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Abstract: Background: Breast cancer (BRCA) is one of the most common cancers in women worldwide
and a leading cause of death from malignancy. This study was designed to identify a novel biomarker
for prognosticating the survival of BRCA patients. Methods: The prognostic potential of eukaryotic
translation initiation factor 4 gamma 1 (EIF4G1) was assessed using RNA sequencing (RNA-seq) data
from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) as training cohort
and validation set, respectively. The functional enrichment analysis of differentially expressed genes
(DEGs) was performed. The relationship between EIF4G1 and tumor microenvironment (TME) was
analyzed. Immunotherapy responses were explored by the immunophenoscores (IPS) and tumor
immune dysfunction and exclusion (TIDE) score. The Connectivity Map (CMap) was used to discover
potentially effective therapeutic molecules against BRCA. Immunohistochemistry (IHC) was applied
to compare the protein levels of EIF4G1 in normal and cancer tissues and to verify the prognostic
value of EIF4G1. Results: BRCA patients with increased expression of EIF4G1 had a shorter overall
survival (OS) in all cohorts and results from IHC. EIF4G1-related genes were mainly involved in DNA
replication, BRCA metastasis, and the MAPK signaling pathway. Infiltration levels of CD4+-activated
memory T cells, macrophages M0, macrophages M1, and neutrophils were higher in the EIF4G1 high-
expression group than those in the EIF4G1 low-expression group. EIF4G1 was positively correlated
with T cell exhaustion. Lower IPS was revealed in high EIF4G1 expression patients. Five potential
groups of drugs against BRCA were identified. Conclusion: EIF4G1 might regulate the TME and
affect BRCA metastasis, and it is a potential prognostic biomarker and therapeutic target for BRCA.

Keywords: breast cancer; prognosis; EIF4G1; immune infiltration; immunohistochemistry

1. Introduction

Female breast cancer (BRCA) accounts for 24.5% of all new cancer cases and 15.5%
of all cancer-associated death cases. It ranks as the one-sixth contributor and the fifth
leading cause of cancer mortality worldwide [1]. Besides, it is one of the most common
cancers among Chinese women [2]. In 2020, BRCA was diagnosed in approximately
2.3 million women, among whom 685,000 died [1,3]. Further, 18.4% of the BRCA cases
were found in China, and this is the largest number of all global BRCA cases [3]. In
the United States, BRCA is expected to account for approximately one third of all new
cancer diagnoses in 2022 [4]. Histological stratification of BRCA is mainly based on the
expression of progesterone receptor (PR), estrogen receptor (ER) and human epidermal
growth factor receptor 2 (HER2). This is fundamental to BRCA classification [5,6]. There are
Luminal A, Luminal B, HER2-enriched, basal-like, and normal-like subtypes of BRCA [7–9].
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Currently, the primary treatment options for BRCA are radiation therapy, hormone therapy,
chemotherapy, and surgery. Different drug combinations and targeted treatment have also
proven to be good medical methods for BRCA [10]. Even though BRCA treatment has
improved significantly, the associated endocrine resistance remains a huge challenge [11].
Due to this, patients with other metastatic diseases suffer poor prognosis [12]. Several
immune-associated prognostic biomarkers of BRCA have been identified. However, many
of them lack experimental verification while others were investigated with smaller sample
sizes [13–15]. Hence, a novel and reliable immune-related biomarker identified via a
rigorous experimental investigation of a large sample size is urgently needed.

Eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) expression is increased in
different types of cancers [16–19]. Upregulated EIF4G1 was found to be correlated with poor
prognosis of nasopharyngeal carcinoma [16] and ovarian cancer [17]. Besides, increased
EIF4G1 could promote the formation of tumor emboli by facilitating the translation of IRES-
containing p120 mRNAs [18]. Cancer cells depend on cap-dependent translation to meet
the demand for tremendous protein synthesis, which starts at 5’cap (m7GTP). Translation
in eukaryotes is majorly regulated at the step of initiation on mRNA through the eukaryotic
initiation factor 4F (EIF4F) components. EIF4F, mainly regulated by RAS/MAPK and
PI3K/mTOR signaling pathways [20,21], is composed of EIF4A (an ATP-dependent RNA
helicase), EIF4G (a scaffold protein), and EIF4E which binds m7 GTP cap [19,22]. The EIF4G
family includes EIF4G1, EIF4G2, and EIF4G3. Among these isoforms, EIF4G1 is the most
abundant (>85%) [23]. It has been reported that the elevated expression of EIF4G2 and m7G
methylation-related genes, including EIF4G3, is closely associated with poor prognosis in
hepatocellular carcinoma patients [24,25]. In previous studies, the expression of EIF4G1
was reported to be increased in BRCA. However, it has not been reported whether EIF4G1
is a prognostic biomarker for BRCA.

