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Abstract: Protein phosphorylation and dephosphorylation are widely considered to be the key
regulatory factors of cell function, and are often referred to as “molecular switches” in the reg-
ulation of cell metabolic processes. A large number of studies have shown that the phosphory-
lation/dephosphorylation of related signal molecules plays a key role in the regulation of liver
glucose and lipid metabolism. As a new therapeutic strategy for metabolic diseases, the potential of
using inhibitor-based therapies to fight diabetes has gained scientific momentum. PTG, a protein
phosphatase, also known as glycogen targeting protein, is a member of the protein phosphatase
1 (PP1) family. It can play a role by catalyzing the dephosphorylation of phosphorylated protein
molecules, especially regulating many aspects of glucose and lipid metabolism. In this review, we
briefly summarize the role of PTG in glucose and lipid metabolism, and update its role in metabolic
regulation, with special attention to glucose homeostasis and lipid metabolism.

Keywords: protein targeting to glycogen (PTG); protein phosphatase 1α (PP1α); glucose metabolism;
lipid metabolism; glycogen synthesis

1. Introduction

Carbohydrates and lipids are the main sources of energy required by organisms to
maintain life activities. The homeostasis imbalance of the regulatory network is also an
important inducing factor for the occurrence and development of a variety of metabolic
diseases [1–3]. Glucose and lipid metabolism disorder is the main clinical phenotype of obe-
sity, type 2 diabetes and nonalcoholic fatty liver disease, and can also induce cardiovascular
and cerebrovascular diseases [4]. Under the influence of genetic and/or environmental
factors, the decrease of insulin secretion or the disturbance of signal transduction (insulin
resistance) will lead to the decrease of energy supply from glucose sources and the enhance-
ment of lipid decomposition and release, and can stimulate liver gluconeogenesis, promote
liver glucose release, and participate in the occurrence and development of diabetes and
its complications [5,6]. In addition, hormones such as estrogen, cortisol, and insulin, and
excess nutrition, can promote the liver to synthesize more triglycerides, and excess glucose
can also be transformed into triglycerides through a lipogenesis reaction [7]. These exces-
sively synthesized triglycerides accumulate in the liver, which may lead to the formation of
nonalcoholic fatty liver disease [3].The disorder of liver lipid metabolism can cause liver
steatosis, obesity, insulin resistance, and can aggravate the process of diabetes [8,9].With
the rapid increase of the prevalence of these metabolic diseases in the world, it is more and
more important to explore the regulation of glucose and lipid metabolism and its function
in the homeostasis.

The liver plays an important role in various organs involved in glucose and lipid
metabolism [10]. The homeostasis of intracellular glucose and lipid mainly depends on
the liver [11,12]. Glycogen and lipid are the main forms of energy storage, which are
strictly regulated by hormones and metabolic signals and provide energy at different

Biomolecules 2022, 12, 1755. https://doi.org/10.3390/biom12121755 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12121755
https://doi.org/10.3390/biom12121755
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-1806-9041
https://doi.org/10.3390/biom12121755
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12121755?type=check_update&version=1


