
Citation: Kabir, A.; Shehu, A.

GOProFormer: A Multi-Modal

Transformer Method for Gene

Ontology Protein Function

Prediction. Biomolecules 2022, 12, 1709.

https://doi.org/10.3390/

biom12111709

Academic Editor: Andrzej Koliński

Received: 24 October 2022

Accepted: 15 November 2022

Published: 18 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

GOProFormer: A Multi-Modal Transformer Method for Gene
Ontology Protein Function Prediction
Anowarul Kabir 1,† and Amarda Shehu 1,2,3,4,*,†

1 Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
2 Center for Advancing Human-Machine Partnerships, George Mason University, Fairfax, VA 22030, USA
3 Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
4 School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
* Correspondence: amarda@gmu.edu
† Current address: Department of Computer Science, 4400 University Drive, MS 4A5, Fairfax, VA 22030, USA.

Abstract: Protein Language Models (PLMs) are shown to be capable of learning sequence representa-
tions useful for various prediction tasks, from subcellular localization, evolutionary relationships,
family membership, and more. They have yet to be demonstrated useful for protein function pre-
diction. In particular, the problem of automatic annotation of proteins under the Gene Ontology
(GO) framework remains open. This paper makes two key contributions. It debuts a novel method
that leverages the transformer architecture in two ways. A sequence transformer encodes protein
sequences in a task-agnostic feature space. A graph transformer learns a representation of GO terms
while respecting their hierarchical relationships. The learned sequence and GO terms representations
are combined and utilized for multi-label classification, with the labels corresponding to GO terms.
The method is shown superior over recent representative GO prediction methods. The second major
contribution in this paper is a deep investigation of different ways of constructing training and testing
datasets. The paper shows that existing approaches under- or over-estimate the generalization power
of a model. A novel approach is proposed to address these issues, resulting in a new benchmark
dataset to rigorously evaluate and compare methods and advance the state-of-the-art.

Keywords: multi-modal transformer; gene ontology; protein function

1. Introduction

An explosion in the number of known protein sequences is now allowing us to lever-
age the Transformer [1] architecture to build Protein Language Models (PLMS) [2–4]. PLMs
are highly appealing due to their ability to learn task-agnostic representations of proteins.
In particular, they provide an alternative framework to link protein sequence to func-
tion without relying on sequence similarity. Sequence representations learned via PLMs
have been shown useful for various prediction tasks, from predicting secondary struc-
ture [4], subcellular localization [4,5], evolutionary relationships within protein families [6],
superfamily [7], and family [8] membership.

PLMs have yet to be demonstrated as useful for protein function prediction, which
remains a hallmark problem in molecular biology [9]. In particular, throughput technolo-
gies have greatly increased the number of protein sequences in public repositories, but
only about 1% of the sequences in the UniProtKB database have been functionally char-
acterized [10]. This gap motivates computational approaches [11], and the computational
literature on protein function prediction is rich [12].

In this paper we focus on challenging, community-driven instantiation of protein func-
tion prediction that utilizes the gene ontology (GO) hierarchy. The GO hierarchy consists
of terms/concepts via which one can describe protein functions at varying resolution [10].
The GO framework is split into three sub-ontologies: the Cellular Component (CC), the
Molecular Function (MF) and the Biological Process (BP). Each sub-ontology is organized

Biomolecules 2022, 12, 1709. https://doi.org/10.3390/biom12111709 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12111709
https://doi.org/10.3390/biom12111709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0001-8060-2084
https://orcid.org/0000-0001-5230-4610
https://doi.org/10.3390/biom12111709
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12111709?type=check_update&version=2


Biomolecules 2022, 12, 1709 2 of 19

as a directed acyclic graph (DAG) that encodes the relationships between the GO terms
in a sub-ontology. The True Path rule is used [10] to associate proteins to GO terms. If a
protein is annotated with a particular GO term t, it is also annotated with all the ancestor
terms of t in the DAG of the sub-ontology to which t belongs. If a protein is not annotated
with a particular GO term t, it is then also not annotated with any of the descendants of t.

GO annotation is a well-formulated instantiation of protein function prediction. It
remains an open problem, though much progress has been made over the years, particularly
due to deep models [13–16]. However, PLMs have yet to be demonstrated useful for GO
annotation prediction. DeepChoi [17], a method presented in an article that remains in
preprint, is the only occurrence of a PLM-based GO annotation method.

Currently, there is little to no understanding of how transformer-based approaches per-
form compared to the state-of-art for GO term prediction. This paper addresses this gap in
the research literature. In particular, the paper makes two key contributions, one regarding
methodology, and the other regarding rigorous training and testing data construction.

The paper debuts a novel method, GOProFormer, which leverages the Transformer [1]
architecture in two ways. First, a sequence transformer encodes protein sequences in a
task-agnostic feature space. Second, a graph transformer model learns a representation of
the various GO terms that respects the hierarchical relationships among the terms. Addi-
tionally, a novel approach that treats a GO term as a concept to construct meaningful term
representations is presented. The learned protein sequence and joint GO term representa-
tions are combined and utilized for multi-label classification, with the labels corresponding
to GO terms. Analysis reveals a model that generalizes well. The model is shown superior
over representative methods along CAFA3 evaluation metrics on increasingly challenging
testing datasets.

The second major contribution in this paper is an investigation of various dataset
construction protocols in related work. The paper shows that existing protocols may over-
or underestimate the generalization power of a model. A new protocol is proposed here
to address these issues and so rigorously compare methods. The paper makes another
contribution; replacing the PLM in one of the baseline methods with a more powerful one
results in an improved model.

The rest of this paper is organized as follows. Section 2 overviews related work. Details
on the proposed method and data construction process are related in
Sections 3 and 4. The experimental evaluation is related in Section 5. The paper con-
cludes in Section 6.

2. Related Work

Whether in protein structure prediction, protein function prediction, genome engi-
neering, systems biology, or phylogenetic inference, deep neural networks are taking over
as the state-of-the-art methods. Work in [18] provides a thorough review of deep learn-
ing literature in computational biology and shows the great diversity in neural network
architectures for various domains. In particular, for protein function prediction one finds
Convolutional Neural Networks (CNNs), Residual Networks (ResNets), Recurrent Neural
Networks (RNNs), and Graph Neural Networks (GNNs).