In this study, we systematically investigated the prognostic value of EIF4G1 in BRCA,
determined the association of EIF4G1 with tumor-infiltrating immune cells (TIICs) and
immunotherapy response, and screened for potential drugs against BRCA. External cohorts
(including GSE88770 and GSE42568) and immunohistochemistry (IHC) were employed to
validate our results. The correlation between tumor microenvironment (TME) and EIF4G1
was performed via ESTIMATE, CIBERSORT algorithms, and GEPIA.

2. Methods and Materials
2.1. Data Collection and Preprocessing

The mRNA expression profiles and corresponding clinical characteristics of BRCA
patients were obtained from the UCSC website (https://xenaBRCAowser.net//, accessed
on 11 March 2022). A total of 1083 female primary tumor patients were screened and
used as the training set. Two gene expression arrays, GSE88770 (containing 117 tumor
samples) and GSE42568 (containing 104 tumor samples and 17 normal samples), both based
on the GPL570 platform, were downloaded from the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 30 April 2022), and were selected as
the external validation set. Patients without survival data were removed. After merging
the tumor samples in the validation cohort and removing batch effects, we adjusted and
normalized the mRNA expression data of the two microarray datasets.

2.2. Functions and Expression Analyses of EIF4G1 in Pan-Cancer

Cancer single-cell state atlas (CancerSEA) (http://biu.edu.cn/CancerSEA/, accessed
on 31 May 2022) is the first database dedicated to decode 14 distinct functional states
(including metastasis, stemness, invasion, proliferation, angiogenesis, apoptosis, cell cycle,
hypoxia, differentiation, inflammation, quiescence, DNA damage, and DNA repair) of
25 cancer types at single-cell resolution [26,27]. Functions of EIF4G1 in different cancer
types are found in this database. Tumor Immune Estimation Resource (TIMER) (https:
//cistrome.shinyapps.io/timer/, accessed on 8 May 2022), a tool to systematically analyze
immune infiltration of 10,897 cancer samples from 32 types of cancer, was generated to

https://xenaBRCAowser.net//
https://www.ncbi.nlm.nih.gov/geo/
http://biu.edu.cn/CancerSEA/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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investigate the difference of EIF4G1 expression between human cancer samples and paired
normal tissues [28–30].

2.3. The Expression Level of EIF4G1 in Normal and Tumor Tissues

The Human Protein Atlas (HPA) (https://www.proteinatlas.org/, accessed on 8 May
2022) is a comprehensive website for researchers to study the protein localization and levels
in common human organs, tissues, and cells [31–33]. On this basis, we observed the protein
levels of EIF4G1 in normal and tumor tissues. IHC images of EIF4G1 protein level in BRCA
tissues were also taken.

2.4. The Prognostic Value of EIF4G1 for BRCA

According to the optional cut-off value of EIF4G1, samples in The Cancer Genome
Atlas (TCGA) were classified into high-expression and low-expression groups. Kaplan–
Meier (KM) survival analysis of all patients and the three subtypes of BRCA was conducted
to assess differences of overall survival (OS) between the two groups. Stratified groups of
TCGA were utilized to estimate the predictive ability of this prognostic index for patients
in different clinical subgroups. The time-dependent receiver operating characteristic (ROC)
curve was plotted to predict OS of BRCA patients. Univariate and multivariate Cox
regression analyses were performed depending on the clinicopathological factors (age
and pathological stage) of TCGA to confirm whether EIF4G1 could predict the survival of
BRCA patients.

Two microarray datasets (GSE88770 and GSE42568) containing the information of
221 BRCA patients were selected to validate our results. The correlation between OS
and EIF4G1 expression in BRCA patients was determined using the KM survival curve.
GSE88770 verified the relevance of EIF4G1 to OS in the three subtypes of BRCA.

