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Abstract: Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) of liquid
biofluids enables the probing of biomolecular markers for disease diagnosis, characterized as a time
and cost-effective approach. It remains poorly understood for fast and deep diagnosis of digestive
tract cancers (DTC) to detect abundant changes and select specific markers in a broad spectrum of
molecular species. Here, we present a diagnostic protocol of DTC in which the in-situ blood-based
ATR-FTIR spectroscopic data mining pathway was designed for the identification of DTC triages
in 252 blood serum samples, divided into the following groups: liver cancer (LC), gastric cancer
(GC), colorectal cancer (CC), and their different three stages respectively. The infrared molecular
fingerprints (IMFs) of DTC were measured and used to build a 2-dimensional second derivative
spectrum (2D-SD-IR) feature dataset for classification, including absorbance and wavenumber shifts
of FTIR vibration peaks. By comparison, the Partial Least-Squares Discriminant Analysis (PLS-DA)
and backpropagation (BP) neural networks are suitable to differentiate DTCs and pathological
stages with a high sensitivity and specificity of 100% and averaged more than 95%. Furthermore,
the measured IMF data was mutually validated via clinical blood biochemistry testing, which
indicated that the proposed 2D-SD-IR-based machine learning protocol greatly improved DTC
classification performance.

Keywords: infrared spectroscopy; blood-based molecular biology; infrared molecular fingerprint;
machine learning; digestive tract cancers

1. Introduction

Digestive tract cancer (DTC) symptoms are usually non-specific and frequently appear
as common symptoms of a benign non-tumor condition, including abdominal pain and di-
arrhea, fever, and sour eructation [1]. They are often diagnosed as emergency presentations
by most general practitioners. Although some are truly linked to a certain early DTC, it’s
often difficult to accurately diagnose in general clinics and health check-ups based on rou-
tine medical examining techniques. With the extensive or excessive use of endoscopy, CT &
MRI, the diagnosis rate of medium and advanced DTCs has significantly increased [2,3].
However, the 5-year survival rate of DTC patients has not distinctly improved over the
decades [4,5]. Therefore, the timely diagnosis of a certain early DTC with non-specific
symptoms, including liver cancer (LC), gastric cancer (GC), and colorectal cancer (CC), is
still challenging and becoming a key strategy for treating cancer. Recent studies have shown
that metabolic characteristics of biomacromolecules, such as protein dysregulation, can be
considered a diagnostic and prognostic marker for early cancer screening [6,7]. Proteins
with tissue or blood cells derived from necrotic and apoptotic processes enter the circulatory
system through active secretion or leakage, which offers a potential means of monitoring
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the early cancer status via probing systemic human biofluids. Tumor metabolism is also
reflected in the fluctuations of the complex structure of carbohydrates. Compared with
tumor biopsy samples, human serum is easily obtained from peripheral blood with less risk
of tumor damage [8,9]. Early cancer screening based on blood biochemistry mainly aims
at a single molecular group for a specific pathological condition, such as measuring some
given proteins mainly consisting of glycoproteins or small molecule metabolites, which
limits its sensitivity and specificity in several respects [10–13].

The infrared spectroscopy of blood-based biopsies has been increasingly applied to
biomedical diagnostics as a time and cost-effective approach. It can provide a molecular
vibrational nature of disease-related changes, potentially regarded as infrared molecular
fingerprints (IMFs) of a certain disease. The Fourier-transform infrared spectroscopy (FTIR)
is widely used in cancer screening, characterized as a simple, label-free, non-invasive
technique. Many potential IMFs for disease diagnostics have been reported (e.g., brain [14],
lung [15], prostate [16], ovarian [17], and breast [18] cancers; metabolic changes related to
health monitoring [19,20]). However, whether IMFs can be systematically used to identify
DTC type, subtype and stage remain poorly understood, impeding their applicability for
DTC. Human blood composition is influenced by many factors, such as physiological
states, age, dietary habits, environmental factors, nutritional status, drug consumption, and
genotypic variation [21,22]. The blood testing approach to specific cancer screening must
take the reference ranges for bio-macromolecular parameters and adequate sample space
into account for determining individual analytes or specific cancer features in a spectral
fingerprint [23]. Hence, evaluating the validity of IMFs and tumor spectral markers is
essential for a better understanding the range of blood-based biological features across
molecular species and for any future application of molecular fingerprinting in cancer
screening or disease detection.

