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Abstract: Trace amine-associated receptors (TAAR1-TAAR9) are a family of G-protein-coupled
monoaminergic receptors which might have great pharmacological potential. It has now been well
established that TAAR1 plays an important role in the central nervous system. Interestingly, deletion
of TAAR9 in rats leads to alterations in the periphery. Previously, we found that knockout of TAAR9
in rats (TAAR9-KO rats) decreased low-density lipoprotein cholesterol levels in the blood. TAAR9
was also identified in intestinal tissues, and it is known that it responds to polyamines. To elucidate
the role of TAAR9 in the intestinal epithelium, we analyzed TAAR9-co-expressed gene clusters in
public data for cecum samples. As identified by gene ontology enrichment analysis, in the intestine,
TAAR9 is co-expressed with genes involved in intestinal mucosa homeostasis and function, including
cell organization, differentiation, and death. Additionally, TAAR9 was co-expressed with genes
implicated in dopamine signaling, which may suggest a role for this receptor in the regulation of
peripheral dopaminergic transmission. To further investigate how TAAR9 might be involved in
colonic mucosal homeostasis, we analyzed the fecal microbiome composition in TAAR9-KO rats and
their wild-type littermates. We identified a significant difference in the number of observed taxa
between the microbiome of TAAR9-KO and wild-type rats. In TAAR9-KO rats, the gut microbial
community became more variable compared with the wild-type rats. Furthermore, it was found that
the family Saccharimonadaceae, which is one of the top 10 most abundant families in TAAR9-KO
rat feces, is almost completely absent in wild-type animal fecal samples. Taken together, these data
indicate a role of TAAR9 in intestinal function.

Keywords: trace amine-associated receptor; TAAR; TAAR9; gut microbiota; dopamine; Saccharimon-
adaceae; transcriptomic data

1. Introduction

Until recently, the majority of the family of receptors termed trace amine-associated re-
ceptors (TAARs) were considered to be almost exclusively expressed in the olfactory epithe-
lium (except TAAR1) [1] and to participate in sensing socially relevant innate odors [2]. G-
protein-coupled TAAR receptors were named for their ability to recognize low-abundance
biogenic amine neurotransmitters termed trace amines [3]. Currently, it is evident that
TAARs can be activated both by trace amines and other endogenous and exogenous amine
molecules [1,4]. While TAAR1 expression and function in the brain have been vigorously
established [1,4], the role of other receptors in the regulatory processes beyond olfaction,
especially outside the brain, remains poorly understood.

Trace amines and their receptors may play significant roles in the function of the
gut microbiota of mammals [5]. It is well established that beta-Phenylethylamine (PEA),
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p-Tyramine (TYR), tryptamine (TRP), and other endogenous trace amines are commonly
found in anaerobic fermented products [6–9]. Classical examples of such products are aged
cheeses, fermented meats, red wine, soy products, and chocolate [10]. The famous “cheese
effect” in patients treated with monoamine oxidase inhibitors is explained by pronounced
accumulation of TYR, which is sufficient to indirectly elevate blood norepinephrine concen-
trations to the point of inducing a hypertensive crisis, severe migraine, and even death [11].
TAAR9 mRNA and other TAARs were identified in the mucosal layer of the gastrointestinal
tract. TAAR9 is expressed mainly in the duodenum; its expression in the upper intestine,
lower intestine, and proximal colon is lower [12–14]. Despite the fact that TAAR9 expres-
sion in the gastrointestinal tract was identified over a decade ago, its function in this organ
system still remains unidentified.

TAAR9 is also known to be expressed at a low level in immune cells, including NK-
cells, T-cells, B-cells, and monocytes [15]. TAAR1 and TAAR9 elimination in knockout
rodents is associated with minor deregulation of lipid and protein metabolism [16], which
becomes more pronounced under a high-carbohydrate diet [17]. Interestingly, total choles-
terol and low-density lipoproteins are decreased in TAAR9-KO animals. The cause of these
differences is unknown but may be related to a decreased endogenous cholesterol absorp-
tion, biosynthesis, transport, or any other alterations in metabolism [18]. This receptor can
sense amines such as N, N-dimethylcyclohexylamine, N-methylpiperidine, triethylamine,
and polyamines, such as cadaverine, putrescine, spermidine, and spermine [19–21].