2.5. Enrichment Analysis

Student’s t-test was performed to screen the EIF4G1-related differentially expressed
genes (DEGs). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways were analyzed to discover the functional roles of DEGs. False discovery
rate (FDR) < 0.05 was considered statistically significant.

2.6. Immune Cells Infiltration, Immune Checkpoints, and Immunotherapy Response Estimation

The ESTIMATE algorithm (https://bioinformatics.mdanderson.org/estimate/, ac-
cessed on 14 May 2022) was utilized to calculate the stromal scores (SSs) and immune
scores (ISs) of each tumor tissue in TCGA. Then, the correlations of EIF4G1with SSs and ISs
were analyzed [34].

The CIBERSORT approach was applied to analyze the proportions of 22 TIICs via a nor-
malized gene expression matrix (http://cibersort.stanford.edu, accessed on
10 August 2022) [35,36]. Meanwhile, the Wilcox test was applied to compare the immune
infiltration differences between the EIF4G1 high- and low-expression groups.

GEPIA (http://gepia.cancer-pku.cn/, accessed on 8 May 2022), an online database,
provides researchers with customizable functionalities based on TCGA and GTEx data.
The correlations between EIF4G1 and T cell exhaustion markers were visualized through a
scatter plot [37].

The Cancer Immunome Atlas (TCIA) (https://tcia.at/, accessed on 16 November
2022) database was used to download the immunophenoscores (IPS) of BRCA [38]. The
relationship between EIF4G1 and IPS was analyzed to predict immunotherapy sensitivity.
Tumor immune dysfunction and exclusion (TIDE) score was calculated via TIDE algorithm
(http://tide.dfci.harvard.edu/, accessed on 16 November 2022) to infer patients’ response
to immune checkpoint blockade (ICB) treatment, whose main targets are PD-L1, PD-1, and
CTLA4 [39].

https://www.proteinatlas.org/
https://bioinformatics.mdanderson.org/estimate/
http://cibersort.stanford.edu
http://gepia.cancer-pku.cn/
https://tcia.at/
http://tide.dfci.harvard.edu/
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2.7. Identification of Potential Therapeutic Compounds

The Connectivity Map (CMap) (https://clue.io/, accessed on 10 August 2022), a
novel database used to study gene interactions and drugs, can be applied for discovering
potentially effective molecules against certain diseases [40]. Through this database, we
found five potential therapeutic compounds against BRCA using the CMap tool in the
“query” module via the L1000 platform after recognition of 50 up- and 40 down-regulated
genes as valid genes, which are EIF4G1-related. Five compounds with an enrichment score
of ≤ 0 with the lowest scores were screened as candidate inhibitors.

2.8. IHC Staining Evaluation

Formalin-fixed human BRCA tissue specimens of 4 µm thickness were purchased from
Shanghai Superbiotek Pharmaceutical Technology Co., Ltd (Shanghai, China), including
80 pairs of tumor tissues and 80 non-cancerous breast tissues. Tissue sections were incu-
bated at 60 ◦C for 12 h, then dewaxed in xylene and hydrated in gradient alcohol. Slides
were placed in Tris-EDTA buffer (pH = 9.0) for antigen repair in a microwave. Endogenous
peroxidase blocker was used to eliminate endogenous interference, and normal goat serum
was used to block nonspecific antigens at room temperature. EIF4G1 polyclonal antibody
(1:150, Proteintech, Wuhan, China) was used to probe the slices at 4 °C overnight. The
sections were incubated with a secondary antibody (Zsbio, Beijing, China) under room
temperature for 30 min. Then, the samples were stained with diaminobenzidine, counter-
stained with hematoxylin, and dehydrated with gradient alcohol. The IHC staining results
were independently assessed by two observers who were unaware of the patients’ clinical
information. Staining intensity was defined as 0 = negative staining, 1 = weak staining,
2 = moderate staining, and 3 = strong staining. The percentage of positive cells was defined
as 0 = 0–5%, 1 = 6%–25%, 2 = 26%–50%, 3 = 51%–75%, and 4 = 75–100%. The final result
was obtained by multiplying the staining intensity and the staining percentage. According
to the optimal cut-off value of 3, staining score > 3 represented high expression of EIF4G1
and staining score ≤ 3 represented low EIF4G1 expression.

KM analysis was used to evaluate the prognostic value of EIF4G1 in BRCA. Paired
differential analysis was performed to compare the expression of EIF4G1 in tumor tissues
and non-cancerous breast tissues.