Compared to the transmission mode of FTIR measurement, the attenuated total re-
flection mode of FTIR (ATR-FTIR) is more suitable for investigating the vibrational spec-
troscopy of biofluid samples due to minimizing interference from water molecules. To
obtain the high signal-to-noise ratio of FTIR, the dehydration process of liquid samples
is often performed prior to ATR-FTIR experiments, even though it results in the loss of
in-situ signals and possibly misleading quantitative analysis [24,25]. Synchrotron radiation
(SR) light source has the advantage of brightness at least two or three orders of magnitude
higher than traditional light source (globar), with an improved spectral signal-to-noise
ratio (SNR) of samples [26]. Thus, SR-based ATR-FTIR microscopy facilitates the high-
precision in-situ measurement of fresh samples, especially achieving specific spectrum
collections of microregion-of-interest [27]. With the combination of data mining (DM)
methods, such as principal component analysis (PCA), Hierarchical cluster analysis (HCA),
Partial least squares discriminant analysis (PLS-DA), and machine learning (ML) classifiers,
the FTIR-based intelligent diagnosis has been widely employed into Corona Virus Disease
2019 (COVID-19) screening [28], health monitoring [29], disease detection [30], and food
security. However, to our knowledge, no attempts have yet been made to investigate the
classification, subtype, and stage of different DTCs based on blood-FTIR-based IMFs and
DM algorithms.

In this study, the proposed pathway for multi-dimensional refined diagnosis of DTCs,
as shown in Figure 1, the different data mining techniques using abundant blood-based
ATR-FTIR spectra were combined to reveal multi-dimensional information, helpful for
general practitioners to better understand and determine the diagnostic and therapeutic
strategies of DTC patients. First, Serum was extracted from a blood sample and adequately
used in the measurements of ATR-FTIR microscopy and clinical tumor markers due to
serum consisting of important metabolites such as protein, cholesterol, glucose, urea, and
triglycerides. They potentially provide more impressive information for both spectroscopic
and biochemical tests. Then the SR-based ATR-FTIR microscopy was employed in the
IMF collection of DTC serums. Then the significant changes derived from raw and second
derivative (SD) FTIR signatures related to different DTCs, were extracted and mutually
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confirmed by clinical tumor markers, including alpha-fetoprotein (AFP), carcinoembry-
onic antigen (CEA), carcinoembryonic antigen 125 (CA-125), carcinoembryonic antigen
15-3 (CA-15-3), carcinoembryonic antigen 19-9 (CA-19-9) and carcinoembryonic antigen
724 (CA-724). These key functional groups associated with the connections of potential
FTIR and early clinical tumor markers were revealed and facilitated comprehensive DTC
diagnosis. Importantly, a novel in-situ FTIR feature set, including significant changes of ab-
sorbances and peak positions of lipid, protein, saccharide, and nucleic acid compositions in
the range of 900–3500 cm−1, was proposed to improve the diagnostic level of DTC, involved
in auto-classification, subtypes, and stages. Various multivariate statistical analyses and
ML algorithms with our in-situ combined FTIR feature set were quantitatively compared
to the traditional FTIR feature set. The optimized DM method of FTIR microscopy without
complex sample preparation and testing procedure can be used as a triage tool to provide
additional information to inform referral decisions. It’s a step towards exploring a new
simple, fast diagnostic model of different DTCs, especially for screening early DTCs with
good feasibility in sample preparation and testing.

Figure 1. Serum-based ATR-FTIR spectroscopy testing and data mining pathway for accurate DTC
triages. The DTC patients with non-specific symptoms could be effectively screened, potentially
improving diagnosis efficiency. The different colored symbols (triangles, circles, etc.) represent
different groups.
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2. Materials and Methods
2.1. In-Situ FTIR Measurement

Although the dehydration of samples for FTIR measurements enables the higher
spectral SNR, it usually suffers from the deformation of FTIR profiles to some degree
and the lack of in-situ information, such as native secondary protein structures, decreases
the reliability of the spectral feature dataset. For the collection of in-situ FTIR spectra of
DTCs and to avoid major sample preparation steps and artifacts, each liquid blood serum
sample of 3 µL was directly measured by using an ATR-FTIR spectrometer rather than the
transmission mode of FTIR to better mitigate the absorption effects of water and achieve
high SNR and in-situ FTIR spectra of DTCs (Supplementary Figure S1). It allowed us to
accurately evaluate spectral features caused by abundant constituent variations in DTC
blood serums, properly related to the screening results of clinical tumor markers for mutual
corroboration of data validation (Supplementary Figure S1a). The in-situ aqueous sample
was subjected to differential spectroscopy with the dry sample spectrum. The obtained
differential spectrum (blue) was compared with the pure water spectrum (red), as shown
in Supplementary Figure S1b. It could be observed that the O-H bond in water (3346 cm−1)
and the H-O-H bond (1637 cm−1) combines with the protein, leading to a frequency shift
in the difference spectrum: it is assigned to the N-H stretching vibration in the protein
amide A band (3371 cm−1), protein amide I (1694 and 1613 cm−1) and protein amide II
(1539 cm−1). It can be found that the chemical bonding after water molecule rupture
may bind to the organic components in the pairs of original samples, thus affecting the
data reliability.

