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Abstract: Cranial radiation therapy is one of the most effective treatments for childhood brain can-
cers. Despite the ameliorated survival rate of juvenile patients, radiation exposure-induced brain
neurogenic region injury could markedly impair patients’ cognitive functions and even their quality
of life. Determining the mechanism underlying neural stem cells (NSCs) response to irradiation
stress is a crucial therapeutic strategy for cognitive impairment. The present study demonstrated
that X-ray irradiation arrested NSCs’ cell cycle and impacted cell differentiation. To further char-
acterize irradiation-induced molecular alterations in NSCs, two-dimensional high-resolution mass
spectrometry-based quantitative proteomics analyses were conducted to explore the mechanism
underlying ionizing radiation’s influence on stem cell differentiation. We observed that ionizing
radiation suppressed intracellular protein transport, neuron projection development, etc., particularly
in differentiated cells. Redox proteomics was performed for the quantification of cysteine thiol modi-
fications in order to profile the oxidation-reduction status of proteins in stem cells that underwent
ionizing radiation treatment. Via conjoint screening of protein expression abundance and redox
status datasets, several significantly expressed and oxidized proteins were identified in differentiating
NSCs subjected to X-ray irradiation. Among these proteins, succinate dehydrogenase [ubiquinone]
flavoprotein subunit, mitochondrial (sdha) and the acyl carrier protein, mitochondrial (Ndufab1)
were highly related to neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease,
and Huntington’s disease, illustrating the dual-character of NSCs in cell differentiation: following
exposure to ionizing radiation, the normal differentiation of NSCs was compromised, and the upreg-
ulated oxidized proteins implied a degenerative differentiation trajectory. These findings could be
integrated into research on neurodegenerative diseases and future preventive strategies.

Keywords: radiation side effects; neural stem cell; redox proteomics

1. Introduction

Radiation therapy (RT) is one of the most effective treatments for primary and sec-
ondary brain tumors in adult and pediatric patients. However, cranial irradiation induces
cognitive decline and intellectual dysfunction, such as impaired learning and memory. The
adverse effects are more pronounced in children, especially when the temporal lobe, where
the hippocampus is located, is irradiated [1–5]. Due to the widespread application of RT
treatment, the quality of life of an expanding number of long-term survivors is garnering
increasing concern.
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Neural stem cells (NSCs) in the hippocampus are capable of self-renewal and differen-
tiation into neurons, astrocytes, and oligodendrocytes [6,7]. Contrary to mature neurons,
which are considered to be in an irreversible state of growth arrest, the rapidly dividing and
undifferentiated NSCs are more susceptible to irradiation. Several studies have indicated
that irradiation of the hippocampus induced apoptosis in the subgranular zone of the Den-
tate gyrus (DG) [8], diminished the proliferation of the surviving NSCs [9], and impeded
the differentiation of NSCs into neurons [10]. These irradiation-induced alterations which
inhibit neurogenesis have been implicated in cognitive impairment [11–13], and elucidating
the mechanisms underlying damage to NSCs could enable the discovery of strategies to
optimize cognitive brain function and lessen RT-induced adverse effects.

Similarly, to various other cellular stress factors, ionizing radiation damages DNA
strands by disrupting their sugar-phosphate backbone and induces overall cellular toxicity,
thereby driving cells towards apoptosis, necrosis, autophagy, or senescence [14–23]. An-
other consequential effect of irradiation on cellular macromolecules is the generation of
reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are predominant
sources of damage to normal tissue [24,25]. There are reports that the reduction and oxida-
tion (redox) systems play a critical role in acute radiation syndrome and are responsible for
several early and late-stage side effects [26,27]. To date, published studies have elucidated
the influence and functions of free radicals in radiation-induced pressure, as well as the
association between redox and mitochondrial functions. Notably, some studies applied the
redox theory to discover new chemicals to enhance RT sensitivity [28–31]. However, due to
the characteristics of protein modification, it is challenging for conventional omics research
to profile the transcriptomic and proteomic variations in cells undergoing a redox process.
The redox states of whole cellular proteins in irradiated NSCs still remain unclear.

In the present study, mouse neural stem cells were exposed to X-ray irradiation to
establish the cell stress model; concurrently, fetal bovine serum (FBS) was utilized to
induce differentiation. iodoTMT was employed to label-free sulfhydryl groups on cysteine
residues; a proteome-wide screening was conducted, followed by a comprehensive analysis
of the redox patterns. Differentially expressed proteins were identified in NSCs subjected
to X-ray irradiation and induced to differentiate. From a redox-MS perspective, under
sustained irradiation-induced pressure, NSCs’ natural differentiation capability could be
disrupted. Furthermore, the emergence of heavily oxidized proteins in NSCs was indicative
of these cells’ susceptibility to degeneration.

