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Abstract: The increased interest in assisted reproduction through in vitro fertilization (IVF) leads
to an urgent need to identify biomarkers that reliably highly predict the success of pregnancy.
Despite advances in diagnostics, treatment, and IVF approaches, the 30% success rate of IVF seems
insurmountable. Idiopathic infertility does not have any explanation for IVF failure especially when
a patient is treated with a healthy competitive embryo capable of implantation and development.
Since appropriate intercellular communication is essential after embryo implantation, the emergence
of the investigation of embryonic secretome including short non-coding RNA (sncRNA) molecules
is crucial. That’s why biomarker identification, sncRNAs secreted during the IVF process into the
blastocyst’s cultivation medium, by the implementation of artificial intelligence opens the door
to a better understanding of the bidirectional communication between embryonic cells and the
endometrium and so the success of the IVF. This study presents a set of promising new sncRNAs
which are revealed to predictively distinguish a high-quality embryo, suitable for an embryo transfer
in the IVF process, from a low-quality embryo with 86% accuracy. The identified exact combination
of miRNAs/piRNAs as a non-invasively obtained biomarker for quality embryo determination,
increasing the likelihood of implantation and the success of pregnancy after an embryo transfer.

Keywords: miRNA; piRNA; biomarker; IVF; embryo selection; embryonic secretome

1. Introduction

The inability to conceive after one year of unprotected intercourse, called infertility,
exhibits an increasing trend recently [1]. It is estimated to affect 8–12% of couples of repro-
ductive age worldwide [2]. Model predictions for the future suggest that global fertility
will continue to diminish [3]. Infertility is becoming more common due to the accumula-
tion of multiple factors, such as gynecological, andrological, hormonal, immunological,
hematological, genetic, and age-dependent [4], in both sexes that lead to an inability to
conceive. Even if the patient is healthy, hormonally balanced, and seems to be biochemically
and genetically compatible with a partner, idiopathic infertility still contributes to one in
ten infertility cases [5]. These facts lead to the increased interest in assisted reproduction
(AR) through in vitro fertilization (IVF). The overall IVF process is complex, its simplified
protocol of the clinical phase is shown in Figure 1.

Biomolecules 2022, 12, 1687. https://doi.org/10.3390/biom12111687 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12111687
https://doi.org/10.3390/biom12111687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-3862-3329
https://orcid.org/0000-0001-9718-232X
https://doi.org/10.3390/biom12111687
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12111687?type=check_update&version=2


Biomolecules 2022, 12, 1687 2 of 16

Biomolecules 2022, 12, 1687 2 of 17 
 

 

conceive. Even if the patient is healthy, hormonally balanced, and seems to be biochemi-
cally and genetically compatible with a partner, idiopathic infertility still contributes to 
one in ten infertility cases [5]. These facts lead to the increased interest in assisted repro-
duction (AR) through in vitro fertilization (IVF). The overall IVF process is complex, its 
simplified protocol of the clinical phase is shown in Figure 1. 

 
Figure 1. Preclinical and Clinical part of the IVF workflow. Clinical diagnosis of the patient (man 
and woman) in the IVF process [4]. 

Although the conditions for embryo cultivation are improving, the overall embryo 
transfer success rate does not rise above 30% [6]. The success of the IVF process is condi-
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transfer, and the determination of the window of implantation (WOI) [7]. The key part of 
fertilization is cross-talk between the blastocyst (later embryo) the and mother’s endome-
trium [8] via the secretion of embryo-derived molecules to modulate the uterus compart-
ment and support the blastocyst invasion. 

Among the most important signaling pathways of the implantation of the embryo 
are VEGF (vascular endothelial growth factor) [9]. The family of VEGF and its antagonist 
sFlt-1 (Soluble Fms-Like Tyrosine Kinase-1) [10], Ang-1/2 (angiopoietin1/2) [11], and en-
doglin [12] are pivotal for regulation of angiogenesis of mother’s endometrium as well as 
of embryo. The expression of VEGF, with a significant increase in the mid-luteal phase, 
suggests the important role of VEGF at the time of embryo implantation [10]. In the first 
five days of cultivation, the embryonic cells contain among other molecules, also RNAs as 
well as short non-coding RNAs (sncRNAs), which affect the expression of signaling path-
ways of implantation [13]. During the IVF process, these embryonic molecules are se-
creted into a cultivation medium. The competent embryo seems to secrete more of those 
regulatory molecules for angiogenesis than the incompetent embryo [14]. 

