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Abstract: RNase Y is a crucial component of genetic translation, acting as the key enzyme initiating
mRNA decay in many Gram-positive bacteria. The N-terminal domain of Bacillus subtilis RNase Y
(Nter-BsRNaseY) is thought to interact with various protein partners within a degradosome complex.
Bioinformatics and biophysical analysis have previously shown that Nter-BsRNaseY, which is in
equilibrium between a monomeric and a dimeric form, displays an elongated fold with a high content
of α-helices. Using multidimensional heteronuclear NMR and AlphaFold models, here, we show that
the Nter-BsRNaseY dimer is constituted of a long N-terminal parallel coiled-coil structure, linked by
a turn to a C-terminal region composed of helices that display either a straight or bent conformation.
The structural organization of the N-terminal domain is maintained within the AlphaFold model of
the full-length RNase Y, with the turn allowing flexibility between the N- and C-terminal domains.
The catalytic domain is globular, with two helices linking the KH and HD modules, followed by the
C-terminal region. This latter region, with no function assigned up to now, is most likely involved in
the dimerization of B. subtilis RNase Y together with the N-terminal coiled-coil structure.

Keywords: RNase Y; ribonuclease; NMR; AlphaFold; coiled-coil; structure; dimerization

1. Introduction

In bacteria, gene expression in response to different environmental conditions is
controlled by the fluctuation of messenger RNA (mRNA) transcript abundance [1–3]. The
rapid mRNA turnover rate in bacteria (average half-life of several minutes) relies on the
synthesis and degradation rates of each mRNA. RNases, responsible for RNA degradation,
can be either very specific for their RNA substrate or be involved in bulk RNA turnover.
The major RNases involved in bulk RNA turnover generally form multi-protein complexes
for efficient and regulated degradation, which are called RNA degradosomes [4]. While
most RNA synthesis machinery is similar in Gram-negative and Gram-positive bacteria, the
machinery for bulk RNA degradation is quite different. In Escherichia coli, the well-studied
hydrolytic endoribonuclease RNase E plays a major role in mRNA degradation and RNA
processing [5], whereas RNase Y is one of the key enzymes directing RNA metabolism in
Bacillus subtilis [6] as well as in other low-GC Gram positive species [7], including many
pathogens [8–10]. Moreover, RNase Y was shown to be necessary for the full virulence of
several Gram-positive bacterial pathogens [8,11]. Studying the function and structure of
RNase Y is not only crucial to understand RNA metabolism in the many eubacteria that,
unlike E. coli, do not rely on RNase E-based strategies of RNA degradation/maturation,
but also to consider whether RNase Y could be targeted for the development of new
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antimicrobial agents against Gram-positive bacteria in the future, since RNase Y orthologs
do not exist in eukaryotic cells.

While RNase Y and RNase E share many functions [12], they display only low sequence
similarity (Figure 1). E. coli RNase E (1061 amino acids; 118 kDa) is composed of two major
domains: the N-terminal domain that bears the endoribonuclease activity [13–15] and the
C-terminal scaffolding domain that organizes the RNA degradosome [4,16–18] (Figure 1A).
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Figure 1. Comparison of the domain organization of E. coli RNase E and B. subtilis RNase Y.
(A) Schematic representation of E. coli RNase E showing the interactions with proteins from the
degradosome machinery (adapted from [19]). RBD and AR2 are arginine-rich RNA-binding domains
flanking the RhlB (helicase) binding site and MB are membrane-binding domains. (B) Schematic
representation of B. subtilis RNase Y. The catalytic domain contains KH and HD motifs. The KH
homology module is a widespread RNA-binding motif, whereas the HD motif is characteristic of a
superfamily of metal-dependent phosphohydrolases. TM is the transmembrane sequence. In this
figure, the delimitation of the domains is based on the amino acids sequence.

This latter domain is intrinsically unstructured and unlikely to be extensively folded
within the degradosome complex, except for a few microdomains that are conserved
among RNase E orthologs [20,21]. The C-terminal microdomain, called the membrane
targeting sequence, forms an amphipathic helix that interacts with the membrane [22].
Other conserved microdomains, ranging from 20 to 70 residues in size, are binding sites
for RNA substrates and other protein components of the degradosome [20], including
enolase [23,24] and PNPase [25]. B. subtilis RNase Y (529 amino acids; 58.9 kDa) is much
shorter than E. coli RNase E and its catalytic domain is located at the C-terminus [12]. A
transmembrane (TM) region, anchoring the protein to the membrane, is followed by the N-
terminal domain and the C-terminal domain, itself composed of the catalytic domain with
KH [26] and HD modules [27] and a C-terminal region of unknown function (Figure 1B).

Interestingly, RNase E was recently shown to be able to replace RNase Y in B. subtilis
in vivo [28]. Efficient complementation of the B. subtilis ∆rny strain required RNase E to be
localized to the inner membrane, while truncation of the C-terminal domain corresponding
to the degradosome scaffold had only a minor effect.

The three-dimensional (3D) structure of RNase Y remains unknown. B. subtilis RNase
Y lacking the TM region has previously been purified and analyzed by sedimentation
velocity analytical ultracentrifugation, which showed that it is divided into an aggregated
form and a mixture of dimers and tetramers [29]. The analysis of the interaction of the
isolated domains (TM, N-terminal, and C-terminal) with each other, using a bacterial
two-hybrid system [30], revealed that only the TM and the N-terminal domains showed
self-interactions [12], suggesting that they were major contributors to the oligomerization of
RNase Y. Although some bioinformatic programs (PONDR-FIT and metaPrDOS) predicted
that the N-terminal domain is intrinsically disordered, others, such as COILS [12] or Lupas’
algorithm [31] (Figure S1A,B) indicated that it is organized mainly as α-helices, adopting a
flexible coiled-coil-like structure. In Lupas’ coiled-coil prediction [31], the probability of
the N-terminal domain to form a coiled-coil structure was higher than 80% for residues
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30–103, whatever the parameters used, and higher than 50% or 90% for residues 104–153.
In addition, the protein fold recognition servers PSIPRED, PHYRE2, and the consensus
secondary structure prediction server NPS@ predicted that the N-terminal domain adopts
a helix-type secondary structure over almost the entire sequence (Figure S1C–E).