2.2. Study Participants

The Ethics Committees from the Central Hospital of Zibo approved the study’s pro-
tocols. This study was conducted on 25 LC subjects, 68 GC patients, 73 CC-diagnosed
patients, and 44 who did not have a clinical diagnosis of cancer (control healthy individ-
ual group). Of note, for patients with DTC, two to three blood specimens from different
infection stages before recovery were collected to enrich and generalize the data set. Con-
sequently, 252 blood serum samples were required in this study. The data collected from
patients involved in this experiment were subject to the Personal Data Act and Act on
Ethical Review for research involving human subjects. All participants were fully informed,
and all of them signed consent forms for this study. The details of the participants are
depicted in Supplementary Table S1.

2.3. Blood-Sample Preparation and ATR-FTIR Spectroscopy

The serum samples were obtained by blood centrifugation under 4000 rpm for 10 min.
Prior to measurement, the serum samples were stored at −80 ◦C to ensure viability. The
experiments were performed on the BL06B line station at Shanghai Synchrotron Radiation
Facility (SSRF, China), and the sera were thawed sufficiently before the experiments. The
beamline is equipped with the FTIR infrared spectrometer, microscope and a 64 × 64 FPA
detector with ATR attachment. An aliquot of 3µL of the serum sample was transferred onto
the ATR crystal for each measurement. Afterward, each spectrum was scanned 32 times
cumulatively, and the spectra between 4000 and 600 cm−1 were collected subsequently.

Meanwhile, the IR spectra of the dried samples were measured. Water absorption
was monitored by OH stretching at around 3300 cm−1 and bending at around 1635 cm−1.
It took about ten minutes for the samples to be sufficiently dried. In addition, trans-
mission mode spectroscopic measurements were performed, where 3 µL of serum was
dropped on a barium fluoride (BaF2) window with a resolution of 4 cm−1, and 64 scans
were accumulated for each spectrum. Prior to data analysis, the raw spectral data were
preprocessed by OPUS software, and all spectra were preprocessed by linear automatic
baseline calibration, smoothing, and normalization. Then, the SD-IR was calculated using
the Savitzky-Golay algorithm.
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2.4. Multivariate and Statistical Analysis

Analysis of variance (ANOVA) [31] is a well-established method to evaluate the
difference in the observed statistics among groups by calculating the F-statistic value. The
larger F-statistic value yields a lower p-value, indicating that the groups are more likely to
differ in this statistic. P was considered significant at 0.05. In this work, the p-value was
used to evaluate the statistical spectral differences of major bands in absorbances of DTC
patients and healthy controls by the software of Origin 2018. Hence, the potential spectral
markers can be primarily identified.

HCA and PCA are widely used unsupervised approaches for analyzing data [32,33].
PCA is a non-parametric method for extracting related information from confusing data
sets and provides dimensionality and variable reduction by maintaining variance [34].
In HCA, the Euclidian distance is calculated to construct the hierarchical structure, in
which root nodes are formed by spectra with the shortest distances, while leaf nodes are
formed by the longest distances. PLS-DA is a supervised chemometric technique whereby
the so-called latent variables are successively extracted to find the maximum correlation
between the X-matrix and Y-matrix [35,36]. Compared with PCA, PLS-DA is more suitable
for identifying the significant wavenumbers for discrimination by inspecting the regression
vector or the VIP.

Due to the category imbalance in examining the differences between patients with
DTCs and non-cancer patients, the synthetic minority over-sampling technique (SMOTE)
sampling method was used throughout the study to ensure that there was no bias in
the model [37]. SMOTE is a modification of the random oversampling algorithm. It is a
classical method for solving the categorical sample imbalance problem, which finds the
k-nearest samples of each sample in the imbalance category by computing the Euclidean
distance [38,39]. Subsequently, ML techniques are applied to the spectral datasets [40].
10-fold cross-validation is used to test the accuracy of the algorithm. The data set is divided
into ten parts, nine of which are used as training data and one as test data. The average of
the correctness of the ten results is used as an estimate of the accuracy of the algorithm. This
approach aims to identify the signals of cancer from a known patient cohort to develop a
trained classification model and then use this information to predict the presence of cancer
in an unknown population [41,42].

3. Results

To investigate whether the serum-based ATR-FTIR spectroscopy is capable of re-
fined diagnosis of DTC, we measured the in-situ FTIR spectroscopic variabilities of liquid
blood serum in the range from 900 to 3500 cm−1, including spectral peak absorbance and
wavenumber-shift, which were quantitatively analyzed to reveal spectral markers and
comprehensively used to build the multivariate feature dataset of ML for identification of
different DTC types, subtypes or stages.