2. Results
2.1. NSC Proteomic Pattern Profiling Following Different Treatments

In order to elucidate the proteomic influence of irradiation on neural stem cell (NSC)
proliferation and differentiation, the present study is designed in the following way (Fig-
ure 1A). The embryonic mouse brain derived NSCs were initially maintained in the medium
supplemented with a cocktail of growth factors. Subsequently, the NSCs were divided
into four treatment-specific groups: NSCs cultured with growth factors without additional
treatment (“ctrl”); growth factor cocktail medium replaced by DMEM+FBS for differentia-
tion (“FBS_ctrl”); NSCs cultured with growth factors subjected to a dose gradient X-ray
irradiation, but without differentiation induction (“1Gy_ctrl” and “5Gy_ctrl”); and growth
factors replaced with DMEM+FBS immediately following irradiation (“1Gy+FBS_ctrl” and
“5Gy+FBS_ctrl”). The “1Gy+FBS_ctrl” and “5Gy+FBS_ctrl” group’s purpose was to in-
vestigate the impact of irradiation on NSCs’ differentiation. Approximately 6300 proteins
were identified by mass spectrometry in the different groups, and a heatmap of the protein
expression profile indicated that the treatments induced proteomic alterations in NSCs
(Figure 1B). Principal component analysis (PCA) of the entire proteome dataset revealed
that FBS and irradiation affect protein expression patterns. Two distinct clusters were
distinguishable based on FBS treatment, and within each group, X-ray irradiation caused
a further division into subgroups (Figure 1C); these indicated that FBS was the principal
influencing factor. Afterward, a correlation analysis based on group-specific protein expres-



Biomolecules 2022, 12, 1759 3 of 20

sion data was performed. Significant correlations were observed between 1 Gy and 5 Gy
treatments for different radiation doses with or without FBS stimulation (Figure 1D,E).
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expressed proteins in each group, the proteomic detections were performed 36 h after each treatment
(red, upregulated; blue, downregulated). (C) Principal component analysis (PCA) of proteomic
expression profile among groups; six groups were separated by two main factors: the presence or
absence of FBS. “–FBS–IR” represents the “ctrl” group, “–FBS+IR” denotes the “1Gy_ctrl or 5Gy_ctrl”
group, “+FBS–IR” represents the “FBS_ctrl” group, and “+FBS+IR” represents the “1Gy+FBS_ctrl or
5Gy+FBS_ctrl” group. (D) Scatter plot of protein abundance correlation between the 1Gy_ctrl and
5Gy_ctrl groups. (E) Scatter plot of protein abundance correlation between the 1Gy+FBS_ctrl and
5Gy+FBS_ctrl groups. (F) Scatter plot of protein abundance correlation between the FBS_ctrl and
5Gy+FBS_ctrl groups. (G) Venn diagram illustrating the overlap of up or downregulated proteins
among different groups.

Notably, significant correlations also existed between FBS with IR and FBS without
IR (Figure 1F). Consistent with PCA, these indicated that FBS treatment, which promotes
cell differentiation, was the predominant contributor to the protein expression pattern in
NSCs, and that irradiation did not impact the proteomic profile. In order to clarify the
role irradiation might play in NSCs’ proliferation and differentiation, further proteome
data mining was conducted. Venn analysis illustrated that compared with the control
group, in both the post-IR differentiation (5Gy+FBS_ctrl) and untreated differentiation
groups (FBS_ctrl), 1096 proteins were similarly altered, of which 672 were upregulated and
424 were downregulated. In the upregulated proteins fraction, a considerable number of
differentially expressed proteins (DEPs) were observed: 578 proteins were exclusive to the
5Gy+FBS_ctrl group, and 272 proteins belonged to the FBS_ctrl group. The downregulated
protein fraction demonstrated a comparable phenomenon (Figure 1G). Information on these
DEPs would facilitate the quest to unravel the protein interaction networks of IR-induced
effects on NSCs differentiation.

2.2. Functional Annotation of Differentially Expressed Proteins

In order to determine the biological functions of the differentially expressed proteins
screened above (Figure 1G), gene ontology (GO) analysis was performed. Following
treatment with X-ray only, the upregulated proteins in NSCs were implicated in cell
adhesion, negative regulation of neuron projection development and nitric oxide, etc.;
conversely, the downregulated proteins were enriched in cell division, the cell cycle, and
DNA replication (Figure 2A). These are indicative of the overall adverse effects of irradiation
on cells.

When NSCs were treated with FBS, the upregulated proteins were predominantly
enriched in neuron projection development, cell polarity, and negative regulation of cell
growth and migration; meanwhile, the downregulated proteins were associated with
the cell cycle, cell division, and cell proliferation, which was representative of the pro-
differentiation effects of FBS (Figure 2B). Subsequent analysis focused on comparisons of
DEPs between the FBS individual treatment group and the post-IR FBS treatment group.
As described in Figure 2C, the upregulated proteins in the 5Gy+FBS group were principally
enriched in oxidative stress, aging, mitochondrial alterations, and neuron remodeling. The
downregulated proteins were specific for RNA processing, cell development, cell adhesion,
and the mitotic cell cycle. The above findings demonstrated that irradiation impacted
NSC proliferation and differentiation, and the most probable mechanism underlying this
influence is oxidative stress. The redox patterns of post-IR differentiation were further
investigated in the next analysis.
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Figure 2. Gene ontology (GO) enrichment analysis and visualization of differentially expressed
proteins. (A–C) The scatter plots show the significantly enriched GO terms for DEPs in different
groups, (A) IR vs. ctrl group, (B) FBS vs. ctrl group, and (C) 5Gy+FBS vs. FBS group.