Putrescine is the most abundant polyamine in the human colon followed by sper-
mine, spermidine, and cadaverine [22]. These polyamines are involved in a plethora of
biological functions, including gene expression regulation, stress resistance, cell prolif-
eration, and differentiation. In the gastrointestinal tract, these compounds take part in
mucosa homeostasis, intercellular junctions, cell division, cell migration after wound-
ing, and apoptosis [22–27]. Polyamines also modulate systemic and mucosal adaptive
immunity [24,28–30]. Decreased endogenous polyamine synthesis might be involved in
intestinal hypoplasia [22] and the development or exacerbation of inflammatory bowel
disease [31]. Meanwhile, high concentrations of polyamines are linked to intestinal ep-
ithelium malignization [24,32,33]. However, both putrescine and cadaverine may damage
the colon epithelium and become cytotoxic at concentrations found in biogenic amine-rich
foods [34,35]. Additionally, endogenous polyamines are synthesized in epithelial cells [36].
Cationic properties of polyamines determine their interactions with intracellular and ex-
tracellular acidic residues, including nucleic acids, phospholipids, acidic proteins, and
carboxyl- or sulfate-containing polysaccharides [36]. Thus, polyamines have multifactorial
effects on biomolecules. For example, it was shown that polyamines stimulate transcription
of the growth-promoting genes, but they inhibit growth-inhibiting gene expression at the
post-transcriptional level [26].

The role of TAAR9 in polyamine sensing and polyamine-mediated interaction between
enterocytes and the gut microbiota have not yet been investigated. To reveal the role
of TAAR9 in the colonic mucosa, we analyzed its expression in public transcriptomic
data. Additionally, to determine TAAR9′s contribution to maintaining the gut microbiota
composition, the TAAR9-KO fecal bacterial community was studied using high-throughput
16S-rDNA sequencing and compared with the fecal microbiome of wild-type littermates.

2. Materials and Methods
2.1. Public Transcriptome Data Analysis

Transcriptomic data for the TAAR9 expression were searched in the Expression Atlas
database [37] for the term “TAAR9”. As no relevant data for the rat were identified, the
dataset “RNA-seq of mouse intestinal mucosa to investigate infection by the parasitic
nematode Trichuris muris” [38], dataset ID E-ERAD-181, was selected for further anal-
ysis. Transcriptomic data for the cecum samples of the control non-infected group of
C57BL/6 mice were downloaded.
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Data were normalized by the CPM (count per million) method in the edgeR [39] R
package. The genes co-expressed with TAAR9 were identified by Pearson’s correlation. The
top 100 co-expressed genes were selected for gene ontology (GO) enrichment analysis. GO
enrichment analysis (identification of GO terms that are significantly enriched by the genes
of the selected set) and visualization of results were performed using the ShinyGo 0.76 [40]
web tool (available at http://bioinformatics.sdstate.edu/go/, accessed on 30 August 2022).
The “GO Biological Process” database was used for the enrichment analysis.

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

2.2. Animals and Sample Collection

TAAR9-KO rats were generated using CRISPR/Cas9-mediated mutagenesis [18]. A
line of TAAR9-KO rats with single nucleotide deletion (TAAR9-KOdelC) was studied.
Breeding and genotyping of knockout and wild-type rats were performed as described
previously [18]. Rats were maintained on a 12:12 h light/dark cycle with a light on at
08:00 h and were allowed access to food and water ad libitum. Three-month-old Sprague
Dawley TAAR9-KO rats (TAAR9-KOdelC strain, n = 8) and wild-type (WT, n = 8) littermates
were used in the study. Fecal samples were collected in 1.5-mL Eppendorf tubes early in
the morning and were immediately frozen at −80 ◦C.

