reducing the proportion of
Firmicutes and Bacteroides, as well as the abundance of endotoxin-producing Desulfovibrio
bacteria, while increasing the abundance of SCFAs-producing bacteria such as Akkermansia,
Bacteroides, Parabacteroides, Alistipes, and Alloprevotella in intestinal microbiota, which sub-
sequently led to significantly promoted recovery of intestinal dysbiosis by increasing the
concentration of SCFAs in the cecum and colon, and significantly reduced fat content, liver
steatosis, lipopolysaccharide level, and insulin sensitivity. Zhang et al. [34] showed that
supplementation of the metabolite dideoxycurcumin (150 mg/kg) in the diet of broilers
could significantly increase the content of GSH, the activity of SOD and GR, and the content
of GSSG in the jejunum, and increased the content of GSH, the activity of SOD and GST,
and the redox potential in the ileum. These results show that curcumin is able to exert
its protective effect on intestinal health by promoting the transformation of pathogenic
bacteria to beneficial bacteria by reducing the number of harmful bacteria or increasing
the abundance of beneficial bacteria in the intestine. Although curcumin is safe even at
high doses in humans, it exhibits poor bioavailability. In human tests, it was found that
curcumin could not be detected in the serum of subjects taking 500, 1000, 2000, 4000, 6000
or 8000 mg, and only low levels of curcumin could be detected in two subjects taking
10,000 or 12,000 mg [35]. In experiments using rats, even more than 90% of curcumin was
excreted in the feces [36]. Major reasons contributing to the low plasma and tissue levels
of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic
elimination [37].

3.2. Effect of Capsaicin on Gut Microflora

Peppers contain a variety of high-quality, plant-derived chemically active substances,
including capsaicin, vitamin C, phenolic compounds, flavonoids, and carotenoids, which
have significant antioxidant activity [38]. Capsaicin is the main bioactive component of red
pepper (Capsicum L.), which has a variety of biological functions, such as lowering serum
lipids, anti-inflammation, anticancer, antioxidation, and intestinal movement regulation. It
has been demonstrated that capsaicin regulates intestinal function mainly by activating the
expression of transient receptor potential vanillin 1 (TRPV1) [39]. Dietary capsaicin signifi-
cantly increased the ratio of Firmicutes/Bacteroidetes and the abundance of Roseburia flora,
and decreased the abundance of Bacteroides and Parabacteroides in intestinal microorganisms
of mice, both low capsaicin and high capsaicin diets significantly increased the butyrate
in feces and the total plasma GLP-1 level, compared with a normal diet; total plasma
ghrelin and TNF-α, IL-1β, and IL-6 levels were all decreased. Dietary capsaicin helps
to improve glucose homeostasis by increasing SCFA, regulate gastrointestinal hormones,
and inhibit proinflammatory cytokines, thereby significantly improving the tolerance of
mice to glucose and insulin, and significantly inhibiting the increase in fasting glucose
and insulin levels [40]. In addition, Kang et al. [41] also found a similar conclusion in
human studies, showing that dietary capsaicin (200–400 ppm) can reduce obesity and
promote intestinal health by increasing the Fractions/Bacteroidetes ratio and Faecalibacterium
abundance, and at the same time increasing the level of plasma glucagon such as GLP-1
and GIP. Hui et al. [42] further studied and found that capsaicin (100 µmol/L) reshapes
intestinal microbiota, which is related to the production of LCA, an endogenous agonist of
TGR5, which may enhance the secretion of GLP-1 in endogenous L cells. At the same time,
fecal bacteria transplantation experiments showed that the beneficial effect of capsaicin
induction is reversible, which indicates that the effect of capsaicin on glucose homeostasis
depends largely on intestinal microbiota [42]. Moreover, dietary capsaicin can also inhibit
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the CB1 receptor and reduce the synthesis of LPS by increasing the abundance of butyric
acid-producing bacteria such as Ruminococcaceae and Lachnospiraceae and butyrate level,
thereby prevent metabolic endotoxemia and systemic chronic low-grade inflammation
induced by HFD [43]. Kawada et al. [44] studied the absorption of capsaicin and dihydro-
capsaicin (metabolites of capsaicins) in rats; the results showed that about 85% of the dose
was absorbed by the gastrointestinal tract within 3 h. The absorption rates of capsaicin and
dihydrocapsaicin in the stomach, jejunum, and ileum within 60 min were about 50%, 80%,
and 70%, respectively. However, prolonged exposure to high doses of capsaicin (more than
100 mg/kg) led to peptic ulcer, accelerated the development of prostate, gastric, duodenal,
and liver cancer, and enhanced the metastasis of breast cancer [45].