2.3. Irradiation Influenced the Proliferation Capacity, Cell Cycle, and Stemness of NSCs

For a comprehensive determination of the effects of IR on NSCs’ properties, cell cycle
and proliferation assays were conducted, and the expression levels of the relevant genes
were analyzed. Irradiation and FBS treatment inhibited NSC proliferation and decreased
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Ki-67 expression; the suppressive effects were more pronounced in the 5Gy+FBS group
(Figure 3A). A similar phenomenon was also observed in the BrdU proliferation assay
(Figure 3F). p21, which engenders cell arrest following DNA damage, exhibited a dose-
dependent upregulation 24 h after X-ray irradiation, and FBS treatment diminished the
increase in p21 (Figure 3B). The mRNA expressions of two other cyclin-dependent kinase
inhibitors (CKIs), p27 and p57, were unaffected by X-ray but upregulated by FBS. Since
increasing p27 and p57 have been reported to be associated with cell differentiation [32,33],
the downward trends in the IR + FBS groups indicated the impact of X-ray intervention
on cell differentiation (Figure 3C,D); no significance was observed for p27, but p57 de-
creased significantly in IR + FBS group in comparison with ctrl + FBS group. Furthermore,
the cell cycle phases of NSCs were also affected by X-ray and FBS. Both irradiation and
FBS hindered DNA synthesis, thereby occasioning S phase-inducing arrest (Figure 3E),
while the FBS group presented with a relatively longer G1 phase which was indicative
of continuous cell development [34]. Combination treatment with irradiation and FBS
interventions demonstrated stronger suppression at the S phase and a reduced population
at G1 (Figure 3E), implying that irradiation disrupted the normal differentiating cell cycle
patterns of NSCs. FBS promoted NSC differentiation and affected cell pluripotency, as evi-
denced by the downregulation of Nestin and Sox2 and upregulated Neurog-1 (Figure 3G–I).
Compared to the FBS group, the irradiation group revealed moderate impacts on neu-
ral progenitor identity-related genes. When NSCs were subjected to X-ray, nestin was
downregulated, while Sox2 and Neurog-1 remained unchanged (Figure 3G–I). In summary,
both irradiation and differentiation influenced NSCs’ cell cycle and the expression of stem
cell marker genes, albeit differently. The X-ray-induced aberrant cell cycle reflects the
detrimental impact of irradiation on NSC differentiation.

2.4. Irradiation Impeded NSC Differentiation and Altered Neurogenesis-Associated
Protein Expression

Neural stem cell fate decisions are crucial for neurodevelopment and neurogenesis,
which may contribute to cognitive processes, especially in irradiated brains. In order
to address whether irradiation affects NSC differentiation at a protein level, NSCs were
pre-treated with or without X-ray irradiation (1 Gy or 5 Gy), then allowed to differentiate
in an FBS-containing DMEM medium. The mRNA expressions of cell type markers were
significantly altered 24 h after DMEM + FBS medium replacement. The mRNAs of βIII-
tubulin and GFAP, neuron and glial cell markers, were markedly upregulated in the FBS
group, indicating that the NSCs were beginning to differentiate. When irradiation was
involved, βIII-tubulin expression slightly increased, while GFAP expression diminished
(Figure 4A–C). Conversely, Olig expression was not affected by FBS stimulation, and only
5 Gy irradiation upregulated its mRNA expression level. Following combination treatment
with irradiation and FBS (1Gy+FBS and 5Gy+FBS groups), Olig2 expression decreased
significantly (Figure 4D). Overall, during FBS-induced differentiation, irradiation interfered
with the expression of cell-type marker genes by suppressing the expression of glial cells
and oligodendrocyte-specific genes and promoting neural marker gene expression.

To further validate the expression pattern of these marker genes, the corresponding
protein expression data were selected from our MS/MS spectra dataset. GFAP and Olig pro-
tein expressions were consistent with their mRNA expressions (Figure 4C–E). βIII-tubulin
was not detected in MS/MS, but another neuron-specific protein was identified: tubb2b.
In FBS-induced differentiation, irradiation significantly downregulated tubb2b expression
(Figure 4E). Meanwhile, FBS-induced differentiation was conducted for 5 days, and the
irradiation-induced NSC lineage commitment was evaluated with immunofluorescence.
Similar to mRNA and protein results, more cells were beta3-tubulin+, and IR decreased
gliagenesis and oligodendrogenesis (Figure 4F). Concurrently, the neurogenesis protein
profile was identified by proteome analysis.
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Figure 3. IR impacted NSC proliferation and their cell cycle. (A–D) Representations of the relative
mRNA expression of proliferation markers of NSCs under different treatments. (E) A histogram
represents the percentage of NSCs in the different phases of the cell cycle for the indicated treatments.
(F) A bar graph with absorbance value representing the amount of BrdU incorporated in newly syn-
thesized cellular DNA. (G–I) Bar graph showing the relative mRNA expressions of neural progenitor
markers of NSCs undergoing different treatments for 24 h. n = 3; Mean ± SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001 as compared with the control; # p < 0.05, ## p < 0.01, ### p < 0.001 for comparisons
between indicated groups.