We recently produced the N-terminal domain as a stand-alone protein called Nter-
BsRNaseY and characterized its secondary structure by circular dichroism (CD) spec-
troscopy, size exclusion chromatography coupled with multi-angle light scattering (SEC-
MALS), and size exclusion chromatography coupled with small-angle X-ray scattering
(SEC-SAXS) [32]. Monitoring the weight-averaged molar mass as a function of protein
concentration showed that the dimeric form of Nter-BsRNaseY is in equilibrium with a
monomeric form, with a dissociation constant Kd of 1.3 µM. Nter-BsRNaseY was bound as
a monomer when complexed with Fab (fragment antigen binding), which suggested that
dissociation of the dimer could occur upon binding a protein partner [32]. Moreover, the
dimer was shown to display an elongated form and a high content of α-helices [32].

B. subtilis RNase Y has been proposed to participate, together with polynucleotide
phosphorylase PNPase, helicase CshA, and the glycolytic enzymes 6-phosphofructokinase
and enolase in a multiprotein complex [33–38], similar to the RNase E-based degradosome
in E. coli (Figure 1). Whereas PNPase is an RNA 3′ exoribonuclease and helicases are
known to play important roles in remodeling RNA molecules, the function of the gly-
colytic enzymes within the complex is more elusive. Enolase is one intracellular/surface
moonlighting protein present in many species, including eukaryotes and prokaryotes [39].
Inside the cell, it catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate
in glycolysis. Yet, in some species, enolase is displayed on the cell surface, which allows
it to play a role in bacterium–host interactions [40] by binding to host proteins such as
plasminogen [41] and fibronectin [42]. It has been suggested that the N-terminal domain
of RNase Y is the key element for assembling a degradosome complex in B. subtilis [33],
similar to the C-terminal domain of RNase E in E. coli [41]. Therefore, as a first step to
understand the functional importance of the N-terminal domain, here, we studied the
structure of Nter-BsRNaseY using multidimensional heteronuclear NMR and the structure
prediction algorithm AlphaFold [43]. Moreover, we also discuss the model of the full-length
protein predicted by AlphaFold.

2. Materials and Methods
2.1. Prediction of the Secondary Structure of Nter-BsRNaseY

The secondary structure of Nter-BsRNaseY was analyzed with the protein fold recog-
nition servers PHYRE2 (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index,
accessed on 22 September 2022) [44], PSIPRED (https://bio.tools/psipred, accessed on
22 September 2022) [45], and the consensus secondary structure prediction server NPS@
(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_seccons.html,
accessed on 22 September 2022) [46]. The coiled-coil structure was predicted using
(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_lupas.html, ac-
cessed on 22 September 2022) either with or without a weight of 2.5 for positions ‘a’ and
‘d’ of the heptad repeat for windows of 14, 21, and 28 residues, knowing that the use of a
weight for certain residues increases the prediction for a dimerization interface centered on
these residues. The helical wheel plots were drawn with DrawCoil 1.0 [47].

2.2. Three-Dimensional Structure Prediction of Nter-BsRNaseY and Full-Length RNase Y
Using AlphaFold

The AlphaFold models of Nter-BsRNaseY and full-length RNase Y were calculated
for the untagged proteins with the Google Colab platform and AlphaFold2_advanced op-
tion https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/
AlphaFold2_advanced.ipynb#scrollTo=ITcPnLkLuDDE, accessed on 22 September
2022 [43,48] that does not use templates (homologous structures) and refined using the
Amber-relax option to enhance the accuracy of the side chains’ geometry. The default
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mode of sampling options was used: num_models = 5, ptm option, num_ensemble = 1,
max_cycles = 3, tol = 0, num_samples = 1. The models were ranked according to their pre-
dicted local-distance difference test (pLDDT) confidence values (between 0 and 100, from
low to high confidence). In the AlphaFold model file, the B-factor column for each residue
is populated with its pLDDT value. For dimer prediction, a 1:1 value was input as the
homo-oligomer assembly option. The structure figures were drawn with PYMOL [49].

2.3. Production of Nter-BsRNaseY

Methods for cloning the coding sequence corresponding to Nter-BsRNaseY (amino
acids V24 to N192 of B. subtilis RNase Y), appended with a C-terminal hexahistidine tag,
were described previously, as well as the production and purification of the protein [32].
Protein elution was followed by the optical density at 230 nm because of the absence of
aromatic residues in the Nter-BsRNaseY sequence.

2.4. Culture and Purification of 15N-Labeled and 13C-15N-2D-Labeled Nter-BsRNaseY

For preparation of 15N-labeled Nter-BsRNaseY, cell growth was performed in 1L
M9 minimal medium containing 15N-labeled NH4Cl, supplemented with 2 mM Mg2SO4,
4 g/L glucose, 10 µM CaCl2, 1 mg/L biotin, 5 mg/L thiamine, 50 µg/mL ampicillin, and
30 µg/mL chloramphenicol. For preparation of 13C-15N-2D-labeled Nter-BsRNaseY, cell
growth was performed in 1L of M9 minimal medium containing D2O and 15N-labeled
NH4Cl, supplemented with 2 mM MgSO4, 3 g/L [13C]-glucose, 10 µM CaCl2, 1 mg/L
biotin, 5 mg/L thiamine, 50 µg/mL ampicillin, and 30 µg/mL chloramphenicol. The
proteins were purified by Ni-NTA affinity and SEC, as described [32], then by SEC on a
Superdex Increase 200 10/300 GL increase column in 20 mM HEPES pH 7.5, 500 mM NaCl,
10% glycerol for 15N-labeled Nter-BsRNaseY, or 40 mM MES pH 6.8, 200 mM NaCl for
13C-15N-2D-labeled Nter-BsRNaseY (Figure S2A). Finally, 15N-labeled and 13C-15N-2D-
labeled Nter-BsRNaseY were concentrated to 10 mg/mL (240 µM) or 40 mg/mL, respec-
tively, using Amicon concentrators (30 kDa cutoff, Milllipore), then aliquoted, frozen in
liquid nitrogen, and stored at −80 ◦C.