The ideal embryonic biomarker should be non-invasive, stable, embryo-specific, and 
easily detectable. The spent blastocyst medium (SBM), a waste cultivation medium, is a 
non-invasive and easily accessible diagnostic tool [4,15] and is appropriate for the study 
of sncRNAs as a potential predictive biomarker of embryo quality, suitable for the transfer 
to the uterus [16]. 

Figure 1. Preclinical and Clinical part of the IVF workflow. Clinical diagnosis of the patient (man and
woman) in the IVF process [4].

Although the conditions for embryo cultivation are improving, the overall embryo
transfer success rate does not rise above 30% [6]. The success of the IVF process is con-
ditioned also by the receptivity of endometrium, the selection of a competent embryo
for transfer, and the determination of the window of implantation (WOI) [7]. The key
part of fertilization is cross-talk between the blastocyst (later embryo) the and mother’s
endometrium [8] via the secretion of embryo-derived molecules to modulate the uterus
compartment and support the blastocyst invasion.

Among the most important signaling pathways of the implantation of the embryo
are VEGF (vascular endothelial growth factor) [9]. The family of VEGF and its antagonist
sFlt-1 (Soluble Fms-Like Tyrosine Kinase-1) [10], Ang-1/2 (angiopoietin1/2) [11], and
endoglin [12] are pivotal for regulation of angiogenesis of mother’s endometrium as well
as of embryo. The expression of VEGF, with a significant increase in the mid-luteal phase,
suggests the important role of VEGF at the time of embryo implantation [10]. In the first
five days of cultivation, the embryonic cells contain among other molecules, also RNAs
as well as short non-coding RNAs (sncRNAs), which affect the expression of signaling
pathways of implantation [13]. During the IVF process, these embryonic molecules are
secreted into a cultivation medium. The competent embryo seems to secrete more of those
regulatory molecules for angiogenesis than the incompetent embryo [14].

The ideal embryonic biomarker should be non-invasive, stable, embryo-specific, and
easily detectable. The spent blastocyst medium (SBM), a waste cultivation medium, is a
non-invasive and easily accessible diagnostic tool [4,15] and is appropriate for the study of
sncRNAs as a potential predictive biomarker of embryo quality, suitable for the transfer to
the uterus [16].

Human embryos secrete specific microRNAs (miRNAs) and piwi-interacting RNAs
(piRNAs) into their extracellular environment, mediating the interaction between the
blastocyst and the endometrium, reflecting embryo viability, ploidy as well as implantation
potential [13,15,17–22] and could be useful in identifying possible causes of implantation
failure after an embryo transfer [15,23]. Communication between the embryo and the
endometrium is bilateral, therefore, exosomes secreted by the epithelium of the human
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endometrium transport their contents to the blastocyst, respectively into the adjacent
endometrium and thus affect gene expression in the endometrium [18].

The IVF clinics focus on the selection of a single euploid-competent embryo suitable
for transfer into the uterine cavity [24]. Only laboratory diagnostics can improve IVF
success and the involvement of artificial intelligence appears to be a necessity.

The current tool of artificial intelligence (AI) used in clinical practice for embryo
evaluation is software analysis using embryo morphology [25] as part of an EmbryoScope
(time-lapse monitoring system). However, this method does not provide information about
the molecular and biochemical processes of the embryo itself. Machine learning and AI
tools can be used to rapidly process and analyze huge amounts of data, create models for
clinical decision-making [26] and provide a combination of several significant biomarkers
which can describe embryo-patient compatibility [27]. The model of the bioinformatics
pipeline of artificial intelligence and machine learning is shown in Figure 2.
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Figure 2. Factors enhancing prediction of the IVF outcome. Several factors, such as ovarian reserve,
genetics, sperm parameters, and characterization of embryo quality have an impact on pregnancy
outcomes in the IVF process.