Biomolecules 2022, 12, 1755 2 of 12

stages [13]. When the postprandial blood glucose concentration increases, glucose is
firstly phosphorylated to glucose 6-phosphate after it is transported to hepatocytes with
blood [14]. Glucose 6-phosphate can no longer penetrate the cell membrane and return to
the blood. Instead, it acts as the source of carbohydrate metabolism in the liver, opening up
metabolic pathways such as glycogen synthesis, glycolysis, pentose phosphorylation and
lipogenesis. Under starvation, hepatocytes can also convert non-glucose substances such
as lactic acid and glycogenic amino acids into glucose-6-phosphate through the process
of gluconeogenesis [15,16]. The liver is one of the two major sites for the conversion
of carbohydrates into fats in the human body, and is also the regulatory center for the
digestion, absorption, synthesis and transportation of lipids [10]. It promotes the digestion
and absorption of lipids by secreting bile, and is the most important place for the synthesis
of lipids such as triglycerides, fatty acids, cholesterol, and ketones (Figure 1). Under normal
circumstances, these lipid metabolites are transported by the blood to extrahepatic tissues
for storage or utilization after being synthesized in the liver [7,17].
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Figure 1. The enrichment of glucose-induced glucokinase (GCK), which phosphorylated glucose to
glucose-6-phosphate (G-6-P); it is used as a substrate for glycolysis or glycogen synthesis, depending
on the nutritional status. The product pyruvate is further decarboxylated to acetyl coenzyme A and
enters the tricarboxylic acid cycle (TCA) in mitochondria. Acetyl coenzyme A or malonyl coenzyme
A synthesize fatty acids from scratch and further process them into TAG. In mammals, FA synthesis
is catalyzed by acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS).
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Phosphorylation and dephosphorylation of proteins are widely recognized as key
regulators of cellular function [18,19] and are often referred to as “molecular switches”
in the regulation of cellular physiological processes [20,21]. Protein phosphorylation
and dephosphorylation can regulate signal transduction in a variety of ways, including
by activating or inhibiting conformational changes to create binding sites for proteins
containing specific domains, thereby affecting the conformation of proteins or protein–
protein interactions, and controlling their cellular localization [22,23]. Numerous studies
have shown that the phosphorylation/dephosphorylation of related signaling molecules
plays a key role in the regulation of hepatic glucose and lipid metabolism [24–27]. Glycogen
targeting protein (PTG) is a member of the protein phosphatase 1 (PP1) family and can play
a role by catalyzing the dephosphorylation of phosphorylated protein molecules. Previous
studies have shown that it can affect glycogen metabolism in liver and skeletal muscles
by regulating the dephosphorylation of ribosomal S6 protein kinase, glycogen synthase,
and glycogen phosphorylase [28,29]. This article reviews the research progress of protein
targeting to glycogen (PTG) in glucose and lipid metabolism in recent years, and provides
new insights for the prevention and treatment of metabolism-related diseases and clinical
transformation research.

2. Structure and Characteristics of PP1

Protein phosphorylation is an important cellular regulatory mechanism, and many en-
zymes and receptors are activated/deactivated by phosphorylation and dephosphorylation
events through kinases and phosphatases [22,23]. It is generally believed that phospho-
rylation or dephosphorylation of proteins is one of the initial steps in the coordination of
cell and organ functions, such as regulation of glycolipid metabolism, cell proliferation,
apoptosis, inflammation, and other important physiological processes. Protein kinases and
protein phosphatases catalyze this process [24–27]. Therefore, kinases and phosphatases are
promising targets for regulating this reaction, and many inhibitors against these proteins
have been developed [30]. Krzyzosiak et al. [31] discovered Raphin1, a serine/threonine
phosphatase inhibitor that mainly inhibits PPP1R15B, which is reported to be a potential
drug candidate for the treatment of Huntington’s disease. Furthermore, some studies have
pointed out that PTP1B inhibitors are considered to have obvious antidiabetic potential [32].
Therefore, the study of protein phosphatase is of great significance.

The PP1 regulatory subunit, also known as glycogen targeting regulatory subunit, co-
ordinates glycogen synthesis by targeting the catalytic subunit of protein phosphatase 1 to
glycogen particles [33–35]. They together constitute the PP1 holoenzyme, which regulates
the activity of glycogen metabolizing enzymes, and plays a role through PP1 catalyzing
the dephosphorylation of phosphorylated protein molecules, mainly dephosphorylating
glycogen synthase phosphatase (GSP) and activating glycogen synthase (GS), which in
turn stimulates glycogen production [33,36]. According to the GenBank database, there
are seven genes encoding G subunit (PPP1R3C-PPP1R3G), all of which have PP1 binding
domain and glycogen binding domain. Previous studies have found that many subtypes
of ppp1r (PPP1R3A, B, G) can promote glycogen storage when overexpressed in hepa-
tocytes [37,38]. PTG is a subtype of the protein phosphatase 1 family, encoding protein
phosphatase regulatory subunit 3C, which can play a role by catalyzing dephosphorylation
of phosphorylated protein molecules [39]. The PTG gene is located on human chromosome
10 and mouse chromosome 19. The full length of its cDNA is 1499 BP, encoding 285 amino
acid residues [28]. It was found that PTG was expressed in muscle, liver, adipose tissue,
heart, brain and other tissues of mice, especially highly expressed in liver and muscle, and
has a variety of important biological roles [28,29,40,41]. Previous studies have found that
PTG is also involved in the occurrence and development of colorectal cancer [42], and renal
cell carcinoma [43].