3.1. Spectrally Resolved Band Assignments and Differential Interpretation of DTCs

To minimize the influence of individual differences, the averaged spectra and extracted
ATR-FTIR obtained IMFs of four groups of blood serum samples. They showed the
representative absorption bands of nucleic acid, carbohydrates, proteins, and lipids related
to DTCs (Figure 2a). The SD-IR were calculated to sensitively reveal the variations of
vibration-absorbed bands of biomacromolecules dominated by amide bands, including
amide A (3365 cm−1), amide I (1639 cm−1), amide II (1544 cm−1) and amide III (1240 cm−1)
attributed to the vibrations of protein backbone (Figure 2b). Compared to the control
group, it’s found that the amide I band of DTC were all significantly redshifted by 2 cm−1,
indicating variations of protein secondary structures (p < 0.001 in Table 1). The amide II
band of CC has a significant redshift of 10 cm−1, and its absorbance also is lower than
others (p < 0.001, Table 1). The CH2 bending, COO− stretching, and OH bending vibrations
centered at 1455 cm−1, 1398 cm−1, and 1354 cm−1 with significant changes related to
carboxylate. The peaks at 1309 cm−1, 1166 cm−1, and 1082 cm−1 reflected the CH bending,
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C-O-C stretching and PO2− stretching vibrations, respectively, linked to the characteristics
of nucleic acid. The NH-C=O vibration at 1117 cm−1 originated from the carbohydrate
ring, which helps understand the glycoprotein variations. Moreover, major molecular
vibrations produced a series of peaks around 2965 cm−1, 2925 cm−1, 2857 cm−1, and
1741 cm−1, respectively, derived from the symmetric and asymmetric CH3, CH2, and C=O
stretching vibrations. It reflected the characteristic variations of main lipids. Generally, we
found that the original spectra had quantitative variations of integrated band locations
and relative absorbance between DTC and control groups (p < 0.01, Table 1), indicating the
significant changes in IMFs of bio-macromolecular conformations. Some spectral peaks
were potentially associated with clinical DTC tumor markers.

Figure 2. ATR-FTIR profiles of different liquid DTCs, including three types of LC, GC, CC, and
control serum samples and its signature analysis of DTCs. (a) Average original spectra of DTCs
and control samples, annotated with absorption peaks of major molecular vibrations: ν stretching,
δ bending, s symmetric, and asymmetric vibrations. (b) Average SD-FTIR spectra of DTCs and
control samples, characterized by the variations of positions and relative contents of significant
molecular compositions.

Table 1. Standardized spectra: Distribution and statistical comparison of DTC and control spectra in
terms of band position and relative absorbance.

Assignments
Band Locations/(cm−1) Relative Absorbance (a.u.)

LC (p) GC (p) CC (p) Control LC GC CC Control

amide A 3366.2 (**) 3364.2 3364.2 3346.3 1 1 1 1
νas (CH3) 2962.4 (***) 2956.7 (**) 2960.6 (***) 2954.8 1.06 1.12 0.94 1.07
νas (CH2) 2927.8 (**) 2925.8 2923.9 (**) 2925.8 1 1.06 0.82 0.83
amide I 1637.5 1639.4 (**) 1638.2 (*) 1637.6 1 1 1 1
amide II 1548.8 (**) 1544.9 (**) 1554.5 (***) 1546.9 0.98 1.04 0.79 1.03
δ (CH2) 1456.2 (***) 1455.6 (***) 1460.0 (***) 1452.3 1.11 1.05 0.83 0.83

νs (COO−) 1400.0 (***) 1398.3 (**) 1402.2 (***) 1397.6 0.95 1.05 0.73 1.02
amide III 1315.4 (***) 1309.6 (**) 1313.4 (***) 1311.5 0.93 1.26 0.73 1.02

νas (PO2−) 1245.9 (**) 1247.9 1244.0 (***) 1247.2 0.87 1 0.67 0.91
νs (C-O-C) 1168.8 (**) 1164.9 (***) 1167.3 (*) 1166.9 0.83 1 0.67 0.91
νs (PO2−) 1089.7 (**) 1083.9 (***) 1081.8 (***) 1091.6 0.92 1 0.58 0.91

Liver cancer (LC), gastric cancer (GC), and colorectal cancer (CC). ν stretching, δ bending, s symmetric, as
asymmetric vibrations. Statistical differences were compared between DTCs and the control group using ANOVA.
* p < 0.05, ** p < 0.01, *** p < 0.001.
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3.2. Comparison of FTIR Spectral and Clinical Tumor Marker Screening