2.5. Circular Dichroism of Nter-BsRNaseY

The far-UV CD spectrum (195−260 nm) of Nter-BsRNaseY was recorded at various
temperatures (293, 298, 300, 303, 313, and 318K) on a Chirascan-plus CD spectrometer
(Applied Phtophysics, Surrey, UK) (Figure S2B). Spectra of Nter-BsRNaseY (450 µM) were
acquired in quartz cuvettes of 0.01 mm optical path length in 40 mM MES pH 6.8, 200 mM
NaCl. A resolution of 1 nm, bandwidth of 1 mm, and time per points of 1s were applied.
All spectra, resulting from an average of ten accumulations, were corrected from buffer
contribution.

2.6. NMR Resonance Assignments for RNase Y Backbone

NMR samples of 13C-15N-2D-labeled Nter-BsRNAseY (970 µM) were prepared in
40 mM MES buffer pH 6.8, 200 mM NaCl, 5% D2O for the reference condition. A series
of 2D 1H-15N BEST-Transverse relaxation optimized spectroscopy (TROSY) correlation
spectra were recorded at 278K, 288K, 293K, 298K, 303K, 308K, 313K, and 318K, and a series
of 3D BEST-TROSY (HNCA, HNCOCA, HNCACB, HNCOCACB, HNCO, and HNCACO)
correlation spectra were collected at 300, 303, and 313K on a Bruker AVANCE III HD
950 MHz equipped with a TCI cryoprobe. A series of BEST-TROSY correlation spectra
were also recorded at 303K at various concentrations of Nter-BsRNAseY (50, 98, 185, and
332 µM). A 3D 1H-15N nuclear Overhauser effect spectroscopy (NOESY)-heteronuclear
single quantum correlation (HSQC) spectrum, with mixing times of 200 ms, was also
collected to help peaks assignment at 303K. Data processing and analysis were performed
using the Topspin® 4.0 and CcpNmr version-2 software [50]. To record the spectrum of the
completely denatured protein, the buffer was supplemented by 6 M urea. The 15N R1 and
R2 relaxation rates and {1H}-15N heteronuclear nuclear Overhauser effects (NOEs) were
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measured at 303K. The 15N R1 and R2 relaxation experiments were based on the refocused
1H-15N HSQC relaxation experiments and recorded in an interleaved pseudo-3D method
with an inter-scan delay of 4 s. For the determination of R1 relaxation rate constants, 11
total data sets were collected at relaxation delay times of 10, 50, 100, 200, 400, 500, 600,
800, 1000, 1500, and 2000 ms. For the determination of R2 rate constants, 12 data sets were
collected at delay times of 17, 34, 51, 68, 84.8, 102, 136, 170, 204, 237, 271, and 305 ms.
R1 and R2 spectra were recorded as 144 × 2024 complex data points. For the backbone
{1H}-15N heteronuclear NOEs, two different spectra were recorded as 256 × 2048 complex
data points in an interleaved manner with and without a 4 s proton saturation pulse. The
R1 and R2 rates, heteronuclear NOE values, and their associated errors were determined
from the peak intensities using the CcpNmr version-2 software [50].

The amide proton chemical shift temperature coefficients (∆δHN/∆T (ppb/K)) were
calculated using the Shift-T web server (http://biophysical.science/shiftt, accessed on
22 September 2022) [51].

3. Results
3.1. Several Regions of Nter-BsRNaseY Have a High Propensity to Form α-Helices

To study the structure of Nter-BsRNaseY by NMR, the protein was expressed in
E. coli and labeled with 15N or 15N, 13C, and 2D. Its 1H-15N BEST-TROSY spectrum was first
recorded at 300K and a concentration of 970 µM, under which conditions Nter-BsRNaseY
is a dimer [32]. The TROSY spectrum, which provides correlations between nitrogen atoms
and amide protons, shows a narrow chemical shift dispersion in the 1H dimension (gathered
in the 7.9–8.5 ppm region) that is characteristic of rather disordered or α-helices-forming
residues (Figure 2A,B).

To confirm that the protein contains ordered structural elements, the 1H-15N heteronu-
clear multiple quantum coherence (HMQC) spectrum was compared to that of a denatured
sample (Figure S3). The addition of 6 M urea, a widely used protein denaturing agent [52],
resulted in substantial sharpening of the chemical shifts for most signals, as well as in
several significant chemical shift variations. These changes indicate the disappearance of
structured elements, probably resulting from a change of inter-molecular interactions.

To obtain more information about the secondary structure of the different regions of
Nter-BsRNaseY at the residue level, we assigned the amide 1H, 15N and 13C resonances
using the standard triple experiments at 300, 303, and 313K (Figure S4). The CD spectrum of
BsRNAseY was also recorded at these temperatures, as well as at 298 and 318K, to monitor
the signal at 220 nm and thus the variation in the α-helices content with temperature
(Figure S2B). We assigned the resonances for 157 out of 176 (89%) of the Nter-BsRNaseY
backbone atoms. Assignment is missing for the three N-terminal amino acids (M23-R25)
and for residues H67-K68, R81, H102, D116-S118, R122-H125, M139-Q140, M161-R162, and
H169. We note that the five histidine residues of Nter-BsRNaseY (H67, H102, H117, H125,
and H169) are localized within these segments. The Nter-BsRNaseY 13CO, 13Cα, 13Cβ,
1HN, and 15N chemical shifts were then used as input for the TALOS-N software [53] to
predict the protein backbone torsion angles along the sequence. The TALOS-N results
reveal that several regions of the protein (residues 39–61, 73–88, 122–157, and 171–191) have
the highest propensity to form α-helices at 300K (Figure 3A and Table S1).

In regular turns and α-helical polypeptide chains, sequential amide protons close in
space (HNi-HNi+1) yield to cross-peaks of high intensity in the NOESY spectra, while pro-
tons farther away (HNi-HNi+2) give peaks of lower intensity. We analyzed the
1H-15N (HSQC)-NOESY 3D spectrum to delineate the helical motifs (Figure S5). Despite
a lot of overlapped peaks, we were able to find NOEs corresponding to several amide
protons HN32-HN34, HN55-HN57, HN109-HN112, HN136-HN138, and HN142-HN144
(Figure S5A). HN55-HN57 is located in the first helix predicted by TALOS-N, HN109-
HN112 is located in the second helix, whereas HN136-HN138 and HN142-HN144 are
located in the third helix (Table S1).

http://biophysical.science/shiftt
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Figure 3. Flexibility and helix propensity of Nter-BsRNaseY amino acids, as deduced from the
1H-15N-13C NMR data. (A) Prediction of α-helices propensity by TALOS, derived from the backbone
NMR chemical shifts at 300K (in blue), 303K (in orange), and 313K (in grey). Comparison of the
amide and aromatic (B) and aliphatic protons (C) in the 1D NMR spectra recorded at 288K (in blue)
and 318K (in red). The green circles highlight the highest differences observed in the chemical shifts
at the two temperatures. (D) Temperature coefficients (∆δHN/∆T (ppb/K)). (E) 1H-15N TROSY peak
heights (arbitrary units) at 278, 288, 293, 298, and 303K. The peak heights for residues 170 to 192 are
the sum of the corresponding duplicated peaks in the 1H-15N TROSY spectra. (F) Comparison of
the peak height ratio in the 1H-15N BEST-TROSY spectra of pairs of duplicated peaks for several
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S7A,B were used to calculate the peak height ratios. * indicates that the peak height ratio could not be
measured because the duplicated peaks of E177 and K189 are superimposed onto other peaks.