Biomolecules 2022, 12, 1759 8 of 20Biomolecules 2022, 12, x FOR PEER REVIEW 10 of 21 
 

 
Figure 4. Assessment of differentiation in irradiated NSCs and visualization of neurogenesis-related 
proteins. (A) The confocal images depict representative immunostained cells for each phenotypic 
marker. Bar graphs depicting the expression percentages; data were represented as Mean ± SEM; n 
= 3; * p < 0.05 as compared with the indicated group. (B–D) Bar graphs representing the relative 
mRNA expressions of phenotypic marker genes. n = 3; Mean ± SEM. * p < 0.05, ** p < 0.01 as compared 
with the control group; ## p < 0.01 for comparisons between indicated groups. (E) Boxplot graph 
illustrating the relative expressions of cell-specific proteins selected from the MS/MS dataset. (F) 

Figure 4. Assessment of differentiation in irradiated NSCs and visualization of neurogenesis-related
proteins. (A) The confocal images depict representative immunostained cells for each phenotypic
marker. Bar graphs depicting the expression percentages; data were represented as Mean ± SEM; n = 3;
* p < 0.05 as compared with the indicated group. (B–D) Bar graphs representing the relative mRNA
expressions of phenotypic marker genes. n = 3; Mean ± SEM. * p < 0.05, ** p < 0.01 as compared with
the control group; ## p < 0.01 for comparisons between indicated groups. (E) Boxplot graph illustrating
the relative expressions of cell-specific proteins selected from the MS/MS dataset. (F) Heatmap
indicating the relative protein expressions among different treatment groups (red, upregulated; blue,
downregulated), differently annotated color blocks represent different classes of the proteins.



Biomolecules 2022, 12, 1759 9 of 20

As illustrated in the heatmap, the neurogenesis-related proteins’ expressions among
each group were clearly distinguished. Notably, ptn and cdk5rap2, which were demon-
strated to be associated with Alzheimer’s disease, were upregulated in the IR+ differentia-
tion group. Additionally, SOD1, the oxidative stress-related protein, promotes amyotrophic
lateral sclerosis (ALS) [35]. HDAC4 was only upregulated in the differentiation group
(DMEM+FBS) and was downregulated by irradiation. The inhibition of HDACs may impair
neural stem cell activity [36]. Nrcam (neuronal cell adhesion molecule), a protein essential
for neuron-neuron adhesion and which was also reported to be related to autism [37],
was significantly downregulated in the IR + differentiation group. Pafah1b1, which was
significantly downregulated in the IR + differentiation group, is a gene critical for brain
development and is responsible for Lissencephaly [38]. Irradiation could hamper the
proper differentiation of NSCs, and drive neurogenesis-related proteins to be expressed in
a pattern of neurological diseases.

2.5. Construction of the Redox-Protein Profile in Irradiated NSCs Via Iodoacetyl-Labelled
Mass Spectrometry

In the previous section, the GO enrichment analysis revealed that the proteins specific
for irradiated NSCs’ proliferation were tightly associated with oxidative stresses. Therefore,
we next aimed to evaluate the extent of redox and identify the proteins with vital roles.
As illustrated in the schematic diagram, the iodoTMTs were initially utilized to label all
protein homogenates; thus, the basal level of free sulfhydryl groups among each treatment
group could not be assessed (label 1). Subsequently, disulfide bonds were reduced, and
the released sulfhydryl groups were classified as label 2. The intensities of label 1 and
label 2 proteins were detected via MS/MS. The relative oxidation levels were obtained by
calculating the label 2/ (label 1 + label 2) ratio and protein samples were collected 36 h
after each treatment (Figure 5A). Data for co-expressed proteins were merged, and relative
oxidation state proportions among different experimental groups were counted. Principal
component analysis (PCA) indicated that the redox level of the same protein varied based
on the different treatments (Figure 5B). Furthermore, the total label 2/(label1+label2)
index in each group was calculated, and the relative oxidation percentage of the FBS+IR
group was significantly higher than for other treatments (Figure 5C). 873 proteins were
detected in both the control and IR group. Compared to ctrl, the log2 redox percentages
of most irradiated proteins (766) were greater than zero (Figure 5D). This demonstrated
that irradiation induced a more substantial increase in protein oxidation activation in
NSCs. Significantly oxidized proteins were chosen for an analysis of their bio-functions;
the oxidized proteins were enriched for aging, cell differentiation, cell adhesion, and RNA
processing (Figure 5E). Importantly, evident oxidation also occurred in differentiating NSCs:
589 proteins were identified in the FBS and FBS + IR groups, and 92.5% of these proteins
(545) were oxidized (Figure 5F). GO analysis indicated that significantly oxidized proteins
could regulate neurons, brain development, cell adhesion and polarity, and cytoskeleton
organization (Figure 5G). This strongly suggested that when irradiation disrupts the normal
NSC differentiation process, these oxidized proteins play a deleterious function during
this disruption. Subsequently, detectably expressed proteins and redox proteins in NSCs
under IR+FBS treatment were compared; 589 redox proteins and 6183 expressed proteins
were detected, respectively (Figure 5H). The two protein clusters shared 530 common
proteins, and 59 were proteins exclusively detected by the redox method. GO enrichment
of these 59 proteins did not yield significant evidence, only general information such as
heterocyclic compound binding and ion binding function (Figure S1). Another notable
concern was the association between upregulated and oxidized proteins after IR+FBS
treatment. The 530 common proteins were analyzed using expression fold change (FC)
and the percentage of oxidation (Figure 5I). At thresholds of |log2FC| > 0.5 and log2
oxidation % > 0.5, 8 upregulated and 10 downregulated oxidized proteins were identified.
The biological processes and KEGG enrichment of the downregulated oxidated proteins
focused predominantly on synapses, postsynaptic density, nitrogen compound metabolism,
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and ribosomes (Figure S2). Interestingly, the upregulated oxidized proteins possessed a
strong association with the neurodegenerative pathways in KEGG, such as those involved in
Parkinson’s disease, Huntington’s disease, and Alzheimer’s disease (Figure 5J,K). Overall,
in post-irradiation exposure to NSC differentiation, certain highly expressed proteins
were also considerably oxidized, indicating the activation of reverse pathways that may
culminate in NSC degeneration.
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(B) Principal component analysis (PCA) of proteomic oxidation profile among groups, “–FBS–IR”
represents the “ctrl” group, “–FBS+IR” denotes the “5Gy_ctrl” group, “+FBS–IR” represents the
“FBS_ctrl” group, and “+FBS+IR” represents the “5Gy+FBS_ctrl” group. (C) Bar Graph showing
the relative oxidation percentage of proteome-wide sulfhydryl groups among different treatment
groups; data were represented as Mean ± SEM; n = 3; ** p < 0.01, *** p < 0.001 as compared with the
“–IR–FBS” group, # p < 0.05 for comparisons between indicated groups. (D) Volcano plots exhibit the
oxidation levels of detected proteins, the Y-axis represents the negative log10 of the p value, and the
X-axis represents the log2 of the oxidation fold change between the IR and control groups. (E) The
scatter plots illustrate the significantly enriched GO terms for oxidized proteins between the IR and
control groups. (F) Volcano plots depict oxidation levels of detected proteins, the Y-axis represents the
negative log10 of the p value, and the X-axis represents the log2 of the oxidation fold change between
the IR+FBS and FBS groups. (G) Scatter plots demonstrating the significantly enriched GO terms
for oxidized proteins between the R+FBS and FBS groups. (H) The Venn graph depicts the overlap
of detected proteins between the expressed (TMT label) and redox datasets (iodoTMT label). (I)
Scatter plot illustrating the co-detected proteins between the expressed and redox datasets; the Y-axis
represents the log2 of proteins expression fold change between the IR+FBS and FBS groups, while the
X-axis represents the log2 of the oxidation fold change between the IR+FBS and FBS groups; small
red triangles represent proteins which are both highly expressed and heavily oxidized. (J) STRING
analysis of selected proteins’ interactions. (K) Bubble diagram displaying the significantly enriched
KEGG items; the bubble’s size represents the number of genes involved in the KEGG pathway, while
the gradient colors represent the negative log10 of the p value.