At present, the prevalence of related diseases caused by disorders of glucose and lipid
metabolism is increasing substantially, and a better understanding of the regulation of glucose
and lipid metabolism is essential for the prevention and treatment of related diseases and the
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improvement of people’s quality of life. In recent years, many researchers have conducted
in-depth research on the role of PTG in glucose and lipid metabolism [29,40,44].

3. Overview of PTG and Its Regulatory Factors

Studies have shown that PTG was mainly expressed in insulin-sensitive tissues such
as liver and muscle [39], and the expression of PTG in the liver of mice fed with a high-
fat diet was significantly increased [45]. More interestingly, Munro et al. [46] found that
the phosphatase activities related to PP1 and PTG were down-regulated by 60–70% in
streptozotocin-induced diabetes and recovered through insulin treatment, indicating that
the phosphatase activities such as PTG were regulated by insulin. Allaman et al. [47]
found that both norepinephrine and adenosine can up-regulate PTG mRNA levels in
astrocytes and hepatocytes, while increasing glycogen synthesis. Mapping the major
phosphorylation sites of PTG by mass spectrometry analysis, Vernia et al. [48] found that
phosphorylation activation of AMPK Ser-8 and Ser-268 increases the formation of a complex
of dual-specificity phosphatase and E3 ubiquitin ligase and down-regulates PTG activity,
resulting in a decrease in its glycogen activity. This study further confirmed that AMPK can
physically interact with PTG and change its basal phosphorylation state. Cheng et al. [41]
found multiple forkhead box protein A2 (FoxA2) binding sites in the promoter region of
PTG, and further constructed a luciferase reporter gene to confirm that FoxA2 transactivates
the PTG promoter in H4IIE liver cancer cells. Likewise, nuclear extracts from mouse
liver and H4IIE cells were able to bind FoxA2-specific probes derived from the PTG
promoter region. Chromatin immunoprecipitation experiments further demonstrated
that FoxA2 could bind to the PTG promoter in vivo. Furthermore, adenosine-3’,5’-cyclic
monophosphate (cAMP) treatment also activated the PTG promoter and significantly
increased the level of PTG in H4IIE cells. In general, a variety of glucose metabolism-
related signaling molecules are involved in the regulation of PTG.

4. PTG and Glucose Metabolism

The liver is essential for maintaining normal glucose homeostasis—it produces glucose
when fasting and stores it after meals. The maintenance of this homeostasis is multifaceted,
mainly through the regulation of gluconeogenesis, glycogen synthesis, glycogenolysis, and
glycolysis [13]. The liver has a remarkable ability to produce glucose, which is released into
the systemic circulation and utilized by other tissues. Glucose production in the liver results
from glycogenolysis and de novo synthesis of glucose (gluconeogenesis). Normally, the
production and uptake of glucose are balanced to maintain glucose homeostasis in human
body [10]. After a meal, the pancreas β cells secrete postprandial insulin, and the increased
insulin signal activates AKT in the cells. Subsequently, glycogen synthase kinase-3β (GSK-
3β) is phosphorylated and inactivated, while glycogen synthase is activated, inhibiting the
decomposition of glycogen, promoting the synthesis and storage of glycogen, and finally
reducing blood glucose levels [49,50]. Additionally, glucagon and adipose free fatty acid
release were also indirectly inhibited, resulting in the inhibition of the gluconeogenesis
process [51]. Conversely, during fasting, pancreatic α cells can secrete glucagon to act on
liver tissue, inactivating glycogen synthase, thereby inhibiting glycogen synthesis. During
short-term fasting, glycogenolysis is the main source of glucose released into the blood,
and stored glycogen is further hydrolyzed into glucose to increase glucose production in
the liver. However, during prolonged periods of fasting, glycogen stores are gradually
depleted and glycogenolysis decreases [13]. Under the action of phosphoenolpyruvate
carboxy kinase (PEPCK) and glucose-6-phosphatase (G6Pase), non-carbohydrate precur-
sors can resynthesize glucose in the liver, known as gluconeogenesis [52]. In addition,
insulin levels also decreased, and the proportion of peripheral tissues using glucose as
fuel decreased to maintain blood glucose levels [53]. With the prolongation of fasting time,
the contribution of gluconeogenesis to hepatic glucose production gradually increased to
increase blood glucose [11].
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4.1. PTG and Glycogen Synthesis