The 133–149 helix appears to be the most stable helix since it is present at both 300 and
313K (Figure 3A), with the same predictions for all amino acids. Interestingly, we observed
a significant increase in the percentage of α-helices as the temperature decreases (36% at
313K but 65% at 300K), as predicted by TALOS-N (Table S1). This increased folding of the
protein with a decrease in temperature, with a break in the α-helix content between 303
and 300K, was also observed on the CD (Figure S2B) and 1H spectra (Figure S6). Indeed, a
decrease from 318K to 288K, leads to a deshielding (shifting to higher ppms) of some amide
protons (between 8.4 and 8.6 ppm), a higher chemical shift dispersion of peaks between
6.9 and 7.7 ppm (Figures 3B and S6A), as well as a shielding of several methyl groups
around 0.4 ppm (Figures 3C and S6B). Numerous amide proton temperature coefficients
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(∆δHN/∆T) were higher than−5 ppb/K (Figure 3D), indicating a high probability for these
amide protons to be hydrogen bonded [54]. Interestingly, these residues belong mainly to
the regions of the protein described above that have a high propensity to form α-helices.

To obtain further insights into the flexibility of Nter-BsRNaseY, we analyzed the
changes in the 1H-15N TROSY cross-peak intensities as a function of temperature (Figure 3E).
In such spectra, the intensity of the peaks varies with the mobility of the corresponding
residues, with the higher flexible regions showing higher peak intensities. We observed
that the N-terminal residues (20 to 35) and the C-terminal extremity (residues 176–192) of
Nter-BsRNaseY belong to the most flexible regions of the protein. For the N-terminal region,
the peak intensities showed little variation with temperature, indicating that flexibility
was inherent to this region and not dependent on temperature. In contrast, whereas
the C-terminal region was only slightly more flexible than the rest of the protein at low
temperature (278K), its flexibility increased much faster with temperature than the rest of
the protein (Figure 3E).

3.2. Two Main Conformations of the C-Terminal Extremity of Nter-BsRNaseY

The analysis of the 1H-15N BEST-TROSY spectra of Nter-BsRNaseY at various tem-
peratures (Figure S7) allowed us to assign two sets of amide peaks corresponding to
two conformations for several residues belonging to the C-terminal extremity (residues
171–191 (Figures 2C and S7A,B). Yet, it was not possible to assign duplicated peaks for
residues N180, R181, E184, and E185 because their intensity was too low to be detected in
the 3D spectrum (Figure S7C).

The relative intensity of the duplicated cross-peaks decreased with temperature, indi-
cating a change in conformers ratio (Figure S7A). Between 293 and 308K, the duplicated
cross-peaks were clearly visible, suggesting that residues 171–191 switch between two
conformations at a slow rate on the NMR time scale (~millisecond range). Above 308K,
only one cross-peak per residue was observed, indicating the presence of a single conformer.
Interestingly, we noticed that the intensity ratio between the pairs of peaks of residues
173–176 is lower than that of residues 182–191 (Figure 3F). This indicates that the C-terminal
residues (182–191) are more sensitive to temperature than residues 173–176.

In addition, we recorded a series of BEST-TROSY spectra at various concentrations
of Nter-BsRNAseY (50–332 µM) and 303K in order to evaluate the influence of pro-
tein concentration on the duplicated cross peaks in the 1H-15N BEST-TROSY spectra
(Figure S8). At all these concentrations, Nter-BsRNaseY was shown to be a dimer [32]. The
comparison of the spectra of Nter-BsRNaseY at low and high concentrations (50 µM and
970 µM, respectively) showed no significant chemical shift variations. However, peaks
duplication was not observed at low protein concentration for the C-terminal residues
(residues 171–191) (Figure S8). This suggests a concentration-dependent change in the equi-
librium between two species that display different conformations of the C-terminal residues.

3.3. High Flexibility of the N- and C-Terminal Residues

In addition, we also observed variations in the peaks in the 1H-15N BEST-TROSY
spectrum, with some of them showing a significantly weaker intensity than the others
(Figure 2B). To determine if this results from a conformational change of the protein, we
studied the dynamics of the Nter-BsRNaseY backbone using NMR 15N relaxation, which is
a powerful tool to characterize dynamic processes of proteins in solution over a wide range
of time scales [55]. Indeed, on one hand, fast motions (picosecond to nanosecond scale)
can be characterized by heteronuclear 15N longitudinal relaxation rate (R1), transverse
relaxation rate (R2), and 15N-{1H} heteronuclear NOE (hetNOE) of amide group resonances;
on the other hand, chemical exchange mechanisms are generally involved in movements on
the microsecond-millisecond scale and contribute to the R2 transverse relaxation rate. Thus,
heteronuclear NOEs are very sensitive to local mobility, with large NOE values indicating
restricted motion.



Biomolecules 2022, 12, 1798 9 of 20

NMR 15N relaxation measurements at 950 MHz 1H and 303K of Nter-BsRNaseY show
that the R1 and hetNOE relaxation rates are relatively homogeneous over the regions
encompassing residues 40 to 115 and 170 to 191 (Figure 4A,C).
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Higher R2 and hetNOEs values than average were observed for residues belonging
to the 127–155 segment (Figure 4B,C), suggesting reduced mobility. Accordingly, up to
313K, this region was shown to have a high propensity to adopt an α-helix fold (Figure 3A).
On the contrary, the N-terminal extremity (residues 24–39) showed lower R2 and hetNOE
values than the rest of the polypeptide chain, indicating a high flexibility of this segment.
Moreover, for the segment 158–170, low hetNOE values were observed (Figure 4C), indi-
cating an increase in mobility, as well as high 15N R2 values (Figure 4B), likely resulting
from a contribution to µs-ms conformational or chemical exchange. These observations are
consistent with the α-helix predictions (Figure 3A), which show that this segment has a
low propensity to form an α-helix.