2.9. Statistical Analysis

The R software (version 4.0.4, https://www.r-project.org/, accessed on 6 March
2022) was used for the statistical analyses. The validation cohort was adjusted with the
“limma” (version 3.46.0) and “sva” (version 3.38.0) packages. Differences in protein levels
between different groups in the TCGA and the GSE42568 cohorts were determined with
the Wilcoxon test and the student’s t test, respectively. KM survival curves, univariate and
multivariate Cox regression analyses were performed using the “survival” (version 3.3.1)
and the “survminer” (version 0.4.9) packages. The time-dependent ROC curve was plotted
with the “timeROC” package (version 0.4). To identify the DEGs, we conducted Student’s
t-test and FDR. SSs and ISs were conducted with the “estimate” packages (version 1.0.13).
The “ggplot2” package (version 3.3.6) was employed to visualize the result of functional
enrichment analysis. The CIBERSORT was implemented using “e1071” package (version
1.7.9). P-value < 0.05 indicated significant differences between groups. Patients who had
no OS information were excluded from both data sets.

3. Results
3.1. Research Process

The overall workflow diagram of this study is summarized in Figure 1. The training
cohort comprised 1083 samples of TCGA while the meta-validation dataset was from
221 patients. The demographics and clinicopathological characteristics of these patients are
displayed in Table 1.

https://clue.io/
https://www.r-project.org/
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Table 1. Clinical features of BRCA patients in the TCGA and meta-validation dataset.

Clinical
Features

TCGA
(n = 1083)

GSE42568
(n = 104)

GSE88770
(n = 117)

OS
Alive
Dead

933 (86.15%)
150 (13.85%)

69 (66.35%)
35 (33.65%)

89 (76.07%)
28 (23.93%)

Age
≤58
>58

545 (50.32%)
538 (49.68%)

56 (53.85%)
48 (46.15%)

-
-

Grade
G1
G2
G3

-
-
-

11 (10.58%)
40 (38.46%)
53 (50.96%)

13 (11.11%)
96 (82.05%)
7 (5.98%)

PR status
Positive

Negative
Indeterminate

688 (63.53%)
342 (31.58%)

4 (0.37%)

-
-
-

79 (67.52%)
37 (31.62%)

ER status
Positive

Negative
Indeterminate

795 (73.41%)
238 (21.98%)

2 (0.18%)

-
-
-

106 (90.60%)
11 (9.40%)

-
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Table 1. Cont.

Clinical
Features

TCGA
(n = 1083)

GSE42568
(n = 104)

GSE88770
(n = 117)

HER2 status
Positive

Negative
Indeterminate

161 (14.87%)
557 (51.43%)
12 (1.11%)

-
-
-

7 (5.98%)
108 (92.31%)

-
Stage
Stage I
Stage II
Stage III
Stage IV
Stage X

182 (16.81%)
613 (56.60%)
247 (22.81%)
19 (1.75%)
14 (1.29%)

-
-
-
-
-

-
-
-
-
-

T stage
T1
T2
T3
T4

279 (25.76%)
624 (57.62%)
138 (12.74%)
39 (3.60%)

-
-
-
-

-
-
-
-

N stage
N0
N1
N2
N3

512 (47.28%)
356 (32.87%)
119 (10.99%)
76 (7.02%)

-
-
-
-

-
-
-
-

M stage
M0
M1

901 (83.19%)
21 (1.94%)

-
-

-
-

OS, overall survival; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor
receptor 2.

3.2. Association of EIF4G1 with Pan-Cancer

The results with p-values and correlation were obtained from the CancerSEA single
cell database. As the interactive bubble Chart shows, EIF4G1 was positively associated
with DNA repair (r = 0.21, p = 0) and DNA damage (r = 0.20, p = 0) in BRCA (Figure 2a).