Currently, PLMs are under-utilized for protein function prediction but increasing in
momentum for other prediction tasks. For instance, work in [2] utilizes the popular ELMo
language model to obtain vector representations of protein sequences. The representations
are then shown effective for residue-level tasks, such as prediction of secondary structure
and intrinsically-disordered regions, as well as protein level tasks, such as predicting subcel-
lular localization and classifying whether a protein is water-soluble or membrane-bound.

Work in [8] debuts the PRoBERTa model. The model is pre-trained to learn task-
agnostic sequence representations of amino-acid sequences. Since there is no inherent
notion of words in a given amino-acid sequence, the authors in [8] restrict the vocabulary
size to 10, 000 words obtained via the byte-pair encoding (BPE) [19] algorithm. The PLM
is then fine-tuned to solve two prediction tasks, protein family memberships and protein-



Biomolecules 2022, 12, 1709 3 of 19

protein interactions. Work in [7] does away with the notion of words and instead attends
to each amino-acid, thus learning amino-acid level embeddings and sequence-level em-
beddings. The work is also one of the first to additionally attend to the three-dimensional
structure of a protein and so learn joint sequence-structure representations.

ProtTrans [4] proposes two auto-regressive PLMs (based on Transformer-XL [20] and
XLNet [21]) and four autoencoder PLMs (based on BERT [22], ALBERT [23], Electra [24],
T5 [25]) for the same tasks as [2]. Work in [26] pretrains SeqVec [2] and ProtBert-BFD [4]
and then transfers GO annotations based on protein proximity in the embedding space.
The method does not directly utilize the learned representations for prediction but rather
reformulates pairwise similarity.

Work in [5] applies the PLMs in [2–4,26] to localization prediction without multiple-
sequence-alignments (MSAs). The authors apply a softmax weighted aggregation mecha-
nism to compute the final embeddings of a protein sequence. Work in [6] demonstrates
that PLM can predict the local evolution within protein families. The study shows that the
model can capture evolutionary dynamics and timescales.

Early work in [26] shows that similarity-based transfer of GO annotations, typically
performed in sequence space, improves in sequence representation space (with a reported
Fmax of 39%, 53%, and 59% for BP, MF, and CC, respectively). The state-of-the-art for
GO term prediction is currently represented by the DeepGO [13] and its variant Deep-
GOPlus [14]. DeepGO [13] incorporates a CNN to learn sequence-level embeddings and
combines them with knowledge graph embeddings obtained from Protein-Protein Inter-
action (PPI) networks. DeepGOPlus [14] uses convolutional filters of different sizes with
individual max-pooling to learn dense feature representations of protein sequences embed-
ded via one-hot encoding. The authors show that combining the outputs from CNN with
homology-based predictions improves accuracy and outperforms DeepGO.

Work in [15] proposes DeepGOA, a GCN-based model that additionally utilizes GO
annotations and hierarchy to measure GO term correlations with which to update the
edge weights of the DAG corresponding to a GO sub-ontology. The GCN is applied to
the updated DAG to learn the semantic representation and latent inter-relations of the GO
terms. Separately, a CNN learns the feature representation of the protein sequences with
respect to the semantic representations. A dot product combines the two representations
and allows training the whole network in an end-to-end fashion. Since no code is provided
with the work in [15], we do not include it in list of methods for comparison. Later work
in [16] (appearing earlier as DeepFUNC [27]), debuts a model also named DeepGOA, which
extracts global sequence semantic representations via word2vec, local subsequence-based
features extracted via InterPro to obtain motifs and domains, and combines the local and
global features via a multi-scale CNN and a bi-directional long-short term memory (Bi-
LSTM). The Deepwalk algorithm is additionally utilized over the protein-protein interaction
(PPI) network to obtain a PPI-level embedding. The sequence and network are concatenated
to predict protein functions.

Though only available in pre-print, DeepChoi [17] follows the overall approach in
the 2019 DeepGOA [15] of learning sequence- and GO term representations and then
combining them via a dot-product. The main difference is that the sequence representation
is learned via SeqVec. We will refer to DeepChoi as DeepChoi-SeqVec from now on, to
distinguish it from a new model we develop and report in here, where we replace SeqVec
with a more powerful PLM.

A comparison of published literature indicates that DeepGOPlus outperforms DeepGO
but performs similarly to DeepGOA, and DeepChoi-SeqVec outperforms DeepGOPlus,
though the experimental evaluation is limited, and the testing dataset is rather small. Taken
altogether, we consider DeepGOPlus and DeepChoi-SeqVec as representative baseline
methods to which we compare GOProFormer.



Biomolecules 2022, 12, 1709 4 of 19

3. Methodology

Let us assume that we have N proteins and M GO terms. Each protein is annotated
with a non-empty subset of the GO terms. Treating GO terms as class labels casts protein
function prediction as a multi-label classification problem. We organize the description
of GOProFormer as follows. We first describe the input representation for proteins and
GO terms. We then detail the process via which embeddings are obtained for proteins
and GO terms. Finally, we describe how these embeddings are combined for multi-label
classification. Figure 1 summarizes the overall model architecture.

Figure 1. The figure shows the proposed multi-modal Transformer model architecture. (a) depicts a
black-box protein sequence modeling encoder. (b) shows the GO terms representation module using
the Transformer encoder architecture.

3.1. From Input Representation to Learned Embedding of a Protein Molecule

As DeepGO [13], DeepGOPlus [14], DeepGOA [15], DeepChoi [17], and others, GOPro-
Former utilizes the amino-acid sequence of a protein and learns an embedding of a given
protein sequence in a D-dimensional space. Specifically, considering protein 1 ≤ i ≤ N in a
given dataset, and its sequence qi of amino acids, GOProFormer learns the corresponding
representation si ∈ Rqi×D; in this representation, each amino acid of the protein is mapped
into RD. This embedding is obtained via a language model.

3.1.1. Amino-Acid Level Embeddings

We employ a state-of-the-art general purpose Transformer PLM, the Evolutionary
Scale Modeling (ESM) [28] to extract amino-acid level features. ESM has been trained
on 250 million protein sequences (a total of 86 billion amino acids) on masked-language-
modelling tasks. There are several ESM-1 variants. For computational expediency, we
utilize the lighter ESM-1 variant which has 12 layers and 85 M parameters (as opposed to,
for instance, the ESM-1b variant with 33 layers and 650 M parameters).