All procedures were performed under the guidelines established by the European Com-
munity Council (Directive 2010/63/EU of 22 September 2010), and animal protocols were
approved by the Ethics Committee of St. Petersburg State University, St. Petersburg, Russia.

2.3. Gut Bacterial DNA Extraction and Sequencing

Fecal samples (100 mg) were used for DNA extraction with the NucleoSpin Soil
MACHEREY-NAGEL (Germania) kit according to the manufacturer’s protocol. The V3-V4
region of the 16S rRNA was amplified with the sequencing primers (positions based on E.
coli SSU rRNA numbering): F9, F338 (59-ACICCTACGGGIGGCAGCAG-39; 338 to 357),
and R805 (59-GACTACCCGGGTATCTAATCC-39; 805 to 785). These primers target the
V3-V4 hypervariable region of bacterial 16S rRNA genes. PCR was then performed under
the following conditions: denaturation (95 ◦C, 3 min); amplification (25 cycles), annealing
(55 ◦C, 30 s), elongation (72 ◦C, 30 s), and final elongation (72 ◦C, 5 min). Sequencing was
performed on the platform of Illumina HiSeq 2000.

2.4. Sequencing Data Processing

The raw data of 16S rRNA paired-end reads were cut with forward and reverse primers
using the QuasR R package [41], and the trimmed sequences were processed using the
DADA2 (Callahan et al., 2016) pipeline to generate an amplicon sequence variant (ASV)
table. The paired-end fastq files were merged, and redundancy was removed. Each ASV
was annotated with the SILVA high-quality ribosomal RNA database (realize 138) [42].

2.5. Bioinformatics and Statistical Analysis of 16S rRNA Sequencing Data

The dataset was analyzed using the R package MicrobiotaProcess [43]. Diversity
indices, including observed species, abundance-based coverage estimators (ACE) index,
Chao1 index, Shannon diversity index, Simpson index, and Pielou’s evenness, were calcu-
lated for each sample and compared between WT and TAAR9-KO animals by the Wilcoxon
test. Diagrams were produced with the R packages MicrobiotaProcess [44] and ggplot2 [45].

β-diversity, which estimates the difference in community structure between samples, was
measured using the Bray–Curtis distance based on an evenly rarefied abundance table. The
distance between the samples was plotted with a box plot. Statistical differences in the measured
β-diversity metrics across groups were determined by the permutational multivariate analysis
of variance (PERMANOVA) with distance matrices using the adonis command in the R package

http://bioinformatics.sdstate.edu/go/
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vegan [45]. B-diversity was visualized via principal coordinate analysis (PCoA). The difference
between the samples was evaluated by hierarchical cluster analysis.

Taxa with differential abundances in the groups were identified by the Wilcoxon
Kruskal–Wallis test in the R package MicrobiotaProcess, which is an algorithm for biomarker
discovery based on the tidy-like framework.

Pearson’s correlations were calculated, and the correlation matrix was visualized by
the corrplot [46] R package.

3. Results
3.1. Analysis of TAAR9 Expression and TAAR9 Co-Expressed Gene Cluster in Colon Tissue

The dataset E-ERAD-181 located in the public database Expression Atlas includes
transcriptomic data for 28 cecum samples from wild-type, non-infected mice. To interpret
numerical values, we used Expression Atlas terms [37], i.e., “expression level is below
cut-off” if the expression value <0.5 CPM and “low expression level” if CPM is between
0.5 and 10. Applying these terms for description, 21 cecum samples (75%) were considered
to have TAAR9 expression at a low level (Figure 1a).
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Figure 1. TAAR9 expression in mouse cecum. (a) TAAR9 mRNA expression in non-treated C57BL/6
mice (dataset E-ERAD-181); (b) gene ontology enrichment analysis of top 100 TAAR9 co-expressed
genes. CPM—count per million, FDR—false discovery rate.