Glycogen synthesis is dynamically regulated by insulin through synergistic dephos-
phorylation of the serine/threonine phosphatase PP1 and the glycogenolytic enzyme
glycogen phosphorylase (GP) on glycogen synthase (GS), leading to the activation of GS
and the deactivation of GP [54]. In the liver, PTG and PPP1R3B(GL)are expressed at
roughly equivalent levels [55], and they jointly promote hepatic glycogen mobilization and
storage. PTG overexpression significantly increased glycogen content, mainly due to its
ability to promote the redistribution of PP1 and glycogen synthase to glycogen granules,
significantly increasing GS activity and glycogen synthesis (Figure 2) [28,29]. Studies also
noted that PTG recruited phosphatases to where glycogen synthesis occurs, allowing the
activation of glycogen synthase and deactivation of glycogen phosphorylase, thereby in-
creasing glycogen synthesis and reducing its degradation [55]. Further study also found
that overexpression of the PP1 subunit protein targeting PTG could significantly increase
the level of cell glycogen. At the same time, on the fourth day after PTG knockdown, the
glycogen level decreased by more than 85%, which reduced the glycogen targeted PP1
protein level, and correspondingly reduced the activity of glycogen synthase and phospho-
rylase targeted PP1 in cells, and the glycogen decomposition rate increased significantly
under PTG knockdown, indicating that PTG mainly played a role in inhibiting glycogen
decomposition [56]. This notion is supported by the results of Crosson et al. [44], in which
mice with heterozygous deletion of the PTG gene had reduced glycogen storage in adipose
tissue, liver, heart and skeletal muscle. Accordingly, the activity of glycogen synthase
and the rate of glycogen synthesis decreased. Furthermore, Greenberg et al. [57] found
that overexpression of PTG in 3T3-L1 adipocytes discretely stimulated the activity of PP1
on glycogen synthase and phosphorylase, resulting in increased uptake and storage of
glucose as glycogen. Similarly, Printen et al. [29] found that PTG also forms complexes with
phosphorylase kinase, phosphorylase a and glycogen synthase in 3T3-L1 adipocytes. The
latter are the main enzymes involved in the hormone regulation of glycogen metabolism.
Further studies by Lu et al. [45] found that feeding mice with a high-fat diet could increase
hepatic glycogen, which was due to the increased expression of the glycogen scaffolding
protein PTG. Activation of mTORC1 and its downstream target SREBP1 resulted in in-
creased PTG promoter activity and increased glycogen levels in mice and cells. In contrast,
deletion of the PTG gene in mice prevented HFD-induced hepatic glycogen accumulation.
López-Soldado et al. [14] further bred liver PTG-overexpressing mice, which could main-
tain relatively high hepatic glycogen levels even when fasting, thereby maintaining hepatic
energy status. Some researchers hybridized Akita mice with PTG overexpressing mice in
the liver to construct Akita PTG OE mice with increased liver glycogen content. The blood
glucose level of Akita PTG OE mice decreased gradually with the progress of the disease.
Akita PTGOE mice have stronger glycogen production ability, which shifts blood glucose to
glycogen synthesis, so the above results suggest that long-term enhancement of hepatic
glycogen may have the effect of reducing hyperglycemia [58]. It can be seen that PTG, as
a protein phosphatase with dephosphorylation, plays a very important role in regulating
energy metabolism in the liver.