3.1.2. Protein Embedding

Given a learned si ∈ Rqi×D, GOProFormer obtains a protein-level representation
pi ∈ R1×D by taking the average of the learned amino-acid-level features over the sequence
length as in:

pi =
1
qi

qi

∑
j=0

sij (1)



Biomolecules 2022, 12, 1709 5 of 19

The protein representation pi is then projected onto a d < D-dimensional space via a
linear combination of the elements and a non-linear activation function as follows:

p
′
i = ReLU(FCL(pi)) (2)

The obtained p
′
i is the learned embedding for a protein i in the dataset. Note that d < D,

to discourage overfitting and capture meaningful information in a lower-dimensional space.

3.2. From Input Representation to Learned Embedding of a GO Term

In current literature, the input representation for GO terms is an one-hot encoding
vector. For instance, even the most recent DeepGOA method [16] relies on such encodings
and then uses a GCN to learn the joint representation of the GO terms while respecting
the GO hierarchy. The problem with such an approach is that the nodes representation
matrix is an identity matrix which does not contain any features that define the GO terms
meaningfully. If we think of GO terms as concepts, a fundamental question is what does a
concept mean? We answer that question by providing examples, and this motivates the
novel approach below in GOProFormer.

Specifically, to represent the jth GO term, where 1 ≤ j ≤ M, we introduce a term pool
Tj that contains all the proteins in the training dataset that are annotated with that GO term.
At each epoch of training, we sample once from all the pools (corresponding to the different
GO terms) to generate the GO terms representation. We sample K prototype proteins from
the respective pool, such that no prototypes are in the batch of this epoch. At validation
and testing of the model, the same process is followed, as there are no overlaps among the
proteins in the training, validation, and testing datasets.

Let us denote the embedding we want to learn from the jth GO term as tj. This embed-
ding is learned in iterations. Let us assume that t0

j ∈ RK×D is the initial representation of

the jth GO term, defined as t0
j = [p0, . . . , pK−1], where pi ∈ Tj, pi 6∈ B, and B denotes the

set of proteins in the current batch.
GOProFormer uses the attention mechanism [29] to combine the features of the pro-

totypes and compute the vector representation tj of a GO term. First, the method applies
a non-linear activation function, tanh, on the features and then projects the activations
onto one-dimensional space using a fully connected layer (FCL). Then it utilizes softmax to
compute the attention-score, αj, for the K prototypes, as in:

αj = So f tmax(FCL(tanh(t0
j ))) (3)

Finally, GOProFormer computes the weighted summation of the prototypes using the
attention scores and applies an FCL to project the embedding onto a d-dimensional space as
in Equation (4). Note that the FCLs in Equations (3) and (4) are independent of each-other.

t1
j = FCL(

K−1

∑
k=0

αj,k pk) (4)

3.3. Transformer Encoder for GO Terms’ Embeddings

GOProFormer uses the vanilla Transformer encoder architecture [1] to learn the joint
representation of the GO terms in a d-dimensional space. GOProFormer encodes the terms
relation (DAG) as an adjacency matrix Ã ∈ RM×M, where Ãi,j is 1 if the ith GO term has a
parent or child relation with the jth GO term, otherwise 0. Then, the self-loop information
is added for each GO term to learn the self-representation as A = Ã + I, where I is the
identity matrix.

GOProFormer applies L encoder layers with H attention heads at each layer. Compu-
tation in a head of lth layer is carried over the following three steps. The attention score



Biomolecules 2022, 12, 1709 6 of 19

between two GO terms i and j is computed first, using their vector representation and
relation between them.

αi,j = attention(tl
i , tl

j, Ai,j)

= So f tmax[Ai,j ∓ {
(tl

i Q)(tl
jK)

T

√
d

}]
(5)

In the above, ∓ denotes the mask operation. This will cancel out the attention between
i and j term if Ai,j is zero, indicating no relation between them.

Second, GOProFormer computes an intermediate representation of the ith GO term
using neighborhood aggregation:

zl
i =

M−1

∑
j=0

αi,j(tl
jV) (6)

In Equations (5) and (6), Q, K and V are learnable weight matrices. An FCL and
residual connection are then applied to obtain the final embedding:

tl+1
i = tl

i + zl
i + FCL(tl

i + zl
i) (7)

At the end of the L encoder layers, GOProFormer has the jointly-learned representation
of all the GO terms, denoted as H = [tL

0 , . . . , tL
M−1]

T ∈ RM×d.

3.4. Prediction Layer

GOProFormer first applies the dot product of the vector representation of the ith pro-
tein and jth GO term and then applies the Sigmoid function to predict the final association
score, y′i,j, as in:

y′i,j = Sigmoid(p′i · tL
j ) (8)

Equation (8) can be interpreted as follows; the model is y′i,j percent confident (scaled

into percentage) that the jth GO term is associated with the ith protein (or that the ith protein
is annotated with the jth GO term). The dot product with the sigmoid is analogous to the
normalized cosine similarity of two vectors in their shared vector space. This also justifies
the joint representation learning of the GO terms from the pool of available proteins that
we have described above. The final prediction is done by applying the true-path rule for a
predicted confidence score by choosing a threshold.

3.5. Loss Function

GOProFormer utilizes the average binary-cross entropy loss to compute the multi-label
term association loss for the ith protein being annotated with the jth term:

L =
1

N ×M

N−1

∑
i=0

M−1

∑
j=0

yi,jlog(y′i,j) + (1− yi,j)log(1− y′i,j) (9)

In Equation (9), yi,j denotes the ground-truth labels, where the j-th term is a positive
example if yi,j is 1, and negative otherwise.