3.3. Upregulation of EIF4G1 in BRCA

The analyzed result of the TIMER database indicated that EIF4G1 mRNA level was
significantly elevated in BRCA tissues compared to that of normal breast samples. Addi-
tionally, compared with adjacent normal tissues, EIF4G1 mRNA expression was observed
to be increased in other 14 types of cancers, including bladder urothelial carcinoma, cholan-
giocarcinoma, colon adenocarcinoma, esophageal carcinoma, head and neck cancer, renal
papillary cell carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, prostate
adenocarcinoma, rectum adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma,
uterine corpus endometrial carcinoma, and hepatocellular carcinoma (Figure 2b).
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Figure 2. EIF4G1 is upregulated in pan-cancer and is involved in numerous processes. (a) Functional
states of EIF4G1 and its association with 14 different types of cancers in the CancerSEA database;
(b) The expression levels of EIF4G1 in different cancer types from the TCGA database, as analyzed
with TIMER (* p < 0.05, *** p < 0.001).

EIF4G1 was found to be more significantly upregulated in the tumor tissues than
in the paired adjacent normal tissues, in both the TCGA cohort (p < 2.2 × 10–16) and the
GSE42568 cohort (p = 8.1 × 10–5; Figure 3a,b).
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Figure 3. Upregulated EIF4G1 in two cohorts, and the results from KM survival analyses. (a,b) Differ-
ent expression of EIF4G1 between breast cancer tissues and adjacent normal tissues in TCGA cohort
and GSE42568; (c) KM survival analysis of high- and low-expression groups in TCGA-training cohort;
(d) KM survival curve of the high- and low-expression groups in the meta-validation dataset.

3.4. The Expression Level of EIF4Gl in HPA

HPA indicated that the protein level of EIF4G1 was higher in normal breast tissues
and BRCA samples than in normal organs and tumor tissues (Figure S1a,b). IHC staining
of BRCA tissues showed that EIF4G1 protein was mainly distributed in the cytoplasm. The
staining was “moderately to strongly” positive (Figure S1c).

3.5. Functional Enrichment Analysis of EIF4G1

The result of functional enrichment analysis showed that the number of enriched
terms totaled 1237 (Table S1). The top 20 most significant GO functions and KEGG pathway
analyses were sorted in ascending order of FDR. GO terms enrichment analysis revealed
that the DEGs were primarily associated with DNA localization, DNA replication, and
RNA transport (Figure 4a). The result of KEGG pathway analysis demonstrated that DEGs
were mostly involved in MAPK signaling pathway, breast cancer, cell cycle, and DNA
replication (Figure 4b).
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3.6. Prognostic Performance of EIF4G1 in BRCA

The KM analysis of TCGA showed that BRCA patients with higher expression level of
EIF4G1 had a short OS (HR = 1.59, p = 0.004; Figure 3c). In the three subtypes of BRCA,
patients of HER2 positive BRCA had a poor OS when the expression of EIF4G1 was elevated
(HR = 2.81, p = 0.02; Figure S2a–c). In addition, stratification analyses of the clinical features,
including stage (Figure S3a,b) and age (Figure S3c,d), showed that patients in EIF4G1 high-
expression group had short outcomes. The area under the curve (AUC) predictive values
for three-, five-, and seven-year survival rates were 0.612, 0.615, and 0.546, respectively. This
suggested that EIF4G1 had a certain capability to predict the prognosis of BRCA patients
(Figure S4a). The results showed that EIF4G1 could predict the prognosis in patients
at age >58 (three-year AUC = 0.640, five-year AUC = 0.611, seven-year AUC = 0.587). It
could also predict their prognosis in the early stage (three-year AUC = 0.635, five-year
AUC = 0.659, seven-year AUC = 0.590) and advanced stage (three-year AUC = 0.614,
five-year AUC = 0.600, seven-year AUC = 0.472) of BRCA (Figure S4b–d).

Furthermore, univariate and multivariate Cox regression analyses were performed
to confirm whether EIF4G1 could serve as an independent predictor of the survivability
of BRCA patients. The univariate Cox regression analysis showed that age (p = 0.000285),
stage (p = 1.21 × 10–8), and EIF4G1 (p = 0.00444) were prognostic factors for BRCA in
the training cohort. The multivariate Cox regression analysis indicated that EIF4G1 is an
independent prognostic indicator of BRCA (p = 7.86 × 10−5; Table S2).