Tumor markers are clinically detected by serum biochemistry due to abundant serum
proteins, including human serum albumin (HSA), immunoglobulin (IG), transferrin, and
α-antitrypsin. There are three types of test items related to proteins, binding proteins,
peptides, and carbohydrates according to their chemical properties listed in Table 2 in
detail. CEA was a part of the IG family, the CA series reflected the metabolism of transferrin
and carbohydrates, and AFP was attributed to HAS, denoted as a protein-based marker.
The connection of test items and SD-IR spectra was mainly determined by the structural
formula and main functional groups, and both testing results were mutually corroborated
in Table 2. The spectra of function groups exhibited more specificities in both absorbance
and wavenumber shift, suggesting the changes in substance concentration and transitions
in protein secondary structures. The δ(N-H) and ν(C-O-H) absorption bands were found at
1508 cm−1 and 1040 cm−1 in the DTC spectra with average blue-shifts of 1.8 cm−1 compared
to the control group, and the relative absorptions of LC and GC increased by 4.2% and 4.5%,
agreement with the clinical results of CEA test. However, the spectral variations provided
more abundant information in the early stage than that of serum biochemistry. The vs(NH-
C=O) and δout(N-H) originated from the sugar ring at 1117 cm−1, 986 cm−1 were derived
from the effect of glycosylation, and blue-shifts of 3 cm−1 approximately occurred in DTCs.
The significant increases were consistent with the excessive results of the series CA test,
especially associated with abnormal CA19-9 levels in biochemical tumor markers in LC and
GC. Notably, LC produced a red-shift at 1639 cm−1, and a significant absorbance increase
occurred up to 100% attributed to v(C=O) from the vibration of the α-folded structure
in HSA. This finding was also associated with the elevated clinic level of AFP, which
could be regarded as a spectral tumor marker of LC. In addition, the obvious variations in
the SD-IR spectra, including vas(C-O-C) at 1166 cm−1 from phospholipids, triglycerides,
and cholesterol esters and vas/s(CH2) at 2925 and 2898 cm−1, indicated that the possible
conformational changes in the lipid composition were closely related to DTC metabolism.

Table 2. Comparison and connection of clinic biochemistry and FTIR measurement for serum samples
of DTCs.

Serum Biochemistry
Structural
Formula

Function
Groups

LC GC CC

Test
Item

Reference
Range Results FTIR

Band (∆)
Absorb

(%)
FTIR

Band (∆)
Absorb

(%)
FTIR

Band (∆)
Absorb

(%)

CEA 0–5
ng/mL

LC: 1.37 (±0.07)
GC: 34.83 (±0.12)
CC: 68.70 (±0.25)

δ(NH)

ν(C-O-H)

1508.1↑

1041.9↑

0.74↑

0.68↑

1508.0↑

1039.7

0.72↑

0.69↑

1508.1↑

1041.2↑

0.73↑

0.68

CA 0–35
U/mL

LC: 54.74 (±0.21)
GC: 201.02 (±0.63)
CC: 423.79 (±0.47)

νs(NH-C=O)

δout(NH)

1119.4↑

984.8↑

0.68↑

0.70↑

1119.4↑

986.1↑

0.67↑

0.69↑

1118.2↑

986.1↑

0.66↑

0.70↑
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Table 2. Cont.

Serum Biochemistry
Structural
Formula

Function
Groups

LC GC CC

Test
Item

Reference
Range Results FTIR

Band (∆)
Absorb

(%)
FTIR

Band (∆)
Absorb

(%)
FTIR

Band (∆)
Absorb

(%)

AFP 0–9
ng/mL LC: 701.01 (±0.52) ν(C=O) 1638.2↓ 0.02↑

Liver cancer (LC), gastric cancer (GC), and colorectal cancer (CC). Carcinoembryonic antigen (CEA), carcinoembry-
onic antigen (CA), alpha-fetoprotein (AFP). Results are in mean (standard deviation); major molecular vibrations:
ν stretching, δ bending, s symmetric, as asymmetric vibrations and out out-plane; (∆) are compared to controls in
frequency shift, “↑” in the column of (∆) represents blue-shift: moving towards high wave number, “↓” in the
column of (∆) represents red-shift: moving to a lower wave-number direction; Changes (%) are compared to
controls in average band absorbance, “↑” in the column of (%) represents increased change and “↓” in the column
of (%) represents decreased change. The details of the spectral change are depicted in Supplementary Table S2.

3.3. IMF-Based Identification of DTCs

There were more abundant quantitative variations of fine band locations and rela-
tive absorbance in SD-IR spectra between IMFs of DTC and control groups (p < 0.001,
Supplementary Table S2), suggesting definite transitions in protein secondary structures
and significant changes in functional groups. It’s usually used to identify disease status
by combining these spectral variations into a multivariant absorbance dataset in conven-
tional unsupervised classification approaches, such as PCA and HCA. Both methods were
employed in the absorbance dataset of SD-IR spectra to identify different types of DTCs
(Supplementary Figure S2). The results showed that PCA and HCA classified different
DTCs, and the HCA performed better than PCA because of the use of IMFs for HCA. For the
specificity of the dataset, the SD-IR dataset is better than that of the raw spectral dataset in
the range of 900–3300 cm−1, and the dataset of the IMF band in the range of 1200–1700 cm−1