3.6. Implementation Details

As is practice, we train three different GOProFormer models for each sub-ontology
on. Since PLMs introduce a large number of trainable parameters, for instance ESM1 [28]
with 12 encoder layers has 85 M parameters, and the full Saccharomyces cerevisiae dataset
we consider here contains only 6721 proteins, we freeze the PLM during the training
and evaluation. One can pre-compute the proteins’ embeddings which will save time in
training and evaluation. The embedding dimension (D) is the default 768 in ESM-1 and its
variants. The hyperparameters related to learning GO terms representation are the number



Biomolecules 2022, 12, 1709 7 of 19

of prototypes sampled from the pool (K), the term embedding dimension (d), the number
of encoder layers (L), and the number of attention heads in each encoder layer (H). These
values are set as 5, 256, 3 and 2, respectively. The rationale behind choosing small values
for L and K is to avoid a large number of parameters, so that the model will not overfit.
The dimension of the feed-forward network after each encoder layer is set to 4 times the
term embedding dimension d. The other hyperparameters related to model training, such
as learning rate, mini-batch size and number of epochs, are set to 1 × 10−4 , 32 and 400
respectively. A dropout rate of 50% after each FCL except for the final prediction layer and
L2-regularization with 0.01 at the loss function are applied to avoid the overfitting issue.
Note that we do not use positional encoding of the GO terms, since they do not pose any
inherent relative positioning as in a sequence.

4. Datasets

The question of how to construct the input dataset is central but under-investigated for
its impact on the model and its performance in related literature. We set up the importance
of answering this question briefly. All related work confirms that a model trained on
the BP sub-ontology will perform worse than that model (trained separately) on the MF
sub-ontology, which, in turn, will perform worse than that model (trained separately) on
the CC sub-ontology. In other words, abusing notation, a partial ordering BP, MF, CC is
established with regards to prediction task difficulty. The question of why this is the case
has not been answered. This is one of the questions we answer in this paper.

Another question concerns the generalization of a model. This question is not ad-
dressed in related literature. Typically, the focus is on showing better performance on
a few accepted metrics on the testing dataset, even if this dataset is demonstrably small
compared to the training dataset. Details on how a model performs on the validation
dataset are typically not related; neither can we find any details of analysis on the label
distributions and potential differences among the training, validation, and testing dataset.
We provide such insight here, and this insight motivates our proposal of a new, third dataset
construction protocol.

We now describe and analyze in detail the two most prominent ones in literature
and the one we propose. The analysis reports on the distribution of the number of labels
(corresponding to GO terms) per protein in the training, validation, and testing datasets for
each of the sub-ontologies (BP, CC, and MF).

The very first step shared by both protocols is to design the GO hierarchy data from
The Gene Ontology Resource http://geneontology.org/docs/download-ontology/ [10,30]
(filename: go.obo, releases/7 January 2022) which contains 30, 497, 4471 and 12, 488 terms
involving three sub-ontologies, BP, CC and MF, respectively. One then downloads the GO
annotations of Yeast from Gene Ontology Annotation (GOA) Database https://www.ebi.ac.
uk/GOA/yeast_release (releases/27 July 2022) which contains 100, 124 annotations for 6049
proteins. Last, manually-reviewed Yeast proteins are downloaded from UniProtKB/Swiss-
Prot [10], a total of 6721 sequences. As is common practice, one develops three different
models for each sub-ontology (BP, CC, and MF). The two training-validation-testing dataset
construction protocols found in literature are the time-delay no-knowledge (TDNK) and
the random-split (RS) ones. We propose a third, the time-series no-knowledge (TSNK)
protocol. We describe each of these next and analyze them for what they reveal on the
above questions.

4.1. Time-Delay No-Knowledge (TDNK)

This setting is adopted in CAFA (the Critical Assessment of Protein Function anno-
tation) challenge. However, the distribution of the number of labels per protein may be
different in the testing set than the training and validation sets in this setting. The steps
of the TDNK protocol are as follows: (1) Annotations with non-experimental evidence
codes are excluded. Experimental codes are EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC, HTP,
HDA, HMP, HGI or HEP. More information about GO evidence codes can be found in the

http://geneontology.org/docs/download-ontology/
https://www.ebi.ac.uk/GOA/yeast_release
https://www.ebi.ac.uk/GOA/yeast_release


Biomolecules 2022, 12, 1709 8 of 19

GO evidence codes webpage at The Gene Ontology Resource http://geneontology.org/
docs/guide-go-evidence-codes/ (releases/7 January 2022). (2) All annotations before a
submission deadline T0 (11 August 2020) are used for the model development (dev-set).
We keep this T0, so we can directly compare it to the published works. (3) No-knowledge
proteins having at least one experimental annotation at T1 (14 January 2022) are used for
mode testing. Note, no-knowledge indicates that the test-set proteins do not have overlap-
ping proteins with the dev-set (this includes the training and validation datasets). (4) The
training (train-set) and validation (val-set) sets are obtained by respectively sampling 80%
and 20% of the data at random from the dev-set. (5) Apply the true path rule to expand
annotations. Specifically, if a protein is annotated with a GO term, then the same protein is
also annotated with all the ancestors of that GO term. (6) Rank GO terms by their number
of associations and select terms with the minimum number of 150, 25 and 25 for BP, CC,
and MF, respectively. We refer to these GO terms as study-terms. (7) Exclude GO terms
other than study-terms. (8) Exclude proteins annotated with no study-terms. (9) Exclude
proteins that are not in the UniProtKB/Swiss-Prot [31] database.

Table 1 shows the distribution of labels (GO terms) for BP, CC, and MF in the TDNK
train-, val-, and test-set. A distribution is summarized with the mean and standard de-
viation. Figure 2 relates the distributions. Table 1 and Figure 2 expose the rationale why
related literature reports that BP is a more difficult prediction task, followed by MF and
CC. It is clear that the mean number of labels in the test-set is much lower than in the train-
and val-set for BP; the means in the train- and val-sets are comparable. In contrast, for MF
and CC the mean number of labels for the train-, val- and test-set are comparable. This
explains the higher difficulty with predicting in the BP sub-ontology. It does not inform,
however, on the reported higher difficulty in MF over CC; label imbalance (note the rather
large standard deviations) may additionally explain this phenomenon observed for related
works (DeepGO, DeepGOPlus, and others); our results on TDNK in Section 5 do not show
that MF is harder than CC for GOProFormer.

Table 1. The distribution of the number of labels (GO terms) per protein in the train-, val-, and test-set
for each sub-ontology in the respective dataset generation processes (TDNK, RS, and TSNK). The
distribution is summarized with the mean and standard deviation.