Our results were verified in the meta-validation dataset. As shown in d, upregulated
EIF4G1 was correlated with poor prognosis (HR = 2.04, p = 0.006). The outcome for
patients with increased EIF4G1 was unfavorable in the advanced grade subgroup (Figure
S3e,f). The time-dependent ROC testified the predictive efficiency of EIF4G1 for BRCA
(three-year AUC = 0.590, five-year AUC = 0.641, and seven-year AUC = 0.670) and for
patients in advanced grade (three-year AUC = 0.567, five-year AUC = 0.621, and seven-year
AUC = 0.649; Figure S4e,f). The multivariate analysis proved that EIF4G1 could serve as an
independent predictor of unfavorable outcomes for BRCA cases (p = 0.0182; Table S2). In
the GSE88770 cohort, patients of HER2 positive BRCA showed the same result as TCGA
(p = 0.03; Figure S2d–f).

3.7. Analyses of Immune Infiltration, Immune Checkpoints, and Immunotherapy Response

Graphs from the ESTIMATE algorithm revealed the relevance between EIF4G1 and
immune infiltration score. As shown in Figure 5a, the SSs in the high-expression group was
significantly lower compared with that in the low-expression group. However, there was
no difference in ISs between the high- and low-expression groups (Figure 5b).
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Figure 5. ESTIMATE scores distribution and TIICs analysis by CIBERSORT. (a, b) Distribution of ISs
and SSs between EIF4G1 high- and low-expression groups; (c) A bar chart showing the difference
in the proportion of 22 TIICs in the TME of BRCA; (d) A boxplot comparing the proportion of the
22 TIICs in the TME of BRCA between the high- and low-expression groups (* p < 0.05, ** p < 0.01,
*** p < 0.001; ns, not significant).

The fractions of 22 kinds of immune lymphocytes in the TME of BRCA were performed
by using the CIBERSORT algorithm (Figure 5c). Results of immune landscape conducted
between the high- and low-expression groups indicated that proportions of CD4+ -activated
memory T cells, macrophages M0, macrophages M1, and neutrophils were relatively higher
in the EIF4G1 high-expression group than those in the EIF4G1 low-expression group,
while infiltration levels of resting mast cells and eosinophils were lower in the EIF4G1
high-expression group (Figure 5d).
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Using the GEPIA database, we explored the association between immune checkpoints
and EIF4G1. The results indicate that EIF4G1 is positively associated with cytotoxic T-
lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PD-1), programmed
cell death 1 ligand 1 (PDL1), granzyme B (GZMB), and lymphocyte activating 3 (LAG3)
(p < 0.001; Figure 6a–e).

Biomolecules 2022, 12, x FOR PEER REVIEW  12  of  17 
 

  

Figure 6. Correlation analysis of EIF4G1 to the immune checkpoint, TIDE score, and IPS. (a) CTLA4, 

(b) PD‐1, (c) PDL1, (d) GZMB, and (e) LAG3 from GEPIA. (f) TIDE score between EIF4G1 high‐ and 

low‐expression expression groups. (g) The IPS, (h) IPS‐PD‐1/PD‐L1/PD‐L2, (i) IPS‐CTLA4, and (j) 

IPS‐PD‐1/PD‐L1/PD‐L2 + CTLA4. 

3.8. Screening for Potential Small Molecules Drugs 

We found that five groups of drugs with highly negative enrichment scores might be 

beneficial in treating BRCA (Table 2). They were aurora kinase inhibitors, ATPase inhibi‐

tors, microtubule inhibitors, heat‐shock protein (HSP) inhibitors, and glucocorticoid re‐

ceptor agonists. 

Table 2. A list of screened compounds with highly negative enrichment scores. 

Rank  Score  Name  Description  Target 

8549  −94.63  KIN001‐220  Aurora kinase inhibitor  AURKA 

8534  −79.24  Digitoxigenin  ATPase inhibitor  ATP1A1 

8530  −71.17  Epothilone  Microtubule inhibitor 

TUBA1A, TUBA1B, 

TUBA1C, TUBA3C, 

TUBA4A, TUBA8, TUBB, 

TUBB1, TUBB3, TUBB4A, 

TUBB4B 

8529  −69.93 

Dihydro‐7‐

desacetyldeoxy‐

gedunin 

HSP inhibitor  HSP90AA1 

8528  −67.25  Fludrocortisone 
Glucocorticoid receptor 

agonist 
NR3C2, AR, NR3C1 

Figure 6. Correlation analysis of EIF4G1 to the immune checkpoint, TIDE score, and IPS. (a) CTLA4,
(b) PD-1, (c) PDL1, (d) GZMB, and (e) LAG3 from GEPIA. (f) TIDE score between EIF4G1 high- and
low-expression expression groups. (g) The IPS, (h) IPS-PD-1/PD-L1/PD-L2, (i) IPS-CTLA4, and
(j) IPS-PD-1/PD-L1/PD-L2 + CTLA4.