Although several miRNAs/piRNAs have been identified as potential biomarkers
of successful embryo transfer, the use of artificial intelligence and machine learning ap-
proaches on transcriptomics data in this field is still in its beginnings. In the current study,
we performed initial small RNA sequencing of the SBM, and data were evaluated using AI
to identify promising sncRNAs molecules suitable as noninvasive biomarkers.

2. Materials and Methods
2.1. Dataset Description

The study has been ongoing since 2018 with the approval of the ethics committee of the
Košice governing region on 24 April 2018 (VEGA 1/0873/18), also approved by the ethics
committee of Louis Pasteur University Hospital Košice on 21 June 2018 (6026/EK/2018),
and continued in the following years based on the approval by the ethics committee of
Louis Pasteur University Hospital Košice on 25 April 2019 (4023/EK/2019).

Of the 1113 patients who participated in the study, a group of suitable patients (60 pa-
tients) with idiopathic infertility of age from 18 to 37 years old was selected. All participants
were not previously on IVF and did not have previous IVF pregnancies. Oocytes collected
from these patients went through the process of in vitro fertilization, the embryos were
cultured to the blastocyst stage, and the spent blastocyst medium was collected, frozen,
and subjected to sncRNA sequencing.
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The spent blastocyst medium (10–20 microliters) during the IVF process was collected
on the day of the embryo transfer to the uterus (on the 4th or 5th day after fertilization) at
the Gyncare Center for Assisted Reproduction in Košice and stored at −70 ◦C.

Embryo’s SBM samples (n = 60) were collected after embryo cultivation and control
samples of cultivation medium with additive components needed for embryo cultivation as
a qualitative and quantitative background (n = 3) were used for sequencing (n = 60 + 3 = 63).
Of the total number of sequenced SBM samples (n = 63), 53% (n = 32) were successfully
implanted, and 47% (n = 28) were non-implanted. The success and the failure of IVF were
determined by the result of the hCG level as well as USG tested on day 10 after the embryo
transfer. A level of hCG above 10 IU/L and positive USG monitoring was considered a
positive pregnancy.

The studied 60 SBM samples were divided into the exploratory phase the study (n = 48)
and the validation phase of the study (n = 12).

2.2. SncRNAs Sequencing

Using the method of massive-parallel sequencing of small non-coding RNA molecules
(miRNAs and piRNAs) on the Illumina sequencing platform was performed. Based on
specific Explanatory Data Analysis and Machine learning methods with different mod-
els, the number of predictive biomarkers, and specific prognostic-predictive molecules
were selected.

Total RNA enriched for small RNAs were extracted from collected SBM samples
using miRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s protocol. The cDNA libraries for next-generation sequencing were prepared
using the QiaSeq miRNA Library Kit (Qiagen). The concentrations of cDNA libraries
were assessed by fluorometry (Qubit 2.0, Thermofisher Scientific, Waltham, MA, USA) and
the equimolar amounts of each library were pooled at a final concentration of 2 nmol/L
cDNA. Pooled cDNA library fragments underwent next-generation sequencing using
NextSeq 500/550 High Output v2 Kit in 75 cycles (cat. no. FC-404-2005, Illumina, San
Diego, CA, USA) on a NextSeq 500 Sequencing System (Illumina, San Diego, CA, USA).
Raw fasta reads were quality-checked with FastQC (v0.11.5, Illumina, San Diego, CA,
USA) and LiveKraken (v15-065, Illumina, San Diego, CA, USA). 3´end adapters were
trimmed with Cutadapt (v1.15, Illumina, San Diego, CA, USA). The trimmed sequences
were size filtered for expected miRNA sizes (19 25 bp) and piRNA sizes (24–32 bp) and
low-quality ends (Phred < 10) were removed with Cutadapt (v1.15). Statistics from all the
preprocessing steps were summarized with MultiQC (v1.4, Illumina, San Diego, CA, USA).
Contaminants such as rRNA, tRNA, snoRNA, snRNA, and YRNA were removed from pre-
processed reads by mapping (end-to-end) the reads to their sequences with Bowtie (v1.2.1.1,
Illumina, San Diego, CA, USA) with a maximum of one mismatch. The preprocessed
and cleaned reads were mapped to human miRNA and piRNA sequences downloaded
from the miRBase and piRBase database (v1.0, http://www.mirbase.org/ (accessed on
27 September 2022), http://www.regulatoryrna.org/database/piRNA/download.html
(accessed on 27 September 2022)) using Bowtie (v1.2.1.1, Illumina, San Diego, CA, USA)
with a maximum of two mismatches. Raw Bowtie output was converted to the SAM format
using an in-house Perl script and further processed with Samtools (v1.6, Illumina, San
Diego, CA, USA), Picard (2.8.2, Illumina, San Diego, CA, USA), and Cgat (v0.3.2, Illumina,
San Diego, CA, USA). Feature Counts (v1.5.0, Illumina, San Diego, CA, USA) were used to
summarize the miRNA and piRNA counts (minimal overlap of 19 bp).