3.3. Effect of Quercetin on Gut Microflora

Quercetin is one of the most common flavonoids in nature, which is abundant in
onions, kale, and apples, among other fruits and vegetables. Quercetin derived from
different tissues has variable bioavailability. For example, compared with apple peel,
quercetin derived from onion peel has higher bioavailability. Quercetin is one of the
polyphenols that has been studied extensively at present and has a variety of physiological
functions such as antibacterial, antioxidant, anti-inflammatory, and metabolic promo-
tion [46]. Previous study has shown that quercetin treatment can significantly reduce the
abundance of Escherichia coli and Clostridium, while significantly increasing the number
of Lactobacillus, so as to improve the intestinal microbiota environment [47]. In addition,
quercetin is also believed to significantly promote the intestinal barrier function of the
human intestinal Caco-2 cell monolayer. Suzuki and Hara [48] have further reported that
quercetin-enhanced (100 µmol/L) intestinal barrier function is contributed by an inhibited
protein kinase pathway and a promoted relative expression of ZO-1, closure protein, and
intercellular tight junction proteins, including occludin-3 and claudin-1. Using piglets, Xu
et al. [49] have shown that dietary quercetin (0.1%) significantly decreased fecal scores,
improved intestinal damage, and increased antioxidant capacity indices, by increasing
the relative abundances of Fibrobacteres, Akkermansia muciniphila, Clostridium butyricum,
Clostridium celatum, and Prevotella copri, and decreasing the relative abundances of Proteobac-
teria, Lactobacillus coleohominis, and Ruminococcus bromii, suggesting that dietary quercetin
supplementation attenuated diarrhea and intestinal damage by enhancing the antioxidant
capacity and regulating gut microbial structure and metabolism. Amasheh et al. [50]
comprehensively evaluated the effect of quercetin on the expression of cytokines in rat
colon and the intestinal barrier damage induced by TNF-α and IFN-γ, and found that
quercetin can effectively protect the intestinal barrier function by downregulating claudin-2
protein abundance. The permeability analysis of rat colon in vitro showed that quercetin
can reduce the total resistance of the intestinal barrier by partially inhibiting the cytokine
TNF-α and IFN-γ. Studies have also shown that quercetin can regulate the abundance
of the intestinal microbiota of Adlercreutzia, Allobaculum, Coprococcus_1, Lactococcus, and
Akkermansia, so as to improve HFD-induced intestinal microbiota-related diseases, and
significantly alleviate HFD-induced obesity, improve glucose tolerance, restore intestinal
barrier function, and reduce adipose tissue inflammation [51]. Chen et al. [52] found that
the bioavailability of quercetin was very low and only 5.3% of the constant quercetin had
bioavailability. After oral administration, although the total amount of quercetin absorbed
was about 59.1%, and about 93.3% of quercetin was metabolized in the intestine, only 3.1%
was metabolized in the liver, and nonsignificant enterohepatic recirculation was observed
for quercetin and its conjugated metabolites.

3.4. Effect of Resveratrol on Gut Microflora

Resveratrol is a natural polyphenol compound that is widely found in grapes, Poly-
gonum cuspidatum, peanuts, and other plants [53], and has a variety of biological ef-
fects, including anti-inflammatory [54], antioxidant stress [55], and regulation of energy
metabolism [56]. Zhao et al. [57] reported that resveratrol can maintain the integrity of the
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intestinal barrier and reduce intestinal damage by inhibiting the apoptosis of intestinal
epithelial cells in rats. Furthermore, it has been demonstrated that resveratrol can regulate
the composition of intestinal microbiota and reduce the number of opportunistic pathogens
in the body. Yang et al. [58] showed that, compared with the control group, the intestinal
microbiota diversity of HFD-fed rats was significantly reduced and the level of oxidative
stress was increased. It has also been shown that resveratrol supplementation (400 mg/kg)
can significantly increase the number of butyric acid-producing bacteria such as Blautia and
Dorea in the intestinal microbiota. In addition, dietary resveratrol is able to significantly
reduce the number of inflammation-related bacteria such as Bacteroides and Desulfovibri-
onaceaesp, most of which are antibiotic-resistant bacteria and may become highly pathogenic
bacteria. Pan et al. [59] also found that resveratrol treatment (10%) can significantly inhibit
the flora abundance of Desulfovibrio and Lachnospiraceae_NK4A136_group in the intestine,
which significantly reduces the enrichment of pathways related to host metabolic diseases,
and increases the enrichment of pathways involved in the production of small metabolites.
In addition, 4-HPA and 3-HPP are two intestinal metabolites of resveratrol, which help
to improve lipid metabolism in vitro. Qiao et al. [60] have proved that in HFD-fed mice,
resveratrol (400 mg/kg) supplementation can increase the ratio of Bacteroides and Firmicutes,
together with the number of Lactobacillus and Bifidobacterium, while significantly reduce
the abundance of Enterococcus faecalis in the intestinal microbiota. Previous study in mice
has also shown that resveratrol supplementation can increase the relative abundance of
Lactobacillus and Bifidobacterium in the intestine, thus increasing the bile acid synthesis in
the liver to ameliorate atherosclerosis induced by trimethylamine-N-oxide (TMAO) [61].
Additionally, further research showed that resveratrol was able to protect the host from
colitis by reversing the development of pathogenic microbiota such as Bacteroides acidifaciens
and the decline of beneficial bacteria such as Rinococcus gnavus and Akkermansia mucinphilia
to inhibit inflammatory Th1/Th17 cells [62]. The oral absorption of resveratrol by human
beings is about 75%. The extensive metabolism in the intestine and liver leads to the oral
bioavailability being significantly less than 1%, and the increase in resveratrol dosage and
repeated administration do not seem to significantly change this [63].