3. Discussion

Ionizing radiation of the developing or adult brain is acknowledged as a potential
cause of cognitive impairment and neurodegeneration, particularly when neural stem cells
are affected [39–42]. Elucidating the mechanism underlying irradiation-mediated NSC
injury would contribute to alleviating the side effects of radiotherapy and demystifying
the induction of neural inflammation, brain development, and even neurodegeneration-
associated mechanisms [43–45]. The substitution models employed in preclinical radiation
research vary from cultured cells to small or large animals [46,47]; the majority of these
models have been established according to the linear quadratic (LQ) model [48]. Currently,
the emergence of 3D tissue models and organoids has been beneficial in understanding
radiation-induced tissue response and in precision medicine [49,50].

With the advent of sequencing technology, neural stem cells have been investigated
from a system-wide perspective, including transcriptomics, proteomics, and metabolomics,
shedding new light on their complex regulatory mechanism [51–54]. Taking into consid-
eration the properties and limitations of radiobiology models, as well as the complexity
of the neural stem cell microenvironment in the brain, we sought to determine how NSCs
respond to X-ray irradiation stress in the absence of cellular interactions. Therefore, in
the present study, we designed a neural stem cell in vitro radiation model and integrated
expression and redox proteomic techniques to analyze global protein expression in differ-
entiated neural stem cells following X-ray irradiation. The proteomic expression profile
demonstrated that irradiation impaired NSC proliferation, the cell cycle, and differentiation;
in particular, the oxidation of those upregulated proteins posed an extremely high risk
of neurodegeneration.

Proliferating neural stem cells or progenitor cells are tremendously sensitive to ionizing
radiation-induced DNA damage and apoptosis [55,56]. This phenomenon was also reflected
in our BrdU assay. When DNA damage is induced, the replication checkpoint initiates the
DNA repair response and delays the cell cycle progress. In neural stem cells, the cell cycle
is also associated with cell differentiation: prolonged G1 and upregulated p57 enable cells
to respond to signals rapidly and differentiate properly [56–59]. The manipulation of the
G1 phase by CDKs could regulate the NSCs’ fate, proliferation, or differentiation [60–62].
After irradiation, the G1 phase was shortened in differentiating NSCs, suggesting that
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irradiation disrupted the conditions for normal NSC differentiation. Nestin, an intermediate
filament protein, is universally considered a marker of neural stem/progenitor cells [63].
Upregulated nestin expression was detected in stem/progenitor cells during the early
development stage in which cells are engaged in active proliferation. Once these cells
ceased dividing and initiated differentiation, nestin expression became downregulated [64].
Nestin expression is representative of NSCs’ pluripotential. It has been reported that
irradiation significantly reduced the nestin-positive cells in the mouse brain’s dentate
gyrus [65]. When co-cultured with irradiated vascular endothelial cells, nestin-positive
NSCs exhibited a marked decline [66]. In this study, nestin mRNA expression was similarly
downregulated when NSCs were subjected to X-ray irradiation, indicating a deleterious
effect of irradiation on NSCs’ stemness. Under pathological conditions, nestin should be
re-expressed for the repair process to be initiated [67]. However, it is difficult to determine
whether those nestin-deficient NSCs are capable of completing the repair task in irradiation-
induced brain injury.