2.3. BioMAI Pipeline Predictor Model

The multi-mapped reads were equally divided into the mapped references as fractions.
The acquired results were obtained from the sequencing of sncRNAs and the combination
of bioinformatics analysis. The BioMAI predictor and a novel machine learning-based tool
were developed for predicting human embryonic quality from a spent blastocyst medium.
The BioMAI predictor combines all the tasks needed to classify human embryonic quality

http://www.mirbase.org/
http://www.regulatoryrna.org/database/piRNA/download.html
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into one pipeline (Figure 3). Four different models (XG Boost model, Lasso model, Extra
Random trees model, and ANOVA coefficient of importance) were used, each for a different
function. Specifically, the “must have” bioinformatics tasks such as input quality control,
gene mapping, and counting and “required” bioinformatics tasks.
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First of all, the number of readings of each sample had to be normalized. Numerous
experiments have been performed with complex normalization techniques, such as a
reimplementation of TMM (Trimmed Mean of M-values) with a slight enhancement, to
assume recognize the proper one, especially for batch correction.

In this study, the following algorithms were trained: (1). the Decision Tree Random
Forest model with permutation, (2). the second is XGBoost with GPU acceleration, and (3).
the voting classifier. These models were used for some multi-collinearity between expected
features, otherwise, Lasso or wGLM (weighted generalized linear model) was used.

The feature selection of the selected molecules significant for the target with one of
two states, failure or successful implementation of the embryo, were identified. There
were underlying tasks such as pre-filtering features with zero read counts or low variance
between groups. Additionally, there was normality testing for the decision of using the
proper technique. In this task within the BioMAI predictor, ensemble learning was used
(two independent groups of models) that have been implemented with hard voting logic.

The voting technique from different models gave stronger assumptions for selecting
significant features. The features that were selected in both above-mentioned models were
picked for the next task. The projection of the dataset with the selected features in the
previous step gave a useful view of how the two groups are separated.

The next task in the pipeline within the BioMAI predictor was a classification that led to
the prediction for evaluated samples. In this task, models with complex hyper-parameters
were trained. In this model, we used n-times for predicting each sample in the dataset
(“The leave one out method”). Model hyper-parameters were dependent due to some
characteristics of the data. The output from this task was a table of predictions. Precisions
of predictions were measured with the standard method MSE, ROC, or Precision-recall
curve and with the more complex method.

Finally, the BioMAI predictor, for a complex understanding of predictions, especially
in the case of an incorrect prediction, was used for the detection of anomalous samples
within the fifth model in a row (provided only with training data) and was used in the
unsupervised ML method, where the model doesn’t know about depending on variables
and knows only independent variables. For this task, the hierarchical clustering model
was used.

By using the parameter (fold change ≥ 1 or −1, p = 0.05) was identified deregulated
piRNA and miRNA molecules were. The coefficient with a p-value alpha set to 0.05
was calculated from the number of important molecules with an unknown number of
sncRNA molecules significant predictors of the quality embryo from SBM. Based on specific
data analysis (explanatory data analysis) using machine learning methods with ensemble
learning where we use Support Vector Machine models, Random Forest Classifier, and SGD
classifier used in BIOMAI predictor, several predictive miRNA and piRNA biomarkers for
embryo quality differentiation in the IVF process were selected.