As RNAseq provides detailed information about the expression landscape of multiple
genes in the biological samples, we identified genes co-expressed with TAAR9 in the cecum.
Considering that co-expressed genes are involved in direct or indirect interactions, share
common functions [47,48], and frequently are regulated by the same mechanisms [49],
we selected the top 100 genes co-expressed with TAAR9 (Supplementary Figure S1) in
cecum samples and performed the GO enrichment analysis to identify their function. The
identified TAAR9 co-expressed genes were involved in membrane organization, regulation
of GTPase activity, hydrolase activity, cell death, adhesion, and differentiation (Figure 1b).
Specifically, the involvement of TAAR9 co-expressed genes in the SNARE complex assembly
and dopaminergic signaling was demonstrated.

3.2. Fecal Microbiota α-Diversity in TAAR9-Ko Rats and Wild-Type Littermates

Cumulatively, 40,833 high-quality sequences from 16 samples were received, with an
average of 2552 sequences per sample. Overall, 708 taxa were identified in the 16 samples.

The α-diversity was characterized by several metrics. The microbial communities’
richness was characterized by the observed species index, Chao1, and ACE indexes, and
Shannon and Simpson’s indexes were then implemented to estimate microbiome evenness
and homogeneity. Pielou’s evenness, which is Shannon diversity normalized by the ob-
served richness, was calculated. A higher microbial richness was identified in TAAR9-KO
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mice compared with wild-type animals (p < 0.05). Conversely, the results for the microbial
communities’ evenness seemed to be controversial. Shannon index and Pielou index were
higher in the TAAR9-KO rats (p < 0.05), which suggests a higher diversity of the fecal
microbial community in this group, but there were no significant differences in the Simpson
index values between the two groups (p = 0.083; Figure 2).
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Figure 2. α-diversity among wild-type (WT) and TAAR9-knock out (KO) rats. α-diversity, measured
by observed species, Chao1, abundance-based coverage estimator (ACE), Shannon, Simpson, and
Pielou results are plotted for examined samples. Box plots and violin plots depict microbiome
diversity and abundance differences according to each test. The horizontal line inside the box
represents the median. Individual sample values are represented by dots.

3.3. Difference in β-Diversity of Fecal Microbiota Species between TAAR9-Ko Rats and Wild-Type
Littermates

The β-diversity of the gut microbiota was evaluated by PCoA based on the Bray–Curtis
distance matrix at the level of phylum. Bray–Curtis distances within the TAAR9-KO group,
within the wild-type group, and between the TAAR9-KO and wild-type control were plotted
to compare fecal microbiota dissimilarity in the different genetic backgrounds (Figure 3a).
Interestingly, the dissimilarity between the TAAR9-KO samples was comparable to the
dissimilarity between TAAR9-KO and wild-type samples (p = 0.74). The dissimilarity
between the samples from the wild-type animals was significantly (p < 0.001) lower than
between TAAR9-KO samples or between TAAR9-KO and wild-type samples.

PCoA of the microbiota composition data demonstrated that the microbiota of TAAR9-
KO rats was distinct from that of wild-type animals, although there was overlap (p = 0.0274,
Figure 3b). The hierarchical cluster result of the samples (Figure 3c) confirmed some overlap
between the study groups. Most TAAR9-KO samples from the cluster separated from the
cluster of wild-type samples, but two TAAR9-KO samples were more similar to wild-type
samples, and two wild-type samples were clustered with TAAR9-KO samples.