3.5. Effect of Allicin on Gut Microflora

Garlic contains numerous bioactive compounds, such as allicin, organic sulfur,
flavonoids, saponins, phenols, and polysaccharides. Using C57BL/6N male obese mice as
models, Chen et al. [64] explored the effect of whole garlic (1%) on intestinal microbiota and
the results showed that treatment with whole garlic for 12 weeks could significantly reduce
the effect of HFD on GPT/GOT and TCHO, LDL-c levels, and HOMA-IR. Furthermore,
the addition of whole garlic significantly improved the ratio of intestinal villus height to
crypt depth, the weight of caecum, and the concentration of caecal organic acid decreased
by HFD. Finally, the 16S rRNA sequencing results of intestinal microorganisms showed
that the addition of garlic significantly increased the α-diversity and the abundance of
Lachnospiraceae, while decreased the abundance of Prevotella. Wu et al. [65] have showed
that after oral administration of melanoidin from black garlic, the intestinal microbiota
of HFD-induced obese mice was significantly improved, and the bacterial diversity and
richness were significantly increased. Furthermore, allicin (200 mg/kg) can significantly
improve HFD-induced obesity in mice by increasing the abundance of Bacteroidaceae and
other probiotics such as Lactobacilliceae and Akkermansiaceae in the intestinal microbiota
and reducing the abundance of Enterobacteriaceae and Desulfovibrionaceae. In addition, both
in vitro and in vivo studies have shown that raw garlic juice and allicin can significantly
inhibit the production of human intestinal flora γBB and TMA and result in a significant
reduction in the production of TMAO, indicating that both raw garlic juice and allicin can
reduce the risk of human cardiovascular diseases by regulating intestinal microbiota [66].
In a rat model of Acrylamide-induced intestinal injury, allicin treatment significantly re-
versed the reduction in SCFA synthesis bacteria such as Escherichia_Shigella, Dubosiella, and
Alloprevotella, together with the reduction in acetic acid and propionic acid. Furthermore,



Biomolecules 2022, 12, 1871 8 of 15

allicin significantly increased the expression of occludin, claudin-1, ZO-1, mucin 2, and
mucin 3, and significantly decreased the expression of TLR4, MyD88, NF-κB signaling
pathway proteins, and proinflammatory cytokines. These results show that allicin was able
to significantly improve intestinal mucosal barrier damage and inflammation induced by
Acrylamide [67].