PTG also plays an important role as a regulator in the regulation of glycogen metabolism
in cells other than the liver. Researchers found that the gene encoding PTG is abundantly
expressed in astrocytes of the central nervous system, and some evidence suggests that
PTG plays an important role in the regulation of glycogen metabolism in this cell line [59].
Allaman et al. [47] found that in astrocytes, overexpression of PTG resulted in a 100-fold
increase in glycogen, a downregulation of endogenous PTG expression by siRNA resulted
in a two-fold decrease in glycogen, and knockdown of PTG expression (PTG-KO astro-
cytes) resulted in an 80 % decrease in glycogen. Interestingly, the reduction in glycogen
content measured in PTG-KO astrocytes (80%) was similar to that observed in the brains of
PTG-KO mice (70%), further indicating the close parallel relationship between glycogen
metabolism in cultured astrocytes and brain glycogen metabolism. These observations
suggest that PTG is also a master regulator of astrocyte glycogen, a central element of
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glycogen regulation in vivo. Furthermore, changes in PTG expression in the brain have
been shown to be associated with different behavioral conditions related to glycogen mobi-
lization, such as sleep deprivation and learning and memory [60–62]. Astrocytes are the
most widely distributed type of cells in the mammalian brain and the largest type of glial
cells. It is also the main storage site of glycogen in the brain. When neurons are highly
active and the blood glucose provided through the blood brain barrier cannot meet the
needs, glycogen in glial cells can be decomposed into glucose to provide energy for neurons
under the effect of neurotransmitters [63]. In cultured astrocytes isolated from a mouse
model of schizophrenia, a strong reduction in PTG expression was also observed, which is
associated with altered glycogen metabolism [59]. The above results suggest that PTG can
control brain glycogen metabolism under physiological and pathological conditions (such
as psychiatric disorders), thereby controlling the key role of astrocyte function.
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of PTG on fat metabolism is still controversial, but it can promote fat synthesis and promote the
expression of related genes, such as SREBP1, FAS, SCD1, ACC. In addition to influencing glycogen
synthesis, recent studies also found that PTG can promote the expression of PEPCK and G6Pase, key
enzymes of gluconeogenesis, and then participate in gluconeogenesis.

A study of skeletal muscle glycogen levels showed that an overexpression of interferon
regulatory factor 4 (IRF4) in mice exhibited decreased exercise capacity and decreased
glycogen content. Furthermore, PTG expression increased in the absence of IRF4, and
decreased when IRF4 was overexpressed. This indicates that IRF4 regulates the glucose
metabolism of skeletal muscle by regulating PTG, and the overexpression of IRF4 leads to
the low expression of PTG, thereby reducing the content of glycogen in skeletal muscle.
However, opinions on the regulation of muscle glycogen levels by PTG are divided. Studies
have shown that heterozygous PTG deletion does not result in impaired glycogen synthesis
and reduced glycogen levels in the gastrocnemius muscle. This study also found that PTG
in C2C12 myoblasts did not significantly change the content of glycogen. These results
indicate that the effect of PTG on skeletal muscle glycogen depends on IRF4 [64].

4.2. PTG and Gluconeogenesis

The liver plays a major role in maintaining normal glucose homeostasis by control-
ling the balance between hepatic glucose production and storage [15]. During fasting,
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an increase in circulating glucagon triggers the gluconeogenesis by activating the cAMP
pathway [65]. It has been reported that norepinephrine could stimulate PTG expression in
mouse cortical astrocytes via the cAMP pathway [66]. PTG was significantly up-regulated
during 3T3-L1 adipocyte differentiation, which involved the cAMP signaling pathway [67].
FoxA2, a transcriptional regulator of hepatic gluconeogenesis genes, mediates cAMP-
stimulated PTG transcription by binding to promoters in hepatocytes [41]. Recent studies
have found that the phosphorylation/dephosphorylation of related signaling molecules
plays a key role in the regulation of hepatic gluconeogenesis, which is mainly regulated by
phosphorylase and dephosphorylase. Various hormones can regulate glucose metabolism
by affecting the phosphorylation and dephosphorylation status of liver enzymes [68];
glucagon activates adenylate cyclase to produce cAMP, which, on the one hand, activates
the cAMP-dependent protein kinase, which causes the phosphorylation of pyruvate kinase
to inhibit the effect of pyruvate kinase, and on the other hand, it can also promote the
phosphorylation of fructose 2,6-bisphosphatase, which in turn inhibits the glycolytic path-
way, stimulates gluconeogenesis, and promotes glucose production, while insulin exhibits
the opposite effect [6,69]. In addition, glucagon can also activate peroxisome proliferator-
activated receptor gamma coactivator 1α (PGC-1α) to dephosphorylate. Dephosphorylated
PGC-1α will be transferred to the nucleus and combined with hepatocyte nuclear factor
4α (HNF4α) to form a complex to activate it. In this way, the transcription of G6Pase
and PEPCK-encoding genes is initiated, which affects gluconeogenesis [65,69]. Previous
studies also found that glucagon can promote the nuclear translocation and stability of
FOXO1 through cAMP-dependent and protein kinase α-dependent phosphorylation of
FOXO1, thereby affecting gluconeogenesis [70]. Uebi et al. [71] found that PP1 can de-
phosphorylate and activate the Ser171 site of CREB-regulated transcriptional coactivator
2 (TORC2). Phosphorylated TORC2 remains inactive in the cytosol, while dephosphory-
lated TORC2 is translocated to the nucleus. It binds with phosphorylated cAMP response
element binding protein (CREB) to form a CREB-TORC2 complex, which increases the ex-
pression of key gluconeogenesis enzymes such as G6Pase and PEPCK. Qi et al. [72] found
that follicle-stimulating hormone can promote the membrane translocation of G protein-
coupled receptor kinase 2 (GRK2), resulting in the phosphorylation of serine 485 of AMPK
α and the dephosphorylation of threonine 172. In the nucleus, it promotes gluconeoge-
nesis, while TORC2 translocates into the nucleus and promotes gluconeogenesis. As a
member of the PP1 family, PTG has a dephosphorylation effect, suggesting that PTG may
be closely related to hepatic gluconeogenesis. Ji et al. [73] found that overexpression of
PTG in primary mouse hepatocytes or wild-type mouse liver promoted hepatic glucose
production and expression of gluconeogenesis genes. Conversely, PTG knockout reduced
hepatic gluconeogenesis and suppressed cAMP-stimulated gluconeogenic gene expression
and TORC2 dephosphorylation. Animal studies showed that PTG knockdown in the liver
of db/db mice significantly improved blood glucose levels and reduced the expression of
key genes of gluconeogenesis (Figure 2). However, other researchers constructed PTGOE