3.4. AlphaFold Models of Nter-BsRNaseY

To calculate 3D models of Nter-BsRNaseY, we used the recently released AlphaFold al-
gorithm [43], which has revolutionized structural biology by its highly accurate predictions
of protein structures (Figure 5).
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Figure 5. The five best 3D models of Nter-BsRNaseY generated by AlphaFold. The five models,
numbered from 1 (best) to 5 (worst), were superimposed on the backbone of residues 33–138 that
were shown to possess the best pLDDT values. (A,B): Superimposition of the AlphaFold models
for the monomer (A) and dimer (B). (C) The best AlphaFold model of the dimer. The red arrows
highlight the break in the supercoil. (D–F) pLDDT values for the AlphaFold models of the monomer
(D) and the dimer: (E) first monomer and (F) second monomer. The residues were colored according
to their pLDDT values, from red (0%) to blue (100%). (G) Hydrophobic interactions involving V163,
L167, and I171, leading to the formation of a kink in the helical C-terminal extremity of the dimer
helix. The curved helix is indicated by an asterisk.

AlphaFold was used to predict the 3D structure of both the monomer (Figure 5A)
and the dimer (Figure 5B,C) because previous studies indicated that, at the concentration
of Nter-BsRNaseY used for the NMR studies, Nter-BsRNaseY is in the dimeric form [32].
For both the monomer and dimer models, the AlphaFold prediction is highly reliable for
residues 38 to 169, with predicted pLDDT values over 90 (Figure 5D–F), which means
that, in addition to a good backbone prediction, the side chains are also correctly oriented.
Nevertheless, the pLDDT values decreased gradually after residue 170—but still remained
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above 80 until residue 188—for the best model of the monomer (Figure 5D) and the dimer
(Figure 5E,F), indicating that the position of the C-terminal residues is less well predicted.

The monomer is constituted of a long α-helix (residues 23 to 149), followed by a turn
(residues 150 to 151) and a C-terminal extremity (residues 152–192), which forms either a
long straight helix or a curved helix with a kink around residues 166 to 169 (Figure 5A).
Interestingly, in all dimer models, the interaction between the two monomers involves
a long parallel coiled-coil structure containing two long α-helices (residues 23 to 149)
(Figure 5B,C). No antiparallel coiled-coil structure was found in the best predictions for
the Nter-BsRNaseY dimer by AlphaFold. In addition, the two long α-helices wrap around
each other to form a left-handed supercoiled structure, but with a break in the supercoil
around residues 62–72 (Figure 5C). The C-terminal extremity of the dimer is formed by
a pair of helices, one straight helix from one monomer and one curved helix from the
second monomer.

In a perfect coiled-coil structure, two α-helices pack against each other, with the amino
acid side chains adopting a well-established architecture that is called a knob-into-hole
(KIH) packing [56,57]. The typical coiled-coil sequence consists of a series of adjacent
heptad repeats (a-b-c-d-e-f-g)n, in which the residues at position ‘a’ are either apolar or
charged (R, K, E and D) and the residues at position ‘d’ are usually hydrophobic (V, L, I).
The long α-helix of the N-terminal part (residues 30–149) of Nter-BsRNaseY satisfies the
conditions for forming a coiled-coil structure in a parallel orientation, involving extensive
ionic and hydrophobic interactions, as illustrated by the helical wheel plots (Figure S9).

Hydrophobic side chains are present at the ‘a’ and ‘d’ positions of the 30–71 seg-
ment (Figure S9A), leading mainly to hydrophobic interactions between the two chains
(Figure S10A,B), whereas hydrophobic side chains are present only at the ‘d’ positions
of the 74–122 and 109–150 segments (Figure S9B,C), leading to both hydrophobic and
electrostatic interactions (Figures S9B,C and S10C,D). In addition electrostatic interactions
are observed between residues located at the ‘e’ and ‘g,’ positions (Figure S9A–C), ‘d’ and
‘e’ positions (Figure S9D), or ‘a’ and ‘g’ positions (Figure S9B,C). The charges of the residues
located inside the helix, at positions ‘a’, ‘d’, ‘e’, and ’g’ of the heptad repeat are of opposite
sign, forming ionic interactions that stabilize the structure (yellow circles in Figure S10).

However, the N-terminal region (residues 30–71) does not adopt a canonical coiled-
coil structure (Figure 5C), with many alanine residues being present at the ‘a’ position
(instead of R, K, E and D) or ‘d’ position (instead of V, L, I), together with leucine and
isoleucine (Figures S9A and S10A). The break in the supercoil noticed around residues
62–72 could result from the differences in the dimerization interfaces of the segments
containing residues 30–71 (Figures S9A,B and S10A,B) on one hand and those containing
residues 74–122 (Figures S9B and S10B,C) on the other hand.

Finally, the intermolecular interactions between the helical C-terminal extremities
(residues 152–192) of each monomer involve hydrophobic and electrostatic interactions, but
do not have the characteristics of a coiled-coil structure (Figures S9D and S10E,F). The kink
in one helix (Figure 5B,C) is maintained through hydrophobic interactions between the two
chains involving residues I158, I159, L160, V163, L167, I171, and M174 from each monomer
(Figures 5G and S10E). Therefore, the different conformations of the two C-terminal extrem-
ities of the Nter-BsRNaseY dimer come from a different structural environment of residues
158–192 in the two chains.

3.5. AlphaFold Model of the Full-Length B. subtilis RNase Y

Finally, we also used AlphaFold to model the structure of the monomer and dimer
of full-length B. subtilis RNase Y (Figures 6 and S11) and fine-tune the boundaries of the
C-terminal domain (Figure 1B) based on structural elements.
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Figure 6. AlphaFold models of the full-length B. subtilis RNase Y. (A) The five best 3D models of the
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different views showing the relative orientation of the two chains in the dimer of the best AlphaFold
model for the full-length B. subtilis RNase Y. One chain is colored orange and yellow and the other is
colored dark blue and light blue, for the N- and C-terminal domains, respectively.