3.6. Effect of Catechin on Gut Microflora

Catechins are a kind of flavonoid mainly derived from green tea, which have high
biological activities and play a key regulatory role in the antioxidation, antimutagenesis,
anticancer, anticardiovascular diseases, antibacterial, anti-inflammatory and weight loss.
Catechins prepared from 2 g of dry leaves and 100 mL of boiling distilled water can
inhibit the growth rate of pathogenic bacteria such as H. pylori, Staphylococcus aureus,
E. coli O157: H7, Salmonellatyphimurium DT104, Pseudomonas aeruginosa in the intestinal
microbiota [68]. Additionally, Liao et al. [69] have found that catechin (0.4–1.6 g/L) was
able to increase the number of Bifidobacterium in the intestinal tract of mice, and could
reduce the levels of TCHO and LDL-c. Studies have shown that after ingestion by the body,
catechin can be decomposed into small molecular substances under the metabolism of
colonic microbiota to enter into hepatointestinal circulation or blood circulation, playing
a wide range of physiological functions [70]. EGCG and GCG, the main components of
catechin, can also significantly reduce the abundance of harmful bacteria such as Bacteroides,
Prevotella, Clostridium histolyticum, Eubacterium, and Clostridium [71]. Liu et al. [72] have
also demonstrated that EGCG can significantly promote the growth of probiotics such as
Bacteroides, Christensenellaceae, and Bifidobacterium in the human intestine through secondary
metabolites, such as 4-phenylbutyric acid and phenylacetic acid, and significantly inhibit the
growth of Fusobacterium varium, Bilophila, and Enterobacteriaceae. Studies have also shown
that EGCG can significantly increase the Firmicutes/Bacteroidetes ratio and the abundances
of the Lactobacillus gasseri, Lactobacillus intestinalis, Christensenellaceae, and Lactobacillus
reuteri, and decreased the abundances of the Enterobacteriaceae and Proteobacteria to improve
glucose homeostasis in diabetic mice by decreasing serum cholesterol and LDL levels
and increasing the HDL/LDL ratio [73]. These results indicate that catechins and their
metabolites are able to promote the health of host animals by changing the abundance of
specific intestinal microbiota. However, the bioavailability of catechins is very low. Previous
studies showed that the oral bioavailability of EGCG in rats is only about 4.9% [74]. In
human studies, ingested catechin and its metabolites reach a peak in plasma after 5 h, and
only about 1.68% of the ingested catechins are present in plasma, urine, and feces [75].

3.7. Effect of Lignans on Gut Microflora

Lignans are complex diphenolic compounds representing phytoestrogens and occur
widely across the plant kingdom, having estrogen and antiestrogen characteristics [76].
Lignans are widely found in natural foods. Wheat and rye bran have the highest lignan
content in all cereals and among the species studied so far; flaxseed and sesame are the
most abundant substances containing lignan [77]. Previous research has shown that the
intestinal bacteria, Clostridium saccharogumia, Eggerthella lenta, Blautia producta, and Lactoni-
factor longoviformis, were able to convert lignan into bioactive enterolignans enterodiol, and
enterolactone [78], and thereby further regulate cholesterol [79], reduce cardiovascular dis-
ease [80], and play the role of anti-inflammation and antioxidation [81] agents in regulating
health. Further studies have shown that dietary lignans play an anti-inflammatory role
by targeting NF-κB [82]. Li et al. [83] found that 3633 µg/day of total lignans were able to
significantly enhance metabolic health, and found that the abundance of Coprococcus sp.
ART55/1, Faecalibacterium prausnitzii, Alistipes shahii, Butyrivibrio crossotus, and Methanobre-
vibacter smithii had a significantly positive correlation with the level of enterolactone, while
the abundance of Bacteroides dorei, Bacteroides fragilis, Clostridium bolteae, Clostridium lep-
tum, Clostridium symbiosum, Lachnospiraceae bacterium. 1.4.56FAA, and Ruminococcus sp.
5.1.39BFAA was negatively correlated with the level of enterolactone. In a study on rats,
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Xiao et al. [84] showed that lignans mainly escalated the abundance of Antinobacteria and
modulated several genera relating to bone mineral density, achieving the effect of alleviated
bone loss and decreased serum levels of serotonin.

Through these studies investigating the gut microbiome and its relevance with metabolic
disorders, it can be concluded that plant-derived bioactive compounds, such as curcumin,
capsaicin, allicin, quercetin, resveratrol, catechin, and lignans play an important role in
the regulation of multiple aspects of metabolic disorders, by regulating the composition
of gut microflora. The interactions between gut microbiota and plant-derived bioactive
compounds are mainly achieved by the following two pathways: one is the modulation of
the gut microbiota profile by ingested natural compounds, and the other is the gut microbial
conversion of natural products into ”daughter molecules” with potent bioactivities (Table 1).
Furthermore, the bacterial metabolites involved in these interactions are very diverse and
range from small molecules to large macromolecules, including byproducts of bacterial
metabolisms such as SCFAs, and various gut microbes have already been extensively
documented to contribute to the metabolization of these nondigestible carbohydrates into
SCFAs (Figure 2).

Figure 2. Functions of plant-derived bioactive compounds in metabolic disorders by regulating
intestinal SCFA production.
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Table 1. Interactions between metabolites of gut microflora and plant-derived bioactive compounds.