hybridized mice with PTG overexpression. The results showed that, compared with normal
mice, PTGOE mice showed decreased liver gluconeogenesis and increased glycolysis, and
PGC1 α and PEPCK expression levels decreased, further reducing the blood glucose level
of the mice [58]. The possible reason for the difference is that, first of all, the models of
the two research teams are from different strains of mice, and the differences in genetic
background may lead to abnormal results. Secondly, the methods of overexpression and
knockdown of PTG adopted by the two groups were inconsistent, which may also be the
reason for the difference in the results. In addition, the influence of living environment
and intestinal flora on the results cannot be ruled out. Previous studies have shown that
hepatic glycogen synthesis is closely related to the process of gluconeogenesis, and that,
in addition to glucose uptake, hepatic gluconeogenesis flux also determines the amount
of glycogen formed, especially in the fasted state [1,74,75]. Overexpression of PTG in the
liver stimulates glycogen synthesis mainly from gluconeogenic precursors through an
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indirect pathway. The roles and mechanisms of PTG in gluconeogenesis have not been
fully elucidated, and more in-depth studies are still needed.

5. PTG and Lipid Metabolism

Liver is the central organ that controls lipid homeostasis by precisely regulating
various biochemical, signaling and cellular pathways. Hepatic de novo lipogenesis is
a fundamental biosynthetic pathway in the liver that helps hepatocytes store synthetic
lipids [76]. This process is an extension of the complex metabolic network within the liver,
providing substrates primarily through glycolysis and carbohydrate metabolism. Long-
term unhealthy lifestyle and overnutrition can lead to disorders of hepatic lipid metabolism,
leading to serious lipid-related diseases, including obesity, NAFLD, and T2DM [77,78].

5.1. PTG and Fatty Acid Metabolism

The liver is the main site of fatty acid metabolism and the main source of ketogenesis.
Fasting will increase the synthesis of TG in the liver, and the promotion of liver steatosis
is due to excessive intake of circulating fatty acids produced by fat decomposition of
adipose tissue [79]. It was found that prolonged fasting led to liver TG level, plasma
β- hydroxybutyric acid, FFA concentration and plasma FGF21 level being significantly
increased in the normal feeding of mice, but the increase was significantly reduced in PTG
overexpression mice. In the further investigation, prolonged fasting also promoted the
expression of the fatty acid metabolism related genes HMGCS2, CD36, PPAR α, CPT1 α

and FGF21, while PTG overexpression significantly weakened this effect [14]. This suggests
that PTG may be involved in fatty acid uptake or oxidation in the liver. Further research
needs to be carried out to clarify this metabolic effect.