As for Nter-BsRNaseY, in the monomer of B. subtilis RNase Y, the N-terminal domain
is formed by a long α-helix composed of residues 23–147, followed by a turn involving
residues 150–151 and a region, composed of residues 155–202, that adopted either a long
straight helix or a curved helix with a kink around residues 167–171 (Figure 6A). Hence,
some residues (193–202, Figure 1B), initially thought to link the N-terminal domain and
the C-terminal globular domain, appear to extend the long α-helix (Figure S12A,B). The
superposition of the five best AlphaFold models of the full-length B. subtilis RNase Y
monomer reveals a high mobility of the N-terminal and C-terminal domains relative to
each other, with a hinge around residues 149-152 belonging to the turn (Figure 6A). This
flexibility suggests that the turn in the coiled-coil structure is functionally relevant.
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The fold of the globular C-terminal domain (residues 211–520), which includes the
catalytic domain and a C-terminal region with unknown function (Figure 1B), consists
of numerous α-helices and a few β-sheets (Figure S12A). The RNA binding module KH
(residues 211–276), composed of three short α-helices and a three-strands β-sheet, is linked
to the HD module (residues 336–429), composed of five α-helices, by two helices (residues
281–328). These three structural elements pack together to form the globular catalytic
domain (residues 211–429), which is linked to the C-terminal region of unknown func-
tion (residues 438–520), composed of two α-helixes and a three-strands β-sheet, via a
flexible linker.

The model of the full-length B. subtilis RNase Y dimer (Figure 6B–D) shows that
dimerization involves both the N-terminal coiled-coil and the C-terminal domain. The
supercoiling of the long N-terminal α-helices is well conserved between the models of
the dimers of Nter-BsRNaseY and the full-length protein. Interestingly, the ten last C-
terminal residues of the C-terminal region with unknown function are disordered in the
monomer (Figure S12C) but completely structured, extending the last β-strand, in the
dimer (Figure S12D). This structuration allows the C-terminal region to participate to the
dimer interface, through packing interactions between the long last β-strand from each
monomer (residues 505–519) (Figures S12E and S13A,C).

In most models of the full-length B. subtilis RNase Y (rank 1 to 4 for the monomer
and rank 1 to 3 for the dimer), the globular C-terminal domain acts as an extension of the
last helix (residues 152–192) observed in the model of Nter-BsRNaseY (Figure 6). Yet, in
the less likely structures (rank 5 for the monomer and ranks 4 and 5 for the dimer), the
globular domain folds up on the long N-terminal coiled-coil (Figure 6A,B). It remains to be
seen whether this fold, made possible by the flexibility of the N- and C-terminal domains
relative to each other, is physiologically relevant or not.

The predictions of AlphaFold for the full-length RNase Y in its monomeric/dimeric
forms are still of good quality, although slightly lower than those for Nter-BsRNaseY
(Figure S11C–E). Indeed, average pLDDT values were found to be 90.5/81.1 for the coiled-
coil domain (residues 22–149) and 90.6/87.1 for the catalytic domain (residues 211–429),
while residues with pLDDT values between 70 and 90 are expected to be modeled with
an overall good backbone prediction [43]. Within the catalytic domain, the pLDDT values
were 85.9/81.6 for the KH domain, 93.0/91.0 for the α-helices between the KH and HD
domains, and 93.5/90.2 for the HD domain. The lowest pLDDT values were 84.7/77.4
for the C-terminal region of unknown function and 83.5/83.8 for residues 152–202 that
correspond to the C-terminal extremity of the Nter-BsRNaseY construct, formed by one
straight and one curved helix. Yet, the pLDDT value for this region was over 80 for the
best model of the dimer, indicating that the predicted fold is still very likely. The loops
connecting secondary structure elements (indicated by stars in Figure S11C–E) had lower
pLDDT values than average, as expected.

4. Discussion

Here we studied the N-terminal domain of B. subtilis RNase Y using NMR to in-
vestigate its dimerization mode. Indeed, at the concentration used for the NMR studies
(50–980 µM), Nter-BsRNaseY was in the dimeric form [32].

4.1. Interpretation of the NMR Data of Nter-BsRNaseY Using AlphaFold

The 3D structures of the Nter-BsRNaseY monomer and dimer were modeled with
AlphaFold and analyzed in light of the NMR data (Figures S14 and S15A). The NMR data
showed that Nter-BsRNaseY is mainly in the helical form (65% at 300K) and that the helices
ratio increased with decreasing temperature, as shown by the 1D spectra recorded from
318K to 288K (Figures 3B and S6). The AlphaFold model of the Nter-BsRNaseY dimer
exhibited a long N-terminal parallel coiled-coil, followed by a turn, predicted to involve
residues 149–151, and C-terminal helical ends that take part in dimer formation and can
adopt two main conformations (Figure 5). Accordingly, it had previously been shown
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by analyzing the binary interactions of the isolated domains of B. subtilis RNase Y that
the N-terminal domain was a major contributor to the oligomerization of RNase Y [12].
The AlphaFold models appear to be more representative of what would happen at lower
temperatures than those used to record the NMR spectra because these models contain
more helices (97%, with 78% of the residues having pLDDT values over 90 for the best
AlphaFold model).

The Nter-BsRNaseY dimer was found to form a parallel, and not an antiparallel
coiled-coil helix, in agreement with the nice fit of the parallel model to the SEC-SAXS
experimental data [32]. This fold, which is favored by hydrophobic and electrostatic
interactions, as shown by the helical wheel diagrams (Figure S9), allows the anchoring of
the N-terminal end of Nter-BsRNaseY to the cytoplasmic membrane via a transmembrane
region (Figure 1B). Accordingly, all models generated with AlphaFold for the full-length
RNase Y dimer also involved long parallel coiled-coils involving residues 1–149 (Figure 6B).