The predominant cytotoxic effects of irradiation are DNA damage and cell cycle ar-
rest [68,69]; another adverse effect of irradiation that could cause cognitive impairment is
reduced neurogenesis. Irradiation induces apoptosis in dividing cells, reduces the pool
of mitotic NSCs, hampers the generation of new neurons [3], affects the microenviron-
ment of the targeted brain tissue site, and alters the NSC niche [70,71]. The expression
of neurogenesis-related proteins in our proteomic datasets also reflected the detrimental
effects of irradiation. Cyclin-dependent kinase 5 regulatory subunit-associated protein2
(CDK5RAP2) has been implicated in the proliferation of neuronal progenitors in the de-
veloping neocortex [72] and was also shown to cause Seckel syndrome [73]. Justin Miron
et al. reported that CDK5RAP2 was prevalent in the hippocampus of brains that develop
Alzheimer’s disease (AD). Notably, we also detected increased CDK5RAP2 expression in
irradiated NSCs. Similar characteristics seem to occur for other neurological disease-related
genes. Appb1, which interacts with amyloid precursor protein in Alzheimer’s disease,
was downregulated in irradiated NSCs. Appb1 deletion was discovered to increase the
risk of AD [74]. Likewise, Appb1 knockout in mice resulted in impaired learning and
memory [75]. SOD1, a superoxide scavenger, is frequently upregulated during redox
reactions [76]. We found that SOD1 was upregulated in irradiated NSCs, and chiefly at-
tributed this to the IR-induced ROS. SOD1 was also upregulated in amyotrophic lateral
sclerosis (ALS) patients [77], which indicates potential connections between irradiation and
neurodegenerative disorders. Nrcam, a cell adhesion molecule, has been associated with
autism spectrum disorders (ASD) [78]. Nrcam-knockout mice demonstrated autism-related
behaviors, such as impaired sociability, cognitive rigidity, and repetitive behavior [79]. In
the present study, Nrcam expression was also decreased in irradiated NSCs. Numerous
neurogenesis-associated proteins altered by IR could not all be listed here. Neverthe-
less, IR’s impact on NSCs is considerably more complex than appreciated, especially the
potential risk for neurodegeneration.

Beta tubulin III, also known as Tuj-1, a class III member of the beta tubulin protein
family, is regarded as a neuron-specific marker to detect progenitor cell differentiation. Con-
sistent with Hyeon Soo Eom et al.’s study [80], we observed upregulated Tuj-1 in irradiated
NSCs. MAP2, another neuron marker, was upregulated in our MS/MS detection; however,
Anggraeini Puspitasari et al. demonstrated that MAP2 expression was upregulated during
the early stage of irradiation (4 days) and progressively diminished in the subsequent
20 days [81]. Recent research suggested that the two markers belong to two distinct types
of neurons: Tuj1 are from pan-neurons, and MAP2 are from mature neurons [82]. The
inconsistency between results for Tuj-1 and MAP2 expressions indicated that during NSCs
differentiation, IR’s effects on neurons might vary depending on cell types; nonetheless,
the specific mechanisms warrant further investigation.

Reactive oxygen species (ROS), a group of aerobic respiration metabolic byproducts,
are responsible for cellular redox homeostasis. During exposure to ionizing radiation, abun-
dant quantities of ROS and reactive nitrogen species (RNS) are generated by extracellular
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water radiolysis and mitochondrial membrane destruction [83,84]. ROS and RNS are the
principal sources of oxidative damage to normal tissues. Concurrently, excessive ROS or
RNS causes the oxidation of lipids, DNA, and proteins [85–87]. The oxidation of protein
cysteine by ROS or RNS has been recognized as a prominent class of protein posttransla-
tional modifications, which are heavily associated with aging and multiple diseases [88–90].
Two kinds of protein oxidative modifications exist irreversible oxidation and reversible
oxidation. Irreversible oxidation results in protein dysfunction. In comparison, reversible
oxidation, primarily of cysteine residues, could regulate the activity, the redox balance,
and signaling cascades [91,92]. In the present study, we utilized cysteine-reactive tandem
mass tags (iodo TMT) to detect reversible oxidation. The LC-MS/MS data could provide a
proteome-wide protein oxidation profile beneficial for the analysis of the adverse effects of
IR-induced oxidative stress.

Ionizing radiation significantly elevated the protein oxidation level in differentiating
NSCs. The proteins with a dual increase in expression and oxidation levels, especially Sdha,
Atp5a1, and Ndufab1, have been documented in studies of neurodegenerative diseases [93–97].
Nevertheless, the oxidation of these disease-marker proteins received scant attention. IR-
induced proteome-wide protein oxidation could be associated with an increased risk of
neurodegeneration, whereas limiting the oxidation of certain risk proteins would provide
an auxiliary strategy for alleviating radiotherapy-induced brain injury.