Dataset GO Train Val Test

TDNK
BP 36.198, 26.175 34.646, 24.914 21.600, 12.580
CC 16.354, 8.249 16.523, 8.259 14.000, 11.019
MF 17.085, 18.523 16.751, 17.176 17.448, 18.001

RS
BP 35.483, 25.608 35.512, 26.121 35.053, 25.726
CC 16.435, 8.167 16.045, 8.492 16.311, 8.464
MF 16.971, 18.232 17.738, 19.465 16.923, 18.190

TSNK
BP 37.472, 26.262 20.289, 17.017 19.471, 15.899
CC 16.787, 8.315 11.626, 5.722 11.018, 6.204
MF 17.762, 19.203 10.771, 11.877 11.603, 12.928

http://geneontology.org/docs/guide-go-evidence-codes/
http://geneontology.org/docs/guide-go-evidence-codes/


Biomolecules 2022, 12, 1709 9 of 19

Train

Validation

Test

Figure 2. The figures show the distribution of the number of labels per protein for the BP, CC and
MF classes in the train-, val-, and test-set, respectively, considering the cutoff values of 150, 25, and
25. The test-set is generated considering the TDNK split, and the val-set is generated by randomly
sampling 10% of the full dataset.



Biomolecules 2022, 12, 1709 10 of 19

4.1.1. Random-Split (RS)

We also evaluate using random-split val- and test-set as in DeepGO [13]. All anno-
tations with experimental evidence codes at T1 (14 January 2022) are considered as the
dev-set. The test-set consists of 15% data points sampled at random from the dev-set. The
train-set and val-set are composed by taking 85% and 15% of the data points at random
from the remaining dataset. All the other steps, such as exclusion and applying true-path
rule, are applied. Although the train-, val- and test-set do not share any proteins among
them, the distribution of labels per protein is similar due to uniform sampling. Table 1
indeed shows this to be the case. The mean number of labels is now similar for all three,
the train-, val-, and test-set for BP, as well.

4.1.2. Time-Series No-Knowledge (TSNK)

We propose a new protocol, inspired by the need to improve on label distribution. Our
insight is that the full dataset can be treated as time-series data. Specifically, the timeline
from T0 (1 January 2000) to T1 (14 January 2022) is considered as a time-series which is
then consecutively divided into non-overlapping timelines. Then, 20% of the timelines are
considered as test-timelines. From the remaining, 10% and 90% timelines are considered as
val- and train-timelines. The experimental annotations published in the defined timelines
create the train-, val- and test-set. Any annotations from the val- and test-set whose protein
is in the train-set are removed from the val- and test-set and only kept into the train-set.
Thus, there is no-knowledge between the train and val/test-set. We note that all the other
steps, such as exclusion and applying true-path rule are applied.

Table 1 shows the utility of this approach. Unlike TDNK and as in RS, the label
distributions between the val-set and test-set are more similar (on each sub-ontology). The
standard deviations in each sub-ontology are smaller than in TDNK and RS on the val- and
test-set. TSNK promises to lead a model to better generalizability than TDNK and RS.

It is worth noting that TDNK may generate a very small number of proteins and their
associated annotations, which may not follow the distribution of the training and validation
sets, as shown Figure 2 test-set. Thus, the actual generalization power of a model may
be underestimated. On the other hand, RS does not guarantee the no-knowledge test-set.
Thus, the model may suffer from data leakage, and in turn the performance of a model may
be overestimated.

5. Result
5.1. Experimental Setup

For the purpose of experimental evaluation, we follow the CAFA suggested evaluation
criteria, Fmax and Smin [32,33]. Fmax is the maximum harmonic mean of precision
and recall across all possible thresholds on the predicted protein–Go-term association
matrix. Specifically,

Fmax = max
th

2 · prec(th) · rec(th)
prec(th) + rec(th)

(10)

where prec(th) and rec(th) denote the average precision and recall score at threshold
th ∈ [0, 1]. The higher the Fmax obtained by a model, the better the performance.

Smin computes the semantic distance between predicted and ground-truth annotations
based on average remaining uncertainty (ru(th)) and misinformation measure (mi(th))
over a decision boundary th ∈ [0, 1]. Specifically,

Smin = min
th

√
ru(th)2 + mi(th)2 (11)

where
ru(th) = avg

i
∑

a∈(yi−y′i)
IC(a) (12)



Biomolecules 2022, 12, 1709 11 of 19

and
mi(th) = avg

i
∑

a∈(y′i−yi)

IC(a) (13)

In the above, yi and y′i denote the ground-truth and predicted annotations for ith

protein and IC(a) defines the log-scaled class prior as information-content of annotation
a as IC(a) = −log(a|Parent(a)). The lower the Smin obtained by a model, the better
the performance.

In addition to these two protein-centric evaluation measures, we utilize a GO term-
centric measure that is popular for multi-class classification, the area-under-precision-recall
curve (AUPRC). We choose AUPRC over AUC, as AUPRC is more sensitive to class-
imbalance than AUC.

As related in Section 4, the evaluation is carried out over three separate settings, TDNK,
RS, and TSNK.

We first provide a detailed look into the GOProFormer performance and then compare
it to DeepGoPlus [14], DeepChoi-SeqVec [17], and DeepChoi-ESM-1, where we replace
the SeqVec language model with the more powerful ESM-1. Support for the AllenNLP
library employed by DeepChoi for SeqVec has been discontinued, so we present a new
variant of DeepChoi, DeepChoi-ESM-1 that utilizes the ESM-1 PLM also employed in our
proposed GOProFormer.

5.2. Model Performance on Train-, Val-, and Test-Set

We report the training and validation binary cross-entropy loss, as well as the val-
idation Fmax performance of GOProFormer on each of the dataset settings versus (vs.)
the number of epochs in Figures 3–5. To avoid overfitting, we save the best model at best
performance on the validation set while training.

Train-Loss

Figure 3. Cont.



Biomolecules 2022, 12, 1709 12 of 19

Val-Loss

Val-Fmax

Figure 3. The train binary cross-entropy loss, validation binary cross-entropy loss and validation
Fmax are shown for BP on each of the three dataset settings.

5.3. Comparative Performance on TDNK Datset

Table 2 shows the performance of DeepGoPlus, DeepChoi-ESM-1, and GOProFormer
on the TDNK val- and test-set over each of the GO sub-ontologies and for each of the
evaluation metrics. For completeness, we also add the results reported in [26], though the
work transfers annotations based on similarity over embeddings. The highest values in
each category are highlighted in boldface font. If we rely on reported values on the TDNK
dataset, DeepChoi-SeqVec reports test-set Fmax values of 0.518, 0.470, 0.637 and AURPC
values of 0.476, 0.368, and 0.626, respectively, on the MF, BP, and CC sub-ontologies in the
original paper [17].