The α-helices predicted by TALOS to be the most temperature stable (residues 39–61,
73–88, and 122–149) correspond to a helical fold in the AlphaFold models (Figure S14).
The most hydrophobic residues of these helices are involved in the dimerization surface
in the best AlphaFold model (Figure S15B–D). Moreover, the TALOS-N predictions from
our NMR data show a decrease in the propensity of residues 62–72 to be structured into
a continuous helix (Figures 3A, S14 and S15A) that agrees with the break in the supercoil
present in the AlphaFold models around this position. The helices predicted from the NMR
data have the same boundaries as those in the AlphaFold models, except for residues 89–121
(Figures S14 and S15A). Indeed, this region is fully part of the helical dimeric interface
generated by AlphaFold, whereas it is more flexible experimentally according to the NMR
data obtained at 300K. This difference could be explained by the low ratio of hydropho-
bic residues in this region—i.e., present only at the position “d” of the heptad repeats
(Figure S9B)—and by the high number of electrostatic interactions stabilizing this segment
in the AlphaFold model (Figure S10D). The electrostatic interactions are probably reduced
in the NMR experiment due to the addition of 200 mM NaCl in the samples, thus explaining
the observed flexibility.

According to the backbone chemical shifts and 15N relaxation experiments
(Figures 3 and 4), the N-terminal extremity of Nter-BsRNaseY was shown to be quite
flexible. This flexibility agrees with the low pLDDT values for this region in the AlphaFold
models (Figure 5D–F).

The 15N relaxation studies also indicated that the C-terminal extremity of Nter-
BsRNaseY (residues 158–170) is rather flexible. This flexibility agrees with the AlphaFold
models, in which it formed a dimer, with each monomer being constituted of either a
bent or straight helix (Figure S15E). Moreover, splitting of the 1H-15N HSQC signals
was observed for several peaks belonging to the very C-terminal end (residues 171–191)
(Figures 2C and S7), which is rich in both positively and negatively charged residues
and also contains a stretch of hydrophobic residues (Figure S1). This splitting may result
from a slow exchange on the NMR chemical shift time scale between at least two differ-
ent conformations involving these last 20 residues, as proposed in the AlphaFold model
(Figure S15E), where residues 158–192 of the two interacting chains have a different envi-
ronment. The duplicated peaks disappeared upon an increase in temperature or a decrease
in protein concentration, suggesting that dissociation of the dimer occurs at the very
C-terminal end of Nter-BsRNaseY.

The relevance of the AlphaFold models was consolidated by our analysis of the HSQC-
NOESY 3D spectra (Figure S5), since we were able to assign many intense HNi-HNi+1 and
several low HNi-HNi+2 cross-peaks. Thus, altogether, the NMR data nicely support the
α-helical fold of Nter-BsRNaseY proposed by AlphaFold, as well as its dimerization mode,
not only at the N-terminal but also at the C-terminal end.

Finally, the best AlphaFold prediction for Nter-BsRNaseY was analyzed with DALI [58]
to find the closest protein structures in the PDB, with a strong match being defined by a
Z-score > (n/10) − 4, with n the number of residues. The highest structural homology
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was found for the coiled-coil domain of SAS-6, a centriole protein (PDB code 6YRN,
11% sequence identity, Z score = 7.9, root mean square deviation (rmsd) of 3.9 Å for
111 aligned Cαs) [59]. SAS-6 fragments were shown to be organized as two-stranded
parallel coiled-coil domains that could form higher-order interactions: nine SAS-6 dimers
associated via interactions between their N-terminal globular head domain to form a ring.
In addition, asymmetric parallel association between coiled-coil domains of SAS-6 was
found to be important to form a cartwheel structure and provide polarity to the assembly.

4.2. AlphaFold Model of the Full-Length B. subtilis RNase Y

To complement our NMR study, which was performed using a truncated B. subtilis
RNase Y protein that lacks the C-terminal globular domain (residues 193–520), AlphaFold
was used to generate a model of the full-length B. subtilis RNase Y, which was shown to exist
as a dimer and possibly also as higher oligomeric forms [12]. Interestingly, in the model of
the full-length protein, the coiled-coil structure observed for the Nter-BsRNAseY construct
was extended by ten residues (Figure S12A,B) that were previously thought to belong to
the C-terminal domain. Analysis of the assemblies with the Proteins Interfaces Structures
and Assemblies (PISA) program [60] indicates that the coiled-coil structure contributes to
~72% of the buried surface area in the full-length dimer. Moreover, the models unveiled the
probable fold of the C-terminal domain, which was unknown until this point. Intriguingly,
the pLDDT values, especially for region 130–190, were lower for the full-length RNAse
Y (Figure S11C–E) than for Nter-RNAseY (Figure 5D–F). This suggests an effect of the
C-terminal domain on the conformation of residues 130–190.

The analysis of the best AlphaFold model of the C-terminal domain of B. subtilis RNase
Y with DALI [58] revealed high structural similarity with proteins of known structure
containing the HD or KH domains (Figure 1). Indeed, the highest structural homology
was found for a protein predicted to belong to the HD hydrolase superfamily (PDB code
2PQ7, 24% sequence identity, unpublished), with a Z-score of 12.3 and an rmsd of 3.4 Å for
139 aligned Cαs. Interestingly, the latter protein was crystallized in the presence of divalent
Fe atoms and superposition of the HD domains of both proteins highlights the potential
binding mode of divalent metal ions to B. subtilis RNase Y, involving conserved His/Asp
residues of the HD domain (Figure S16). Indeed, it is known that cleavage by RNase Y
requires the presence of Mg2+ ions, which can be replaced by Mn2+ or Zn2+ [6]. In addition,
the C-terminal domain of B. subtilis RNase Y showed a high structural homology with the
putative RNA-binding protein of the exosome complex (PDB code 2Z0S, 21% sequence
identity, unpublished), with a Z-score of 12.2 and an rmsd of 1.8 Å for 81 aligned Cαs, and
with the KH-containing RNA-binding protein RRP4 of the archaeal exosome (PDB code
2BA0, 21% sequence identity), with a Z-score of 11.8 and an rmsd of 1.7 Å for 78 aligned
Cαs [61]. The exosome is a large multi-subunit RNase complex that is required for 3′/5′

processing of ribosomal RNA in archaea and eukaryotes and thus it has a similar function
to RNase Y. The exosome structure consists of six RNase phosphorolytic (PH) domain
subunits forming a hexameric ring, which associates with three KH and/or S1-containing
subunits to form a regulatory RNA recognition platform that restricts entry to the catalytic
chamber to unstructured RNA substrates.