is superior to that of the full spectral band. To further improve the identification accuracy
of DTCs, the supervised classification methods and different datasets of ATR-FTIR were
employed and compared to choose the best pathway of diagnostic feasibility. We combined
the raw IR data and SD-IR data into the extending multi-dimensional dataset (combined
data), which was evaluated by eight different classification methods: back propagation (BP)
neural network, K-nearest Neighbor (KNN), random forest (RF), decision tree (DT), and
logistic regression, support vector machine (SVM), multiple linear regression (MVLR), and
PLS-DA. Each dataset was subsequently downscaled by PCA; 70% training and 30% test
sets were created during each iteration, and the prediction performances were estimated
by applying 10-fold cross-validation. The comparison of classification accuracy showed
that the PLS-DA model based on the combined data performed with an accuracy of 100%,
and the performance of SD-IR data was overall better than that of raw IR data due to the
more abundant spectral variations in SD-IR data (Table 3).

Hence, we adopted the PLS-DA method to identify different DTC types with all serum
samples of DTCs (Figure 3). The latent variables (LV) of PLS-DA with cross-validation
were down-dimensioned by LV scores into three principled variables. Then R2Y and Q2

values were used to evaluate the fitting effect of the PLS-DA model. R2Y denotes the
percentage of Y-matrix information that the PLS-DA classification model can explain, and
Q2 is to evaluate the predictive ability of the PLS-DA model. They were evaluated by
R2Y values (0.991, 0.977, and 0.997) and Q2 values (0.775, 0.752, and 0.781), respectively.
Generally, R2Y close to 1 and Q2 > 0.5 is recognized as well-predictive model predictability.
The regression vectors of each selected variable (LV loadings) and the importance of the
corresponding variables were visualized in pseudo-color based on the VIP in Figure 3a. The
VIP scores were shown in Supplementary Figure S3a and evaluated by the prediction error
rates using three cross-validation methods, all exhibiting good predictability of this model
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(Supplementary Figure S3b). Subsequently, it indicated that VIP > 1 preferred to assess
the impact of every single variable in the model, and then the most discriminating bands
of LC located at 1683, 1640, 1514, 1086, and 1026 cm−1. Similarly, the most discriminative
frequency bands of GC are located at 1686, 1655, 1563, 1515, 1356, and 1202 cm−1. The band
of CC is located at 1773, 1742, 1714, 1470, 1062, and 1038 cm−1. This finding is probably
consistent with the sub-peaks correspondence in the SD-IR spectrum of LC, GC, and CC, as
shown in Supplementary Table S2. The area values under the curve (AUC) were calculated
with 0.9868, 0.9712, and 0.9853, respectively, shown in Figure 3b. Therefore, the PLS-DA
model combined with ATR-FTIR data could yield good sensitivity and specificity when the
appropriate AUC threshold was selected as AUC > 95% in this study (CI: 0.9703~0.997).

Table 3. Comparison of classification accuracies of methods based on different feature datasets.

Methods
Accuracies of Classification

Raw IR Data (%) SD-IR Data (%) Combined Data(%)

BP 72.3 (±0.31) 91.4 (±0.24) 97.1 (±0.11)
KNN 81.1 (±0.14) 85.6 (±0.09) 93.8 (±0.06)

RF 76.3 (±0.18) 87.0 (±0.13) 92.7 (±0.03)
DT 73.0 (±0.26) 84.5 (±0.14) 92.7 (±0.19)

Logistic 71.1 (±0.29) 85.6 (±0.26) 96.6 (±0.06)
SVM 74.5 (±0.15) 82.4 (±0.13) 97.7 (±0.19)

MVLR 87.5 (±0.09) 96.4 (±0.04) 100.0 (±0)
PLS-DA 88.2 (±0.05) 97.9 (±0.02) 100.0 (±0)

Backpropagation (BP) neural network, K-nearest Neighbor (KNN), random forest (RF), decision tree (DT),
logistic regression, support vector machine (SVM), multiple linear regression (MVLR), and partial least squares
discriminant analysis (PLS-DA). % are classification accuracies (standard deviation).

To further optimize the identification protocol of DTC and further explore the rela-
tionship between subtle changes in serum ATR-FTIR spectra and the detection of early
diagnostic markers of DTC, multivariate analysis was performed on four spectral ranges
of second-order leads. We carried out the PLS-DA classification with combined data
respectively in four spectral ranges, including 2800–3300 cm−1 (mainly caused by lipid
hydrocarbon chains), 1600–1700 cm−1 (protein amide I bands), 1400–1500 cm−1 (asso-
ciated with immunoglobulin IgG) and 1200–1400 cm−1 (from lipids, proteins, nucleic
acids and other biomolecules, such as the overlapping contribution of glycosaminogly-
cans, immunoglobulin m). The classification results obtained by the PLS-DA method
are shown in Figure 3c–f. It can be found that the accuracies of 1600–1700 cm−1 and
1400–1500 cm−1 regions achieved up to 100% (Figure 3d,e), benefited from the abundant
subtle spectral changes and DTC-related information in the range of IMF. In addition, the
classification accuracy reached 91% for the 2800–3300 cm−1 region (Figure 3c) and 95% for
the 1200–1400 cm−1 region (Figure 3f). The results demonstrated that the PLS-DA with
combined data of IMFs exhibited the potential feasibility of identifying different DTCs.
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Figure 3. Classification performances of the PLS-DA model for each DTCs vs. controls. (a) Regression
vectors for LC, GC, and CC classification, respectively. Different ranges of VIP values are shown
in different colors. VIP = variable effect on projection. (b) ROCs plot of DTC samples (external)
versus model output (internal). AUC = area under the curve. (c) 3300–2800 cm−1 (mainly caused
by lipid hydrocarbon chains), (d) 1700–1600 cm−1 (protein amide I bands), (e) 1500–1400 cm−1