3.4. Differential Abundances of Bacterial Taxa

Despite the pronounced differences in fecal microbial communities between TAAR9-
KO and wild-type animals, the differential abundance analysis at the levels of the genus,
order, or phylum did not demonstrate significant differences between the study groups.
The relative abundance was significantly modified by the TAAR9-KO only for one family,
i.e., the family Saccharimonadaceae (p < 0.01, Figure 4a, Supplementary Figure S1). This
sole difference between the study groups did not reach statistical significance after the FDR
adjustment. Despite the demise of statistical significance after the adjustment, the family
Saccharimonadaceae is one of the top 10 families in the TAAR9-KO rats, but it is almost
completely lost in wild-type animals (it is absent in all but one sample, Figure 4b).
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Figure 3. β-diversity among wild-type (WT) and TAAR9-knockout (KO) rats. (a) The comparison of
Bray–Curtis distance among the groups; (b) PCoA of the microbiota composition showing significant
difference (Bray–Curtis distances) between TAAR9-KO and wild-type rats (p = 0.0274); (c) the
hierarchical cluster result of TAAR9-KO and wild-type samples.

3.5. Asv—Amplicon Sequence Variant; KO—TAAR9-KO Group; Wt—Wild-Type Control Group

Because Saccharimonas spp. are considered to be epibiotic bacteria, we performed a correla-
tion analysis between the Saccharimonas genus and other genera identified in TAAR9-KO rat feces.
The richness of the Saccharimonas genus was correlated with the abundance of various species
(Figure S2). The most pronounced correlation levels were identified between Saccharimonas and
Ligilactobacillus (r = 0.957, p = 2.846213× 10−45), Tyzzerella (r = 0.888, p = 3.511427× 10−34), and
an unknown genus of the family Lactobacillaceae (r = 0.953, p = 2.555605× 10−40).
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4. Discussion

TAAR9 expression in the colon was identified previously [12–14]. However, the
biological significance of this receptor in the colon remains uncertain. TAAR9 expression
in colon tissue, particularly in the mouse cecum, was confirmed by the analysis of public
transcriptomic data represented in the Expression Atlas [37] database. The analysis of
TAAR9 co-expressed genes showed the association between TAAR9 expression in colon
tissue and producing the proteins involved in fundamental processes of tissue homeostasis,
including adhesion, cell differentiation, and cell death.

Additionally, a relationship between TAAR9 and proteins involved in membrane
organization, including the SNARE complex, was identified. SNARE complex proteins
contribute to brush border protein trafficking in enterocytes [50] and the secretory function
of L-cells of the colon mucosa [51], and SNARE proteins also contribute to the lipid transfer
through the enterocytes in the small intestine [52]. Moreover, SNARE proteins contribute
to the interaction with extracellular matrix and cell-cell contacts [53]. Interestingly, it was
previously demonstrated that TAAR9 expression may be related to decreased endogenous
cholesterol absorption, biosynthesis, transport, or any other alterations in metabolism [17].

Of particular interest is the TAAR9 co-expression of genes involved in dopaminergic
signaling. The role of another trace amine-associated receptor, TAAR1, in the modulation
of dopamine signaling is well-studied both in the nervous system and outside the neural
tissues [54]. After the dimerization of TAAR1 with the dopamine receptor D2R, dopamine
signaling activity shifts from the β-arrestin-2 signaling pathway to Gi activation [1,55–58]. The
study of TAAR5-KO animals and TAAR5 agonist α-NETA also demonstrated effects of TAAR5
absence on dopaminergic transmission functioning, at least in the central nervous system [59–63].
In contrast, the role of TAAR9 in dopaminergic transmission was not described. The identified
association suggests possible participation of TAAR9 in gut dopamine signaling, although it
cannot explain the mechanism of this participation. It is well established that dopamine in the
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digestive tract is essential for secretion and absorption, mucosal homeostasis, regeneration, and
protection [64,65].