In recent years, the majority of patients worldwide have turned toward photon ther-
apy, and the utilization of charged particle therapies, including proton and carbon ion
therapy, has substantially expanded [98]. Particle therapy treatment could substantially
diminish the exposure of healthy tissue to radiation and long-term side effects [99,100],
particularly among pediatric patients, in whom exposure of healthy organs to radiation
doses can induce long-term detrimental effects [99]. We also have been conducting a col-
laborative Boron neutron capture therapy (BNCT) research project with the institute of
high energy physics of the Chinese Academic of Sciences (CAS). Referring to economic
considerations and indications such as meningiomas, ionizing radiation still has clinical
utility. Investigations of radiation-induced injury could enable a deeper understanding of
our coping mechanism when subjected to stressful radioactive rays and the progression
of senescence. It is anticipated that the survival rates of cancer patients will continuously
improve due to the constant evolution of modern radiotherapy.

4. Materials and Methods
4.1. Cells and X-ray Irradiation

GFP-transfected C57BL/6 mouse neural stem cells (NSCs), derived from 12.5 dpc
embryos, were purchased from Cyagen Biosciences (MUBNF-01101, Guangzhou, China).
The NSCs were maintained in a humidified incubator with 5% CO2 at 37 ◦C in Cyagen
recommended medium (OriCellTM Neural Stem Cell Growth Medium, MUCMX-90011).
The medium was changed every 2 days. Oricell Neural stem cell growth medium was
replaced by 10% fetal bovine serum (FBS)/DMEM-F12K (Gibco) for differentiation. For
X-ray irradiation (IR) treatment, the cells were irradiated at 1 Gy or 5 Gy with an Xstrahl
X-ray system, Model CIX2 (Xstrahl, Walsall, West Midlands, UK). The follow-up procedures
are described in subsequent sections.

4.2. qRT-PCR Analysis

The experiment was conducted for six groups, namely: ctrl, differentiation group
(NSCs treated with FBS), irradiation group (cells exposed to X-ray,1 Gy or 5 Gy), differenti-
ation after IR group (after 1 Gy or 5 Gy irradiation, the culture medium was immediately
changed to FBS/DMEM-F12K). Total RNA extraction was performed at 24 h post-X-ray
irradiation or cell differentiation using TRIzol Plus RNA kit (Invitrogen, Carlsbad, CA,
USA). cDNA was prepared using the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA,
USA). The RT-PCR reaction was performed using Universal SYBR Green Supermix (Bio-
Rad, Hercules, CA, USA) according to the manufacturer’s instructions. Information on
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the primers is listed in Supplementary Table S1. The statistical analysis was performed
using GraphPad Prism 8.0 Software. The results were presented as the Mean ± standard
error of the mean. Student’s t-test was used to compare values between the two groups.
Differences were considered statistically significant when p values were <0.05.

4.3. Cell Cycle Analysis

The experimental groups and study design were consistent with the statements men-
tioned above. 24 h after each specific treatment, cells were collected via trypsinization.
Furthermore, supernatants and PBS used during wash steps were kept ensuring the collec-
tion of both adherent and detached cells. After collection, the cells were fixed in ice-cold
70% ethanol at 4 ◦C overnight. Subsequently, the cells were stained with PI solution (50 µL
PI and 50 µL RNase A in 10 mL PBS) for 30 min at room temperature before measurement.
The data were obtained using a flow cytometer (Beckman Coulter, Brea, CA, USA) and
analyzed using the ModFitLT software (Version 5.0; Verity Software House, Topsham,
ME, USA).

4.4. BrdU Assay

NSCs were seeded in 96-well plates and subjected to specific stimulation (mentioned
above). 24 h after treatment, the NSCs’ proliferation in each well was evaluated using a
Cell Proliferation ELISA BrdU Kit (Roche, Mannheim, Germany) according to the manu-
facturer’s protocol. The absorbance, which represents BrdU incorporation during DNA
synthesis, was measured at 450 nm using a microplate spectrophotometer (Thermo, Swedes-
boro, NJ, USA)

4.5. Immunofluorescence Staining

Neurospheres were trypsin-digested into a single-cell suspension and cultured on
0.01% poly-L-lysine (Sigma-Aldrich, St. Louis, MO, USA) pre-coated coverslips in a 24-well
plate. The cells were induced to differentiate following 0 Gy, 1 Gy, or 5 Gy irradiation. After
5 days of differentiation, the cells were fixed with 4% Paraformaldehyde (PFA), followed
by PBS washing thrice and blocking for 1 h with 0.5% bovine serum albumin (BSA) and
0.1%Triton X-100. The blocking solution was also used for antibody dilution: Rabbit
anti-GFAP (1:1000, Abcam, Cambridge Biomedical Campus, Cambridge, UK), Mouse
anti-O4 (1:1000, R&D systems, Minneapolis, MN, USA), and Mouse anti-beta 3 tubulin
(1:1000, Sigma), and the primary antibodies were incubated at 4 ◦C overnight. After
several washes with TBS, the corresponding secondary antibodies were added for 2 h at
room temperature. The utilized secondary antibodies are as follows: Donkey anti-mouse
IgM Alexa 555 and Donkey anti-rabbit IgM Alexa 633 (Thermo, Waltham, MA, USA).
The cell climbing slices were mounted on glass slides with an antifade reagent mounting
medium (BOSTER Biological Tech, Wuhan, China). All the stained fluorescent markers
were captured using an LSM 700 laser scanning confocal microscope (Axio-observer Z1;
Carl Zeiss, Oberkochen, Germany) and analyzed using the software ZEN lite (Zeiss, https:
//www.zeiss.com/microscopy/en/products/software/zeiss-zen-lite.html/, accessed on
18 March 2020)