(associated with immunoglobulin IgG), and (f) 1200–1000 cm−1 (from lipids, proteins, nucleic acids,
and other biomolecules).

3.4. Machine Learning for Classification of Different Pathological Stage

The above-presented protocol has great potential in identifying different DTC groups
(LC, GC, CC groups) and control groups. However, it’s difficult to obtain satisfactory results
for different disease stages of a single DTC group due to their highly similar spectra of lipid,
protein, sugar, and nucleic acid components in the range of 900–3500 cm−1. Each group of
DTC staging was divided into three different stages, including nonspecific symptom, cancer,
postoperative, and control, namely the 1–4 class. Information on the specific subgroups
is shown in Supplementary Table S1. To extend the architecture of the feature dataset
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(from 1-dimensional (1D) to 2-dimensional (2D)) and introduce more differential spectral
information, we noticed that the small spectral changes of DTCs provided by ATR-FTIR
spectroscopy, including relative absorbance and wavenumber shift, are capable of building
2D feature dataset of ML to improve the ability of stage identification in a single DTC
group. For conventional feature dataset architectures based on the absorbance variations
of IR or SD-IR spectra, the absorbance eigenvalues are only used to construct feature
datasets, discarding the wavenumber shift features due to IMF distortion caused by sample
dehydration. Therefore, the in-situ synchrotron-based ATR-FTIR dataset was employed in
building four types of feature sets (IR absorbance, IR absorbance + shift, SD-IR absorbance,
SD-IR absorbance + shift) and respectively using eight different ML modes for a group of
DTC staging classifications related to DTCs (Supplementary Table S3). The accuracy of
the 2D feature dataset was greatly improved by nearly 20% compared to the conventional
1D feature dataset of IR or SD-IR (Supplementary Figure S4, Figure 4). The BP method
exhibited good overall performances with respect to the accuracy and stability in all three
groups. The in situ 2D-SD-IR-BP-based ML protocol was performed for the application of
stage classification (Figure 4). It was found that the accuracy reached above 95.0% for all
three groups, superior to conventional 1D-SD-IR-BP-based ML.

Figure 4. Confusion matrix of the prediction accuracy for SD-IR-based blood of DTC stages.
(a–c) Prediction reports for the SD-IR absorbance feature dataset from patients with DTCs.
(d–f) Prediction results of the optimized SD-IR absorbance + shift feature dataset. The 2D-SD-IR-BP
algorithm exhibited the best performance. 1–4: represent detailed staging of patients with DTCs from
Supplementary Table S1, respectively.
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4. Discussion

Compared to clinical blood biochemistry focusing on the defined analytes, in-situ
blood ATR-FTIR measurements can spectral characterize all classes of biomolecular species
related to changes in metabolic reaction products and enzyme activities in serum. The
IMFs enable the probing of potential spectral markers for early screening of DTCs, as
our proposed data mining protocol suggested. Especially, the synchrotron-based ATR-
FTIR was applied to native liquid serum samples to quantitatively analyze in-situ spectral
features with adequate SNR benefitted from high brilliance IR source. Furthermore, we
demonstrated that many IMF markers defined by VIP scores (greater than 1.0) and extracted
by R2Y and Q2 values exhibited good specificity and partially agreed with the blood
analytes routinely examined in the clinical laboratory. Our findings lay the foundation for
the optimization of disease-specific IMF auto-classifications.

The proposed blood ATR-FTIR data mining protocol exhibited excellent performance
for different aspects of diagnosis related to DTCs. It demonstrated that (a) in-situ blood-
based ATR-FTIR spectra are essential for building a 2D feature dataset for machine learning,
avoiding uselessness of wavenumber shifting distorted by dehydration, (b) IMFs in the
range of 1700–1400 cm−1 are effectively measurable by ATR-FTIR and provide abun-
dant specific diagnostic information, (c) according to the similarity of DTCs, the PLS-DA
and BP ML methods were optimized respectively for inter-group and intra-group clas-
sification, (d) SD-IR data is superior to IR data for extraction and utilization of small
bio-macromolecular changes (Figure 4 vs. Supplementary Figure S4). Therefore, the find-
ings are helpful for the exploration of auto-identification feasibility for different levels of
DTC diagnosis.