Plant-Derived
Bioactive Compounds Main Active Ingredients Metabolic Gut Microflora Reference

Curcumin Curcumin-O-glucuronide
Lactococcus

Parasutterella
Turicibacter

[32]

Quercetin 3,4-Dihydroxyphenylacetic acid

B. fragilis, C. perfringens,
E. ramulus, Streptococcus S-2, Lactobacillus L-2,

Bifidobacterium B-9
Bacteroides JY-6

[85]

Resveratrol
Dihydroresveratrol

3,4′-Dihydroxy-trans-stilbene
3,4′-Dihydroxybibenzyl

Slackia equolifaciens
Adlercreutzia equolifacens [86]

Catechin Valerolactones
Hydroxyvaleric acid

Eggertella lenta
Flavonifractor plautii [85]

Lignans Enterolignans enterodiol
Enterolactone

Clostridium saccharogumia Eggerthella lenta
Blautia producta Lactonifactor longoviformis [78]

4. Conclusions

Taken together, intestinal microbiota plays an important role in improving host health,
and the plant-derived bioactive compounds have a positive effect on the health (the in-
testine and the whole body) of host animals by increasing the abundance of beneficial
bacteria and reducing the abundance of harmful bacteria, helping to improve intestinal
microbial balance, metabolism, and intestinal integrity (Figure 3). As a potential substitute
for antibiotics, plant-derived bioactive compounds have gradually shown great potential
for application in the fields of biomedicine and animal husbandry and veterinary medicine,
by regulating various biological processes of the animal organism through changing the
composition and abundance of intestinal microbiota. However, the low blood concen-
tration, low bioavailability and strong toxicity of plant-derived active ingredients have
greatly reduced their medicinal potential, thus limiting their clinical application prospects.
Therefore, on one hand, it is urgent to further explore reliable methods to improve their
bioavailability (such as preparation of micelles, liposomes, phospholipid complexes, mi-
croemulsions, nanostructured lipid carriers, and biopolymer nanoparticles), and on the
other hand, it is also of great importance to further explore the potential biological func-
tions of plant-derived active ingredients, especially the potential effects of interactions with
intestinal flora in maintaining body health and disease treatment, so as to promote their
wide application in various fields. In addition, it is also necessary to further determine
the potential metabolic mechanism of intestinal microbiota and the impact of metabolites
generated from plant-derived active ingredients after the transformation of intestinal mi-
crobiota on the intestinal microbiota composition. This would facilitate the application of
plant-derived active ingredients in biological medicine, animal husbandry, and veterinary
medicine, making a large contribution to the sustainable and healthy development of
humans and modern animal husbandry.
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Figure 3. Plant-derived bioactive compounds improve host health by modulating the intestinal
microbiota balance.

Author Contributions: X.C., F.L. and X.X. collected literature, wrote the manuscript, and prepared
the tables. H.X. and S.P. wrote the review outline and critically revised the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (No.
32072809, 31501923), the Natural Science Foundation of Jiangsu Province (BK20211119, BK20150443),
the China Postdoctoral Science Foundation Funded Project (No. 2015M581872), the Postdoctoral
Science Foundation Funded Project of Jiangsu Province (No. 1501073A), the Top-level Talents Support
Program of Yangzhou University (2018) (No. 137080146), the Postgraduate Research and Practice
Innovation Program of Jiangsu Province (KYCX21_3275, KYCX22_3549), the Science and Technology
Innovation Cultivation Fund of Yangzhou University (2019CXJ140), and the Priority Academic
Program Development of Jiangsu Higher Education Institutions (PAPD).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Min Du of Washington State University for the critical reading of the
manuscript.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

SCFA short-chain fatty acids
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LPS lipopolysaccharide
ZO-1 zonula occludens 1
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TNF-α tumor necrosis factor-alpha
TNF-γ tumor necrosis factor-gamma
TMAO trimetlylamine oxide
Th1 helper T cell 1
Th17 helper T cell 17
GPT glutamic-pyruvic transaminase
GOT glutamic oxaloacetic transa minase
TCHO total cholesterol
LDL-c low-density lipoprotein cholesterol
GSH glutathione
SOD superoxide dismutase
GR glutathione reductase
GST glutathione S-transferase
GSSG oxidized glutathione
LCA lithocholic acid
TGR5 takeda G-protein coupled receptor 5
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TLR4 toll-like receptor 4
MyD88 myeloid differentiation factor 88
LDL low-density lipoprotein
HOMA-IR homeostatic model assessment for insulin resistance
γBB γ-butyrobetaine
TMA trimethylamine
EGCG epigallocatechin gallate
GCG gallocatechin galleate
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