The analysis of the C-terminal region with DALI identified several cation-binding
proteins as close homologs, such as the cation efflux protein MamM (PDB code 3W64, 14%
sequence identity, Z-score of 9.3, rmsd = 2.0 Å for 73 aligned Cαs) [62] and the cytoplasmic
C-terminal domain of zinc transporter protein YiiP (PDB code 3H90, 11% sequence identity,
Z-score of 7.8, rmsd = 2.3 Å for 72 aligned Cαs) [63]. MamM is one of the main ion
transporters of magnetosomes, i.e., bacterial organelles that enable magnetotactic bacteria to
orientate along geomagnetic fields. It was shown that the cytosolic domain of MamM forms
a stable ‘V-shape’ dimer that undergoes distinct conformational changes upon divalent
cation binding ([62], whereas the C-terminal domain of YiiP adopts a metallochaperone-like
fold that allows it to deliver zinc ions to protein targets.
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Finally, the C-terminal region of B. subtilis RNase Y was found to be homologous
with proteins that are components of megadalton-sized ring-shaped complexes, such as
protein PRGK (PDB code 2Y9J, 16% sequence identity, Z-score of 7.2, rmsd = 2.0 Å for
69 aligned Cαs) [64], or the flagellar M-ring protein FliF (PDB code 6SD3, 9% sequence
identity, Z-score of 6.9, rmsd = 2.5 Å for 70 aligned Cαs) [65]. The homology of the C-
terminal region of RNase Y with the abovementioned proteins should prompt investigation
of whether it could be involved in the formation of a high-molecular weight oligomer.
Finally, the structural analysis showed that the C-terminal domain of RNase Y is not
structurally related to the N-terminal catalytic domain of RNase E.

The AlphaFold models of the full-length dimer of B. subtilis RNase Y also revealed a
potential function of the C-terminal region as a dimerization domain. This is supported
by the analysis of the assemblies with the PISA program [60], which indicated that, in
solution, the C-terminal region should contribute to ~10% to the buried surface area in the
full-length dimer. The dimerization function of the C-terminal region was not expected
since previous bacterial two hybrid systems experiments did not reveal self-interactions of
this region [12]. Furthermore, the dimeric interaction that involves the C-terminal regions
of two monomers generates a hole in the structure of the dimer close to the KH domain
(Figure S13A,B), suggesting that this hole, with a diameter of 12–13 Å, could be used to
bind RNA. In this way, the KH domain could play a role in restricting access to the central
chamber to unstructured RNA substrates, in a similar way to the RNA-binding module
of the exosome complex [61]. This hypothesis agrees with the global electrostatic charge
distribution of the dimeric C-terminal domain of B. subtilis RNase Y (Figure S13B,D), in
which the KH domains, the last C-terminal β-sheets, and the residues forming the hole are
positively charged and prone to bind a negatively charged molecule, such as RNA.

4.3. Interaction with Cellular Partners of the Degradosome Complex

B. subtilis RNase Y fulfills a similar function to E. coli RNase E, which itself participates
in a degradosome complex (Figure 1). In E. coli, RNase E forms the core of the degradosome,
which in its minimal version includes polynucleotide phosphorylase (PNPase), the ATP-
dependent DEAD-box RhlB RNA helicase (RhlB), and enolase [66] (Figure 1A). Several
studies have suggested that the carboxy-terminal domain of RNase E acts as a flexible
tether of the degradosome components. Our study shows that the C-terminal domain of
B. subtilis RNase Y is not structurally related to the N-terminal catalytic domain of RNase
E (Figure 1) [28]. Nevertheless, intriguingly, it has been previously shown that E. coli
RNase E can effectively replace RNase Y in B. subtilis [28], and that the presence of the
RNase E degradosome scaffold was not crucially important for the capacity of RNase E to
complement for RNase Y.

However, similarly to E. coli RNase E, the N-terminal domain of B. subtilis RNase Y
is flexible relative to the C-terminal globular domain, due to a turn involving residues
150–151, suggesting that the N-terminal domain could act as a tether to assemble the other
degradosome proteins. In particular, several regions of the N-terminal region, such as
peptide 62–72, which delineates a break in the supercoil, and peptide 89–121, which was
shown to be the most flexible part in the coiled-coil, are likely candidates for binding
degradosome proteins. Indeed, such interaction of a flexible protein region with several
cellular partners (RNA or proteins) has previously been reported for other RNA-binding
proteins [67–69].

Further insights into the function of the N-terminal domain of B. subtilis RNase Y
will be obtained by studying its molecular interactions with its protein partners of the
degradosome complex [28].

5. Conclusions

A coiled-coil is a structural element that is remarkable with respect to the diversity
of conformations that it can adopt and for the range of functions that it exhibits [56].
As a result, long coiled-coil proteins encode an enormous repertoire of surface epitopes,
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in addition to potentially linking functional domains or communicating conformational
changes [70]. There are several examples of proteins that have coiled-coils that act as a
scaffold for interaction with other proteins or other domains. For example, the flexibility of
the coiled-coil was shown to regulate the function of soluble guanylate cyclase [71,72].

Elongated structures, such as coiled-coils that are under-represented in the PDB
or structures that have never been observed previously, are difficult to predict using
AlphaFold. Indeed, it was previously reported that, in the CENP-E kinesin AlphaFold
model, the structure of the motor domain was well predicted, whereas the flexible coiled-
coil appeared folded like a ball, not representing a biologically and functionally relevant
state [73]. In this example, the AlphaFold prediction, based on the monomer, did not
resolve the coiled-coil structure, the fold of which depended on dimerization. Similarly, it
was reported that the single chain-based predictions of coiled-coils-containing centriolar
or centrosomal proteins, as well as the models of heterodimeric or multimeric coiled-
coil assemblies, lacked structural plausibility [74]. Yet, AlphaFold has been shown to be
successful in predicting long coiled-coils in several cases, such as human alpha or beta
soluble guanylate cyclase [72].

Our multidimensional heteronuclear NMR study of Nter-BsRNaseY showed that this
domain adopts a helix-type secondary structure over almost the entire sequence, in full
agreement with the model calculated by AlphaFold. In our case, AlphaFold was also
successful in predicting two conformations for the C-terminal helix, which were confirmed
by our relaxation experiments. Although transient interactions are not expected to be
captured by AlphaFold and the prediction of multimers is still at its beginning [75], here,
we showed a case where AlphaFold was particularly useful to produce a reliable 3D model
that helped to interpret the NMR data.
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