Several observations can be drawn from Table 2. The difference in performance
between the test-set (lower) and the val-set shows that all methods’ generalization potential
is underestimated. This further confirms the distribution difference argument between val-
and test-set we outline in Section 4. The performance of all methods follows the known
trend of higher difficulty on BP than MP and CC. GOProFormer and DeepChoi-ESM-1
narrow the difference in performance between BP, CC, and MF over the other methods.



Biomolecules 2022, 12, 1709 13 of 19

DeepChoi claims the best values on the BP and MF on the test-set, followed closely by
GOProFormer (DeepChoi-ESM-1 outperforms DeepChoi-SeqVec on the test set).

Train-Loss

Val-Loss

Val-Fmax

Figure 4. The train binary cross-entropy loss, validation binary cross-entropy loss and validation
Fmax are shown for CC on each of the three dataset settings.



Biomolecules 2022, 12, 1709 14 of 19

Train-Loss

Val-Loss

Val-Fmax

Figure 5. The train binary cross-entropy loss, validation binary cross-entropy loss and validation
Fmax are shown for MF on each of the three dataset settings.



Biomolecules 2022, 12, 1709 15 of 19

Table 2. Comparison of methods on TDNK dataset. Best values are highlighted in boldface font.

Metrics GO [26] Test DeepGOPlus DeepChoi-ESM-1 GOProFormer
Val Test Val Test Val Test

Fmax
BP 0.39 0.482 0.337 0.556 0.428 0.591 0.389
CC 0.59 0.721 0.504 0.738 0.510 0.750 0.537
MF 0.53 0.403 0.461 0.569 0.535 0.624 0.528

Smin
BP – 17.997 12.145 16.478 11.697 15.259 12.681
CC – 9.518 10.449 8.967 10.378 8.611 9.588
MF – 10.629 8.918 9.610 8.478 8.349 8.827

AUPRC
BP – 0.486 0.295 0.590 0.395 0.623 0.338
CC – 0.679 0.372 0.783 0.483 0.782 0.506
MF – 0.353 0.362 0.590 0.526 0.643 0.468

5.4. Comparative Performance on RS Dataset

Table 3 shows the performance of DeepGoPlus, DeepChoi-ESM-1, and GOProFormer
on the RS val- and test-set over each of the GO sub-ontologies and each of the evaluation
metrics. As before, the highest values in each category are highlighted in boldface font.
GOProFormer outperforms all methods on the val- and test-set with two exceptions. This is
due to the more comparable class distribution between these sets (see Table 1 in Section 4).
Differences in performance between the test-set (lower) and the val-set are reduced for all
models, removing concerns of overfitting. BP prediction remains more difficult.

Table 3. Comparison of methods on RS dataset. Best values are highlighted in boldface font.

Metrics GO DeepGOPlus DeepChoi-ESM-1 GOProFormer
Val Test Val Test Val Test

Fmax
BP 0.486 0.477 0.564 0.544 0.589 0.577
CC 0.709 0.720 0.736 0.740 0.736 0.751
MF 0.393 0.391 0.545 0.541 0.607 0.614

Smin
BP 18.525 18.621 16.436 16.856 15.471 15.657
CC 10.273 10.570 8.783 9.233 8.413 8.565
MF 10.570 11.269 10.027 9.588 8.698 7.972

AUPRC
BP 0.488 0.483 0.585 0.572 0.629 0.627
CC 0.654 0.668 0.773 0.790 0.751 0.765
MF 0.339 0.332 0.563 0.555 0.617 0.619

5.5. Comparative Performance on TSNK Dataset

Table 4 shows the performance of DeepGoPlus, DeepChoi-ESM-1, and GOProFormer
on the TSNK val- and test-set over each of the GO sub-ontologies and each of the evaluation
metrics. The highest values in each category are highlighted in boldface font. With one
exception, GOProFormer obtains the highest performance on each metric, for each of
the GO sub-ontologies, over both the val- and test-set, over all methods. Differences in
performance between the test-set (lower) and the val-set are low, alleviating concerns of
overfitting. Again, BP prediction remains more difficult.



Biomolecules 2022, 12, 1709 16 of 19

Table 4. Comparison of methods on TSNK dataset. Best values are highlighted in boldface font.

Metrics GO DeepGoPlus DeepChoi-ESM-1 GOProFormer
Val Test Val Test Val Test

Fmax
BP 0.460 0.491 0.499 0.529 0.526 0.557
CC 0.739 0.709 0.738 0.712 0.739 0.729
MF 0.457 0.436 0.524 0.541 0.580 0.623

Smin
BP 10.499 9.721 10.074 9.080 9.600 8.810
CC 4.598 5.487 4.608 5.359 4.541 5.073
MF 7.719 8.267 7.565 7.748 6.338 6.308

AUPRC
BP 0.439 0.469 0.466 0.495 0.526 0.557
CC 0.691 0.649 0.782 0.751 0.724 0.693
MF 0.368 0.350 0.513 0.517 0.564 0.584

5.6. Impact of Datasets on Performance: TDNK vs. RS vs. TSNK

The above analysis focuses primarily on comparing methods on three separate datasets.
We now expand further on the performance of GOProFormer and the TDNK, RS, and TSNK
datasets to better understand the impact of a dataset distribution on performance, as shown
in Table 1 and Figure 2. Comparing the performance of GOProFormer over the test-set
in the TDNK and RS setting (see Tables 2 and 3) reveals that the model achieves its best
performance on all metrics (Fmax, Smin and AUPRC) in the RS setting (vs. TDNK). For
instance, GOProFormer achieves an Fmax value of 0.577 vs. 0.389 (BP), 0.751 vs. 0.537 (CC)
and 0.614 vs. 0.528 (MF) in the RS versus the TDNK setting, respectively. This in agreement
with our observations in Section 4, as the distribution of labels per protein in the RS setting
is similar between the train- and test-sets due to uniform sampling; in contrast, in the
TDNK setting, there is a stark difference between the distributions of the train and test-set.
Comparing the performance of GOProFormer over the test-set in the RS vs. the TSNK
setting (see Tables 3 and 4) reveals no clear differences according to the Fmax and AUPRC
metrics. Differences in Smin are prominent. In the RS setting, GOProFormer achieves an
Smin value of 15.657 (BP), 8.565 (CC), and 7.972 (MF). In the TSNK setting, GOProFormer
achieves better Smin values of 8.810 (BP), 5.073 (CC), and 6.308 (MF). Smin is a more
stringent measure of performance [16], and these results indicate that TSNK is a trade-off
between the TDNK and RS settings and affords GOProFormer better generalization in
comparison with other state-of-the-art models.