Taking into account the positive correlation of EIF4G1 to the immune checkpoints,
we then investigated the association between immune checkpoint inhibitors (ICIs) and
EIF4G1. IPS between EIF4G1 high- and low-expression groups showed that patients of
low EIF4G1 expression had a higher IPS of anti-PD-1 and anti- CTLA4 immunotherapy,
which suggested a better immunotherapy response (Figure 6g–j). There was no significant
correlation between TIDE score and EIF4G1 level (Figure 6f).

3.8. Screening for Potential Small Molecules Drugs

We found that five groups of drugs with highly negative enrichment scores might
be beneficial in treating BRCA (Table 2). They were aurora kinase inhibitors, ATPase
inhibitors, microtubule inhibitors, heat-shock protein (HSP) inhibitors, and glucocorticoid
receptor agonists.
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Table 2. A list of screened compounds with highly negative enrichment scores.

Rank Score Name Description Target

8549 −94.63 KIN001-220 Aurora kinase inhibitor AURKA
8534 −79.24 Digitoxigenin ATPase inhibitor ATP1A1

8530 −71.17 Epothilone Microtubule inhibitor

TUBA1A, TUBA1B,
TUBA1C, TUBA3C,
TUBA4A, TUBA8,

TUBB, TUBB1, TUBB3,
TUBB4A, TUBB4B

8529 −69.93 Dihydro-7-
desacetyldeoxygedunin HSP inhibitor HSP90AA1

8528 −67.25 Fludrocortisone Glucocorticoid receptor
agonist NR3C2, AR, NR3C1

3.9. IHC Experimental Verification

Representative IHC images of EIF4G1 in BRCA and non-cancerous breast tissues are
shown in Figure 7a. EIF4G1 was mainly localized in the cytoplasm of the specimens, and
the staining was predominant in the tumor tissues. This is consistent with the results in
the HPA database. Figure 7b confirmed that the protein level of EIF4G1 was higher in the
cancer specimens than in the non-cancerous breast tissues (p = 4.1 × 10−7). KM survival
analysis (Figure 7c) suggested that patients with high expression of EIF4G1 had a short
OS (HR = 4.13, p = 0.006). These results are consistent with the analysis of the training
cohort and meta-validation set. There was no significant difference in the expression level
of EIF4G1 among different clinical characteristics (Table S3).
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tissues; (c) Differences in OS between EIF4G1 high- and low-expression groups, as determined with
the KM curve.
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4. Discussion

In this study, we found that EIF4G1 was upregulated in various solid tumors. Wu
et al. [19] also found that EIF4G1 expression was commonly increased in tumors. The
protein level of EIF4G1 in BRCA tissues was higher than that in the adjacent normal breast
samples [18], which was consistent with our results from IHC, TCGA, and GSE42568
cohorts. Additionally, increased expression of EIF4G1 was associated with a short OS of
BRCA patients. Subgroups analyses revealed that EIF4G1 was related to patients’ poor
outcomes at age > 58 and stage in TCGA and advanced grade in the meta-validation set.
EIF4G1 could still effectively predict the OS of BRCA patients with diverse clinical features,
which was consistent with other reports [41,42]. Results from multivariate Cox regression
analysis showed that EIF4G1 was an independent prognostic marker of BRCA. External
validation cohort and IHC experiment verified the reliability and stability of this prognostic
marker. Taken together, EIF4G1 may be an effective prognostic biomarker of BRCA.

EIF4G1 was mainly localized in the cytoplasm of the specimens, and the staining was
predominant in the tumor tissues. This indicated that the protein level of EIF4G1 was
higher in cancerous breast tissues than in non-cancerous breast tissues. This was consistent
with the information in the HPA database. KM survival analysis suggested that patients
with high expression of EIF4G1 had a short OS. The above results were consistent with the
analysis of the training cohort and the meta-validation set.