TAAR9 can be activated by various amines, such as N, N-dimethylcyclohexylamine,
N-methylpiperidine, and triethylamine, and polyamines, especially cadaverine, putrescine,
spermidine, and spermine [19–21]. Dietary polyamines are absorbed in the small intestine,
and the gut microbiota, primarily, Bacteroides spp., Fusobacterium spp., and Clostridia [66],
is the major source of polyamines in the lower part of the intestine [22,24,27,67,68]. Polyamine
synthesis pathways seem to be generated in the gut microbial community, where enzymes
produced by different species of bacteria collectively enable the synthesis of polyamines from
precursors [30,69]. The production of polyamines by the gut microbiota likewise depends
on dietary fermentable carbohydrates [27], fibers [68], and proteins [22]. Luminal bacterium-
derived polyamines facilitate colonic epithelial proliferation. The anti-inflammatory role of
bacterium-derived polyamines in the intestinal immune system was also demonstrated [31].
Thus, polyamines have multifactorial effects on biomolecules and the intestinal microbiota.

Polyamines, including putrescine, spermidine, spermine, and cadaverine, in the lower
parts of the intestine are considered to be synthesized by the gut microbiota [70]. These
compounds are involved in the interactions between bacteria and impact intestinal health,
including the maintenance and recovery of colon barrier function [27]. Polyamines regulate
biological processes in cells in different ways, including direct interaction with DNA, RNA,
nucleosomes, inward rectifier K+ (Kir) channel pores or NMDA receptor, β- and γ-phosphates
of ATP, protein kinases, and eukaryotic translation initiation factor 5A (eIF5A) [71,72]. Several
polyamine effects, such as the modulation of immune system activity and inflammation [73]
or protective action from the bacterial toxins in colon mucosa [74], may be significant for host–
microbial interactions in the colon. Many of the predominant species of the indigenous human
gut microbiota are capable of taking up and/or exporting polyamines [72]. On the other hand,
polyamines are also crucial for the virulence phenotype of many bacterial pathogens [74].
The role of GPCR-mediated mechanisms, including TAAR9-dependent signaling regulating
polyamine biological activity (such as polyamine sensing by enterocytes), remains unexplored
and requires detailed investigation in future studies.

The observed changes in the gut microbiota composition may reflect TAAR9 partici-
pation in maintaining the stability of the gut microbial community. Individual variations
were significantly more pronounced in the TAAR9-KO group compared with the wild-type
littermates. The key elements of biodiversity include the richness of local and global species;
genetic diversity of populations and species; the spatial extent and the state of natural habi-
tats; and the functioning of ecosystems that are essential for mankind to survive. Increasing
ecosystem diversity promotes stability through various mechanisms, such as functional
redundancy, broader utilization of available resources, weak among-species interactions
and alternative energy channels [75].

The differential abundance analysis did not reveal any taxa that may be considered as a
biomarker of TAAR9-KO rat fecal microbiota with any statistical significance. However, we
revealed that family Saccharimonadacea and the genus Saccharimonas were represented only
in TAAR9-KO samples and were almost not detected in the samples from wild-type rats.

The family Saccharimonadaceae of the phylum “Candidatus Saccharibacteria” are
considered obligate epibionts on the surface of other bacteria [76] including Bacteroidetes,
Actinobacteria, and Proteobacteria [77]. Saccharibacteria is characterized by small cell size
(200–300 nm in diameter), small genome size, and limited metabolic, especially biosynthetic,
capacities [76–79]. These bacteria produce a variety of catabolic enzymes that degrade com-
plex biomolecules and numerous copies of different ABC transporters [77,80]. Additionally,
the genes predicted to confer resistance to bacterially produced antibiotics were identified
in the genomes of Saccharimonadaceae [80].

Currently, an unambiguous association between Saccharimonadaceae abundance in
the colon microbiota and health status was not identified. Consumption of dietary sup-
plements enriched with natural antioxidants or polysaccharides [81–84], probiotic strain
Lactiplantibacillus plantarum-12 [85], or fecal microbiota transplantation in dysbiotic an-
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imals [85] elevates the abundance of Saccharimonadaceae. Conversely, the abundance
of Saccharimonadaceae decreases in the obese rat [82,86] and was negatively correlated
with non-alcoholic fatty liver disease scores in model conditions [87]. In humans, a high
intake of dietary saturated fatty acids led to the depletion of Saccharimonadaceae in the
gut microbiota [88]. Chronic concurrent exposure to inorganic arsenic and fluoride was
also associated with the loss of Saccharimonadaceae from the gut microbiome in rats [89].
However, Saccharimonadaceae richness decreased after the dietary consumption of pre-
biotic isomaltulose [90], some synbiotic compositions [91], and natural compounds with
restorative strengthening effects [92–94], and it may increase in response to treatment with
carcinogenic compounds [95] or after long-term proton pump inhibitor exposure, which is
damaging for the colonic mucosa [96]. The Saccharimonadaceae family is overrepresented
in patients with lupus erythematosus [97], and carriers of HLA alleles are associated with a
higher risk of autoimmune diseases [98].