4.6. Protein and LC MS/MS and TMT Label

Protein sample preparation. 36 h after corresponding treatments, all NSC samples were
lysed in RIPA buffer with PMSF (Abcam), then centrifuged at 12,000× g for 10 min at 4 ◦C;
the supernatants containing total proteins were collected. The protein concentration per
sample was determined using Pierce BCA Protein Assay Kit (Thermo scientific, Rockford,
IL, USA) according to the manufacturer’s protocol. Aliquots of 50 µg proteins were used
for proteomics analysis. Proteins’ disulfide bonds were reduced with 10 mM Dithiothreitol
for 45 min at 55 ◦C, then alkylated with 25 mM iodoacetic acid for 30 min in the dark,
followed by overnight acetone precipitation. The obtained precipitants were dissolved
in EPPS (Thermo Fisher Scientific, Rockford, IL, USA) and re-dissociated with Trypsin

https://www.zeiss.com/microscopy/en/products/software/zeiss-zen-lite.html/
https://www.zeiss.com/microscopy/en/products/software/zeiss-zen-lite.html/
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overnight at 37 ◦C. Peptide and the sulfhydryls of cysteine-containing peptides labeling
were performed using TMT10-plex and iodoTMT Mass Tag Labelling Kit (Thermo Fisher
Scientific, Rockford, IL, USA) following the manufacturer’s protocol. The labeled samples
were acidified with trifluoroacetic acid, followed by a desalination procedure using a C18
Sep-pak column, and then vacuum dried.

LC-MS/MS analysis. The peptide samples were dissolved in 0.1% formic acid, then
preconcentrated and desalted using PepMap C18 nanotrap column (Thermo Fisher Scien-
tific, Rockford, IL, USA) A reversed-phase analytical column (EASY-Spray C18, Thermo
Fisher Scientific, Rockford, IL, USA) was utilized for peptide separation in a binary solvent
system. Gradient conditions were: 4–26% solvent B for 120 min and 26–95% B for 10 min.
The peptides were analyzed using a data-dependent acquisition method at a resolution
of 120,000, a scan range of 375–1500 m/z, and at a resolution of 60,000 with a target value
of 2 × 105 ions and a maximum injection time of 120 ms. The fixed first m/z was 100,
and the isolation window was 1.2 m/z units. The raw data files were processed using the
Andromeda search engine in MaxQuant 1.5.6.5 software (https://www.maxquant.org/,
accessed on 11 November 2019)

4.7. Bioinformatic Analysis

All statistics of protein expression data were computed using Excel software (Microsoft
Excel, version 2013), and the differentially expressed (DE) proteins were screened via the
t-test (p < 0.05) and Log2 fold change (Log2fold change>|0.5|); related expression vol-
cano plots were generated using GraphPad Prism V 7.0. The clustered heatmap profile of
protein expression among each group was conducted using the “pheatmap” package (ver-
sion 1.0.12, https://cran.rstudio.com/web/packages/pheatmap/index.html/, accessed on
15 February 2022) in R.

The principal component analysis of protein expression patterns among groups was
performed using the “FactoMineR” package (version 2.4, https://cran.r-project.org/web/
packages/FactoMineR/index.html/, accessed on 15 February 2022) in R, and the output
data were plotted using GraphPad Prism. For correlation analysis, the normalized protein
expression values of particular experimental groups were transformed on a Log2 scale,
then analyzed and visualized with GraphPad Prism.

The gene ontology (GO) or KEGG enrichment of DE proteins among experimental
groups was performed using the online database DAVID (https://david.ncifcrf.gov/, ac-
cessed on 13 February 2022). Protein interactions were analyzed using the STRING database
(http://string-db.org/, accessed on 13 February 2022). The obtained GO data (p-value
<0.05) were visualized using the REVIGO web server (https://revigo.irb.hr/, accessed
on 13 February 2022). The KEGG enrichment scattered plots were generated utilizing the
R packages ggplot2 (version 3.3.5, https://www.rdocumentation.org/packages/ggplot2
/versions/3.3.5/, accessed on 10 April 2022).

5. Conclusions

We utilized mouse neural stem cells to establish an X-radiation injury cell model and
introduced FBS to simulate the differentiation process. Mass spectrometry protein profiling
and redox proteomic techniques were applied to analyze global protein expression in
differentiated neural stem cells upon X-ray irradiation. LC-MS/MS permitted the detection
of a series of significantly expressed proteins related to alterations of the cell cycle, impaired
proliferation, and differentiation in NSCs. These results evidenced the deleterious effects
of irradiation on neural stem cells at a protein level. Furthermore, we first employed
iodoTMT labeling techniques to obtain a redox protein profiling of differentiating NSCs
under irradiation stress. The joint analysis of expressed and redox protein profiles have
identified highly upregulated and oxidized proteins associated with neurodegenerative
disease. From a redox perspective, irradiation could impede the normal processes involved
in NSC differentiation, thereby resulting in degenerative differentiation.

https://www.maxquant.org/
https://cran.rstudio.com/web/packages/pheatmap/index.html/
https://cran.r-project.org/web/packages/FactoMineR/index.html/
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http://string-db.org/
https://revigo.irb.hr/
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6. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12121759/s1, Figure S1: STRING analysis of selected protein
interactions, Figure S2: STRING analysis of selected protein interactions, Table S1: Primer information.
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