5.2. PTG and Fat Synthesis

The main feature of liver fat metabolism disorder is excessive accumulation of TG in
the liver [80]. Under normal circumstances, the liver only stores a small amount of fatty
acids as triglycerides. However, in addition to increasing the intake of free fatty acids,
increased fat synthesis can also lead to liver steatosis [81]. In the case of over nutrition
and obesity, the metabolism of fatty acids in the liver changes, which usually leads to
the accumulation of triglycerides in the liver cells, resulting in liver steatosis and various
metabolic related diseases, such as nonalcoholic fatty liver disease, insulin resistance, and
T2DM [3,77]. Studies have shown that circulating hyperglycemia enters the liver and is
converted into glycogen for storage. When there is too much glycogen, glucose enters
the glycolytic pathway, and the pyruvate and acetyl coenzyme A produced will generate
malonyl coenzyme A under the action of ACC, and then FAS catalyzes the production of
long-chain saturated fatty acids to promote fatty acid synthesis [12]. Moreover, glucose
can also promote the expression of SREBP-1 [82], which can up-regulate the expression
of ACC and FAS genes and increase the synthesis of fatty acids [83]. Previous studies
have found that PTG mainly plays an important regulatory role in glycogen synthesis
(Figure 2) [28,29,40]. The latest evidence has shown that PTG-silencing mice can prevent
the accumulation of liver glycogen induced by high fat, reduce fasting blood glucose
and insulin levels, and improve insulin sensitivity; mTORC1/SREBP1 can act on PTG
promoter, regulate PTG transcription and affect glycogen metabolism, and glycogen ac-
cumulation can regulate SREBP1 expression through feedback [45]. More interestingly,
the study by Wang et al. [84] found that AMPK inhibits mTORC1 activity by phospho-
rylating mTORC1 pathway members TSC2 and Raptor, thereby preventing protein and
lipid synthesis. In the adipose tissue of mice PTG was overexpressed, using the fatty acid
binding protein 4 (FABP4) promoter, and the results showed that glycogen levels in the
adipose tissue were 200 to 400 times higher than in wild-type mice, which shows that
adipocytes have the steric capacity to accommodate high levels of glycogen (Figure 2),
and the importance of glycogen in fat deposition is demonstrated. The study found that
transgenic overexpression of PTG in adipose tissue increased glucose flux into the glyco-
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gen synthesis pathway, indicating that adipocytes are capable of storing high levels of
glycogen [54]. Cui et al. [85] found that PTG can promote the adipocyte differentiation of
3T3-L1 preadipocytes, and found that knockdown of SREBP1 gene expression led to down-
regulation of PTG gene expression, speculating that the effect of PTG on adipogenesis may
be regulated by SREBP1 in 3T3-L1 to be realized. Lu et al. [45] found that PTG silencing
in mice could prevent high-fat-induced accumulation of hepatic glycogen, reduce hepatic
lipid deposition, reduce fasting glucose and insulin levels, and improve insulin sensitivity,
while Rapamycin complex 1 (mTORC1) and cholesterol regulatory element binding protein
1 (SREBP1) can act on the PTG promoter to regulate the transcription of PTG and affect the
metabolism of glycogen. Moreover, the accumulation of glycogen can regulate SREBP1
through feedback, thereby affecting fat metabolism, establishing a dialogue between hep-
atic glucose and lipid metabolism, and regulating energy balance, indicating that PTG
plays an important role as a bridge in glycogen and lipid energy balance. It was found
that the reduced liver adipogenesis in normal Akita mice was restored in Akita PTGOE

mice, and the expression of FAS and SCD1, the key regulatory factors of adipogenesis,
was up-regulated. Increased lipogenesis may be due to increased hepatic glucokinase,
as glucokinase overexpression has been reported to lead to increased hepatic glycolytic
flux, resulting in increased concentrations of glycerol-3-phosphate and malonyl-CoA, the
latter of which are a nascent fat generated substrate. More importantly, Akita PTGOE mice
had reduced hepatic lipolytic capacity. Thus, the increase in hepatic TG observed in Akita
PTGOE mice was associated with higher lipogenesis and lower lipolysis in the liver [58].

6. Conclusions

In conclusion, PTG is a pleiotropic and promising protein phosphatase which seems
to play an important role in every link of glucose and lipid metabolism, and plays different
key roles in different physiological conditions and pathological abnormalities. It may
be an important protein that leads to the interaction of abnormal liver glucose and lipid
metabolism. PTG may become a new therapeutic target for metabolic diseases in the near
future, with great clinical value. Of course, it is worth further exploring gluconeogenesis
and lipid metabolism and its clinical application in transformation.
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