Identification of genera that were co-abundant with Saccharimonas sp. in the TAAR9-
KO group could not resolve the controversy regarding the significance of the presence of
candidatus Saccharimonadaceae in the colon. Both genera Ligilactobacillus and Tyzzerella
belong to the phylum Firmicutes, although the impact of these taxa on the host health
is different. Several stains of Ligilactobacillus sp belonging to the Lactobacillaceae fam-
ily demonstrate probiotic properties [99–102]. In contrast, representatives of the genus
Tyzzerella might be pathogenic [103,104] or associated with a high inflammatory back-
ground [105,106].

Polyamines have multiple effects on the intestine epithelium, including host–microorganism
interactions with commensal gut bacteria [27]. It is possible that TAAR9, as a receptor sensitive
to polyamines, is involved in these interspecies communications. The current study identified
some involvement of TAAR9 in intestinal epithelium homeostasis and interaction with the gut
microbiota, although it is not without limitations. GO enrichment analysis in the set of TAAR9
co-expressed genes is based on statistical simulations, so it does not provide information on
the actual role of TAAR9 in the identified biological processes. Moreover, the low depth of 16S
rRNA gene sequencing provides the data for the most abundant bacteria in the samples. As
a consequence, information for rare microbial genera is lost or insufficient. Direct assessment
of the changes in polyamine production in the gut microbial community in response to the
disruption of TAAR9 in rats also was not performed. The differences in microbiome structure
between TAAR9-KO and wild-type littermates also may reflect some changes in the metabolic
or immune status of TAAR9-KO animals instead of the dysfunction of TAAR9-dependent
mechanisms of gut microbial community control. Further examination of TAAR9 function and
TAAR9-KO animals could help to determine the biological base of differences identified in the
present study.

5. Conclusions

In this study, we identified genes co-expressed with TAAR9 in colon tissues, and
several genes were identified that are involved in biological processes associated with
colon epithelium functioning and homeostasis, including dopaminergic transmission. This
association could imply a role of TAAR9 in monoaminergic signaling as was described for
other trace amine-associated receptors such as TAAR1, TAAR2, or TAAR5 [59,107–109].
Additionally, TAAR9 seems to be significant to microbiota homeostasis. In TAAR9-KO rats,
the microbiome structure became more variable than in wild-type littermates. Even though
the alpha diversity was higher in the TAAR9-KO fecal microbial community, no specific
taxa were significantly overrepresented in this group. However, it should be noted that the
family Saccharimonadaceae, which is absent in the wild-type animal microbiome, became
one of the top 10 families in the TAAR9-KO group. As these bacteria are symbionts of
other bacterial taxa, the increase in Saccharimonadaceae abundance in TAAR9-KO rats may
reflect some perturbations in the colon microbial community, which was not investigated in
this paper. Further studies are necessary to reveal the contribution of TAAR9 to peripheral
dopamine signaling and the link between TAAR9 and the intestinal microbial community.



Biomolecules 2022, 12, 1823 10 of 14

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12121823/s1. Figure S1: Cladogram for all subjects and 17 taxa
showing insignificant changes between the wild-type (WT) and TAAR9-KO (KO) rats. Figure S2: Pearson’s
correlation by genus abundance in the fecal microbiome of TAAR9-KO rats. Significant values (p < 0.05)
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