1D-SD-IR-based absorbance dataset is insufficient to distinguish the staging of a
certain DTC. Exploring 2D or multi-dimensional feature sets is necessary to improve the
classification performance of complex sample systems. For our in-situ serum FTIR data, the
quantitative extractions of absorbance and wavenumber shift of vibration peaks guaranteed
the construction of the 2D-SD-IR-based dataset for the comprehensive diagnosis of DTCs
by setting the reference point of 1000 cm−1. Then all changes in band locations can be
calculated and combined with the differences in absorbances to form the 2D-SD-IR-based
feature dataset. It’s helpful to explore the molecular information at the different staging
of DCT via incorporating multivariate analysis. Using the selected DM methods, such as
PLS-DA and BP ML classifiers, the identifications of inter-group and intra-group (stages)
of DTCs achieved a satisfactory sensitivity and specificity performance.

5. Conclusions

In this proof-of-concept study, we presented a methodology of comprehensive DTC
diagnosis using in-situ blood-based ATR-FTIR spectroscopy, which optimized a data mining
protocol via determination of IMFs, 2D-SD-IR-based feature dataset, classification method,
multi-dimensional sample space of DTCs. Taken together, the measured IMFs were linked
to the clinical testing results, and the fast and deep spectral diagnosis indicated a step
in translating ATR-FTIR into the clinic. There is potential to apply the FTIR-based ML
diagnosis to aid the clinical decision as a triage method for DTCs, extending to early cancer
screening, health monitoring, disease detection, and food safety. Identifying early DTCs or
referral decisions is essential, usually unmet by the current diagnostic pathway.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom12121815/s1, Tables S1–S3; Figures S1–S4. Supplementary Table S1:
Retrospective patient subdivision of cohort with information on DTC classification. Supplementary Table S2:
SD-IR spectra: Distribution and statistical comparison of DTC and control spectra in terms of band
position and relative absorbance. Supplementary Table S3: Accuracy of results obtained using
multiple multivariate methods. Supplementary Figure S1: Optimization of FTIR experimental
technical route. (a) Selection of the suitable ATR-FTIR mode by comparing the results of transmission
(TR) and attenuated total reflection (ATR) measurement modes. (b) Spectral comparison of the
in-situ and dried serum samples and the difference between the in-situ and dried serum sample

https://www.mdpi.com/article/10.3390/biom12121815/s1
https://www.mdpi.com/article/10.3390/biom12121815/s1
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spectra (subtraction) was compared with pure water samples. Our testing results demonstrated
that ATR-FTIR was more suitable for liquid biofluids than TR-FTIR with heavy flat and noisy peaks,
and dehydration of sample caused the lack of in-situ information, not only H2O. Supplementary
Figure S2: Due to the similarity of the normalized serum-based attenuated total reflection mode
of FTIR (ATR-FTIR) spectra in the range of 900–3500 cm−1, principal component analysis (PCA)
downscaling was performed to identify serum samples of DTCs. In terms of PCA classification,
the first two PCAs were used for multivariate data sets, and their fractional plots showed different
classification results, as shown in (a, b). It could be seen that the infrared spectra (SD-IR) based
PCA classification was outperformed the infrared spectroscopy (IR)-based classification, which was
almost unidentifiable in (a). The DTC serum samples were virtually discerned with the exception of
a very limited amount of data points shown by arrows in (b). Hierarchical cluster analysis (HCA)
classification of DTC motifs was carried out using the minimum distance method and the Euclidean
distance based on second derivative SD-IR. Most of the DTC samples were accurately clustered,
except for only six misclassifications, shown in (c). This indicated that PCA and HCA had the ability
of both unsupervised methods to classify DTCs before blood-based tests, and that HCA performs
slightly better than PCA. The results of the two unsupervised methods showed the potential feasibility
of ATR-FTIR to identify patients with different DTCs, while the supervised learning method with
labeled datasets may provide more profound information. Corresponding to these three groups filled
with different colors. 1 = LC; 2 = GC; 3 = CC; 4 = controls. Supplementary Figure S3: (a) Variable
importance in projection (VIP) score plot. (b) Error bars were made for the prediction error rate as a
function of the number of latent variables. Three most frequent cross-validation (CV) methods: leave-
one-out (LOO), 7-fold and 10-fold were used to determine the optimum number of latent variables
by means of the prediction error rate. Supplementary Figure S4: Confusion matrix of the prediction
accuracy for IR-based blood of DTC stages. (a–c) Prediction reports for the IR absorbance feature
dataset from patients with DTCs. (d–f) Prediction results of the optimized IR absorbance + shift
feature dataset. Class 1–4: represent different staging of patients related to DTCs detailed seen in
Supplementary Table S1, respectively.
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