6. Conclusions

This paper has presented GOProFormer, a GO protein function prediction method that
accounts for both protein sequence and the GO hierarchy in its learned representations. The
method utilizes the transformer architecture; a language model to embed protein sequences
in a semantic space, and a novel graph transformer to embed GO terms in a space that
respects the GO terms relationships. The notion of a pool is introduced to learn more
meaningful representations for GO terms.

While much of the computational literature on GO term prediction has acknowledged
the importance of integrating the knowledge from GO annotations in a model, our work
here is the first to show how one distill such knowledge and formulate it into a prior in
a transformer-based model. It is worth noting that the GO hierarchy of terms via which
one can describe protein functions at varying resolution represents an interesting source of
biological priors which we integrate in a transformer-based model for protein prediction
tasks situated in biological/domain knowledge.

Our method advances the state of the art. Moreover, another contribution of this work
is that various datasets are carefully characterized and employed to evaluate performance
and so understand the intrinsic characteristics of the different datasets utilized in related
literature. Moreover, a novel protocol is described for training and testing dataset con-
struction that avoids data leakage and facilitates model generalization. The comparative



Biomolecules 2022, 12, 1709 17 of 19

performance analysis on the three dataset settings shows that a models’ generalizability
may be over- or under-estimated depending on the dataset.

PLMs are becoming increasingly important to developers and practitioners alike, and
in this paper we extend their reach to a community-set challenge of GO term prediction.
Many avenues remain open for future research. For instance, investigating the interplay
between D and d and their impact on model performance is an important direction. Future
research is additionally needed to understand more deeply what language models are
capturing about the biological data and how this informs us on their power and their
shortcomings. With so many frontiers open, this is an exciting time for computational
biology researchers, and we expect PLMs to become increasingly appealing for various
molecular biology prediction tasks.

Author Contributions: A.K. conceptualized and implemented the methodologies described here,
carried out the evaluation, and drafted the manuscript. A.S. guided the research, conceptualization,
evaluation, and edited and finalized the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Science Foundation Grant No. 1907805.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets are available at http://geneontology.org/docs/download-
ontology/ (releases/7 January 2022) and https://www.ebi.ac.uk/GOA/yeast_release (releases/27
July 2022).

Acknowledgments: Computations were run on the Hopper, a research computing cluster provided
by the Office of Research Computing at George Mason University.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PLM Protein Language Model
GO Gene Ontology
BP Biological Process
CC Cellular Component
MF Molecular Function
DAG Directed Acyclic Graph
GOProFormer GO Protein Transformer
CAFA Critical Assessment of Functional Annotation
MSA Multiple Sequence Alignments
ESM Evolutionary Scale Modeling
TDNK Time-delay no-knowledge
RS Random-split
TSNK Time-series no-knowledge
AUPRC Area-Under-Precision-Recall Curve
IC Information Content

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762.
2. Heinzinger, M.; Elnaggar, A.; Wang, Y.; Dallago, C.; Nechaev, D.; Matthes, F.; Rost, B. Modeling aspects of the language of life

through transfer-learning protein sequences. BMC Bioinform. 2019, 20, 723. [CrossRef] [PubMed]
3. Bepler, T.; Berger, B. Learning the protein language: Evolution, structure, and function. Cell Syst. 2021, 12, 654–669.e3. [CrossRef]

[PubMed]

http://geneontology.org/docs/download-ontology/
http://geneontology.org/docs/download-ontology/
https://www.ebi.ac.uk/GOA/yeast_release
http://doi.org/10.1186/s12859-019-3220-8
http://www.ncbi.nlm.nih.gov/pubmed/31847804
http://dx.doi.org/10.1016/j.cels.2021.05.017
http://www.ncbi.nlm.nih.gov/pubmed/34139171


Biomolecules 2022, 12, 1709 18 of 19

4. Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rihawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M.; et al.
ProtTrans: Towards Cracking the Language of Lifes Code Through Self-Supervised Deep Learning and High Performance
Computing. IEEE Trans. Patern Anal. Mach. Intell. 2021, 44, 7112–7127. [CrossRef]

5. Stärk, H.; Dallago, C.; Heinzinger, M.; Rost, B. Light attention predicts protein location from the language of life. Bioinform. Adv.
2021, 1, vbab035. [CrossRef]

6. Hie, B.; Yang, K.K.; Kim, P.S. Evolutionary velocity with protein language models predicts evolutionary dynamics of diverse
proteins. Cell Syst. 2022, 13, 274–285.e6. [CrossRef]

7. Kabir, A.; Shehu, A. Transformer Neural Networks Attending to Both Sequence and Structure for Protein Prediction Tasks. arXiv
2022, arXiv:2206.11057.

8. Nambiar, A.; Liu, S.; Hopkins, M.; Heflin, M.; Maslov, S.; Ritz, A. Transforming the Language of Life: Transformer Neural
Networks for Protein Prediction Tasks. In Proceedings of the International Conference on Bioinformatics, Computational Biology,
and Health Informatics (BCB), Virtual, 21–24 September 2020; ACM: New York, NY, USA, 2020; pp. 1–8.