Our GO and KEGG enrichment analyses showed that EIF4G1-related genes were
primarily involved in cell cycle, DNA localization, DNA replication, RNA transport, nu-
cleocytoplasmic transport, and the MAPK signaling pathway. Michelle Badura et al. [22]
observed that increased expression of EIF4G1 could promote cell survival, DNA repair, and
DNA damage response. This corroborates the results obtained from CancerSEA. EIF4G1
was found to promote cell growth, proliferation, and differentiation. It was also found to
prevent autophagy and apoptosis [22,43]. The MAPK pathway may partly increase EIF4E
phosphorylation to drive progression and metastasis through several mechanisms [20].
Recently, phosphorylated EIF4E was found to promote BRCA cell invasion through regu-
lating the expression of IL-33 in fibroblasts [44]. As described above, EIF4G1 may play an
important role in the tumorigenesis of BRCA. Therefore, our results suggested that EIF4G1
might affect the proliferation and metastasis of BRCA cells through regulating the MAPK
signaling pathway.

We conducted immune microenvironment analysis and found that EIF4G1 expression
level was associated with TIICs and immune checkpoints. TIICs was shown to have
prognostic roles in various cancers, including BRCA [45–47]. Higher ICB treatment response
rates were observed in IPS and TIDE score, which demonstrated that patients with higher
expression of EIF4G1 could have a better response to immunotherapy. Therefore, EIF4G1
might be an effective factor for foretelling the effect of immunotherapy in BRCA patients.
However, the exact mechanisms of association between EIF4G1 and TIICs in the TME
and immune checkpoints need to be elucidated in well-designed studies. There was a
significant difference in the proportion of SSs between high- and low-expression groups.
Many cancer researchers have reported that SSs play important roles in the progression,
metastasis, and therapy resistance of tumors [48,49]. There was no difference in ISs between
the high- and low-expression groups, and this may be due to the different proportions of
the various immune cells between the two groups. The estimation method indicated that
the expression of EIF4G1 may be related to the progression and metastasis of BRCA.

Interestingly, two drugs, epothilone and digitoxigenin, have already been observed
to inhibit BRCA metastasis. Epothilone was found to promote cancer cell death in the
treatment of human cancers [50,51]. Digitoxigenin is a digitalis aglycone [52]. An early
report found that digitalis could be an inhibitor for BRCA [53].

There are limitations in this work. Firstly, we could only minimize batch effects during
cohort validation, rather than completely removing them. Moreover, this cohort study is
retrospective. Hence, prospective studies are needed to verify our findings.



Biomolecules 2022, 12, 1756 14 of 16

5. Conclusions

EIF4G1 was found to be more expressed in tumor tissues than para-cancerous breast
tissues. Poor prognosis was significantly correlated with the high expression of EIF4G1
in breast cancer. Furthermore, EIF4G1 might regulate the proliferation and metastasis of
BRCA cells. EIF4G1 showed significant association with TIICs, immune checkpoints, and
IPS. Taken together, EIF4G1 has the potential to be an independent prognostic biomarker
of short OS of BRCA patients and therapeutic target for treating BRCA.
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www.mdpi.com/article/10.3390/biom12121756/s1; Figure S1. EIF4G1 protein level in human cancers
and normal tissues. (a) Protein levels of EIF4G1 in normal organs; (b) Protein levels of EIF4G1 in
tumor tissues; (c) Representative IHC images of EIF4G1 expression level in BRCA tissues and normal
samples; Figure S2. The KM survival curves of the three subtypes of BRCA. (a) Hormone receptor
(HR) positive/HER2 negative, (b) HER2 positive, (c) triple-negative in the TCGA cohort. (d) HR
positive/HER2 negative, (e) HER2 positive, (f) triple-negative in the GSE88770 cohort; Figure S3. KM
survival stratification analyses of clinical characteristics pertaining to (a) early stage, (b) advanced
stage, (c) age ≤58, (d) age >58, (e) early grade, and (f) advanced grade; Figure S4. The time-dependent
ROC curve for 3-, 5-, and 7-year survival rates. (a) AUC predictive value of EIF4G1 in TCGA; (b) AUC
predictive value of EIF4G1 for age >58, (c) early stage, (d) and advanced stage in TCGA; (e) AUC
predictive value of EIF4G1 in meta-validation; (f) AUC predictive value of EIF4G1 for advanced
grade in GEO; Table S1. GO and KEGG enrichment analyses results in TCGA; Table S2. Univariate
and multivariate Cox analyses of prognostic factors in TCGA-training and meta-validation cohorts;
Table S3. Clinical data of BRCA specimens in tissue microarray.
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