9. Restrepo-Pérez, L.; Joo, C.; Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotech. 2018, 13, 786–796.
[CrossRef]

10. Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2020, 49, D325–D334.
[CrossRef]

11. Bileschi, M.L.; Belanger, D.; Bryant, D.H.; Sanderson, T.; Carter, B.; Sculley, D.; Bateman, A.; DePristo, M.A.; Colwell, L.J. Using
deep learning to annotate the protein universe. Nat. Biotechnol. 2022, 40, 932–937. [CrossRef]

12. Vu, T.T.D.; Jung, J. Protein function prediction with gene ontology: From traditional to deep learning models. PeerJ 2021,
9, e12019. [CrossRef]

13. Kulmanov, M.; Khan, M.A.; Hoehndorf, R. DeepGO: Predicting protein functions from sequence and interactions using a deep
ontology-aware classifier. Bioinformatics 2017, 34, 660–668. [CrossRef] [PubMed]

14. Kulmanov, M.; Hoehndorf, R. DeepGOPlus: Improved protein function prediction from sequence. Bioinformatics 2019, 36,
422–429. [CrossRef] [PubMed]

15. Zhou, G.; Wang, J.; Zhang, X.; Yu, G. DeepGOA: Predicting Gene Ontology Annotations of Proteins via Graph Convolutional
Network. In Proceedings of the IEEE/ACM International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA,
USA, 18–21 November 2019; pp. 1836–1841.

16. Zhang, F.; Song, H.; Zeng, M.; Wu, F.X.; Li, Y.; Pan, Y.; Li, M. A Deep Learning Framework for Gene Ontology Annotations With
Sequence- and Network-Based Information. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 2021, 18, 2208–2217. [CrossRef]
[PubMed]

17. Choi, K.; Lee, Y.; Kim, C. An effective GCN-based hierarchical multilabel classification for protein function prediction. arXiv 2021,
arXiv:2112.02810.

18. Sapoval, N.; Aghazadeh, A.; Nute, M.G.; Antunes, D.A.; Balaji, A.; Baraniuk, R.; Barberan, C.J.; Dannenfelser, R.; Dun, C.;
Edrisi, M.; et al. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun. 2022,
13, 1728. [CrossRef]

19. Gage, P. A New Algorithm for Data Compression. C Users J. 1994, 12, 23–38.
20. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.V.; Salakhutdinov, R. Transformer-XL: Attentive Language Models Beyond a

Fixed-Length Context. arXiv 2019, arXiv:1901.02860.
21. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. XLNet: Generalized Autoregressive Pretraining for

Language Understanding. In Advances in Neural Information Processing Systems 32 (NeurIPS 2019); The Neural Information
Processing Systems Foundation: La Jolla, CA, USA, 2019; Volume 32.

22. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv 2018, arXiv:1810.04805.

23. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations. arXiv 2019, arXiv:1909.11942.

24. Clark, K.; Luong, M.; Le, Q.V.; Manning, C.D. ELECTRA: Pre-training Text Encoders as Discriminators Rather than Generators.
arXiv 2020, arXiv:2003.10555.

25. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Matena, M.; Liu, P.J.; Narang, S.; Li, W.; Zhou, Y. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 1–67.

26. Littmann, M.; Heinzinger, M.; Dallago, C.; Olenyi, T.; Rost, B. Embeddings from deep learning transfer GO annotations beyond
homology. Sci. Rep. 2021, 11, 1160. [CrossRef] [PubMed]

27. Zhang, F.; Song, H.; Zeng, M.; Li, Y.; Kurgan, L.; Li, M. DeepFunc: A Deep Learning Framework for Accurate Prediction of
Protein Functions from Protein Sequences and Interactions. Proteomics 2019, 19, 1900019. [CrossRef] [PubMed]

28. Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C.L.; Ma, J.; et al. Biological structure and function
emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. USA 2021, 118, e2016239118.
[CrossRef]

29. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2016,
arXiv:1409.0473.

http://dx.doi.org/10.1109/TPAMI.2021.3095381
http://dx.doi.org/10.1093/bioadv/vbab035
http://dx.doi.org/10.1016/j.cels.2022.01.003
http://dx.doi.org/10.1038/s41565-018-0236-6
http://dx.doi.org/10.1093/nar/gkaa1113
http://dx.doi.org/10.1038/s41587-021-01179-w
http://dx.doi.org/10.7717/peerj.12019
http://dx.doi.org/10.1093/bioinformatics/btx624
http://www.ncbi.nlm.nih.gov/pubmed/29028931
http://dx.doi.org/10.1093/bioinformatics/btz595
http://www.ncbi.nlm.nih.gov/pubmed/31350877
http://dx.doi.org/10.1109/TCBB.2020.2968882
http://www.ncbi.nlm.nih.gov/pubmed/31985440
http://dx.doi.org/10.1038/s41467-022-29268-7
http://dx.doi.org/10.1038/s41598-020-80786-0
http://www.ncbi.nlm.nih.gov/pubmed/33441905
http://dx.doi.org/10.1002/pmic.201900019
http://www.ncbi.nlm.nih.gov/pubmed/30941889
http://dx.doi.org/10.1073/pnas.2016239118


Biomolecules 2022, 12, 1709 19 of 19

30. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al.
Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [CrossRef]

31. UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2020, 49, D480–D489. [CrossRef]
32. Radivojac, P.; Clark, W.T.; Oron, T.R.; Schnoes, A.M.; Wittkop, T.; Sokolov, A.; Graim, K.; Funk, C.; Verspoor, K.; Ben-Hur, A.; et al.

A large-scale evaluation of computational protein function prediction. Nat. Methods 2013, 10, 221–227. [CrossRef]
33. Jiang, Y.; Oron, T.R.; Clark, W.T.; Bankapur, A.R.; D’Andrea, D.; Lepore, R.; Funk, C.S.; Kahanda, I.; Verspoor, K.M.;

Ben-Hur, A.; et al. An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome
Biol. 2016, 17, 184. [CrossRef]

http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1093/nar/gkaa1100
http://dx.doi.org/10.1038/nmeth.2340
http://dx.doi.org/10.1186/s13059-016-1037-6

	Introduction
	Related Work
	Methodology
	From Input Representation to Learned Embedding of a Protein Molecule
	Amino-Acid Level Embeddings
	Protein Embedding

	From Input Representation to Learned Embedding of a GO Term
	Transformer Encoder for GO Terms' Embeddings
	Prediction Layer
	Loss Function
	Implementation Details

	Datasets
	Time-Delay No-Knowledge (TDNK)
	Random-Split (RS)
	Time-Series No-Knowledge (TSNK)


	Result
	Experimental Setup
	Model Performance on Train-, Val-, and Test-Set
	Comparative Performance on TDNK Datset
	Comparative Performance on RS Dataset
	Comparative Performance on TSNK Dataset
	Impact of Datasets on Performance: TDNK vs. RS vs. TSNK

	Conclusions
	References