To determine the accuracy of the final models, the following indicators were used:
area under curve ROC curve (AUC ROC), F1 score, and multiple verifications of accuracy
with the exchange of input data.
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3. Results
3.1. Ensemble Learning

The analyzed profile of sncRNAs was based on a dataset of SBM samples and obtained
118,338 molecules identified using a publicly available database of sncRNAs (miRBase and
piRBase database). The predictor identified deregulated piRNA and miRNA molecules
that were differentially expressed in the SBM of the competitive/high-quality embryo
group within the IVF process as visualized by a volcano plot (Figure 4). In the beginning,
the model started with more than 1000 molecules. After the selection process, the model
worked with seven final molecules. The standard DGE analysis with Deseq2 was provided.
The result of this analysis did not give any significant difference between the analyzed
genes. So far, even a binomial generalized linear model of Deseq2 was unaware. Some
setting that was not provided may affect the selection of deferentially expressed genes as
normalization type or shrinkage. Additionally, this model is using another method for
selection and prediction.
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Figure 4. Volcano plot of piRNA and miRNA molecules deregulated in SBM of the qual-
ity/competitive embryo in the IVF process. The FC cutoff is set to 1 with a standard p-value
threshold > 0.05 which visualizes genes that can be potentially differentially expressed.

The trained decision model evaluated the outputs of the top features as input for the
voting algorithm (Figure 5). From this set of the top features sorted by importance value
and on recurring significant molecules in the three models (XG Boost model, Lasso model,
and Extra Random trees model) and log2 fold change were finally chosen for the voting
procession.
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model) were statistically compared with ANOVA one-way F-test. The study specifically
identified two miRNAs (miR-16-5p, -92a-3p) and five piRNAs (piR-28263, -18682, -23020,
-414, -27485) that prognostically and predictively distinguished a high-quality embryo
suitable for IVF transmission from a low-quality embryo with 95% sensitivity and 100%
specificity with an average accuracy of 86% over mentioned different models. The impor-
tance of the obtained biomarker alignment in predicting embryo quality was evaluated
after permutations by F-value ANOVA coefficient of importance, p-value (Table 1).

Table 1. Piwi-interacting RNA and micro RNA molecules are deregulated in the SBM of the embryo
in the IVF process.

F-Value ANOVA Coefficient of Importance p-Value

hsa_miR_16_5p 8,853,048 0.004786
hsa_piR_28263 6,154,501 0.017098
hsa_piR_18682 5,506,564 0.023622
hsa_piR_23020 5,341,872 0.025678
hsa_piR_414 5,103,818 0.028998
hsa_piR_27485 5,028,244 0.030147
hsa_miR_92a_3p 499,102 0.030731

3.2. Voting Technique

In the exploratory phase of the voting technique, the model used 60 experimental SBM
samples of embryo cultivation and three SBM samples as the background of the medium.

The comparison of the PCA projection before and after selecting features visualizes
the separation between groups of failure of an implanted embryo (purple) and success of
an implanted embryo (blue) and confirms that features were properly selected.

As shown in Figure 6, some SBM samples were predicted to succeed in the IVF process
(red dots) and conversely, some samples were predicted to fail the IVF process (blue dots).
In some cases, the actual result of the IVF process was contrary to what was predicted by
BioMAI. This predicted error was at the level of up to 10% out of all the predicted SBM
samples (four samples from 48 samples).
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Figure 6. The comparison of PCA projection before and after selected features.

Model decision boundary analysis, as shown in Figure 7, uses a 3-D principal com-
ponent (PCA) projection using the plotted model decision boundary plane in the BioMAI
predictor. This model sorts the results into two groups: the first (red cubic under plane) that
predicts non-competitive, low-quality embryos with the failure of the implanted embryo in
the IVF process, and the second (blue cubic over plane) that predicts competitive, quality
embryos with the success of the implanted embryo in the IVF process.
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BioMAI selection. Red squares represent IVF failure, blue dots represent IVF success.

Figure 8 shows samples clustered into groups that predict the failure of an implanted
embryo (red) and predict the success of an implanted embryo (blue). In all, four samples
were misclassified (two of them are not sufficiently legibly displayed in Figure 9—blue balls
under the plane) which is up to 10%, and after the elimination of misclassified samples, the
accuracy of all predictions was between 86–95%. The analyzed samples of the process were
clustered into two groups of the predicted successful and unsuccessful IVF processes. In
these two groups, samples KM22_SE, KM21_SE, KM2_SE, and KM15_SE were predicted
to be competitive/quality embryos with success in the IVF process, but in reality, they
were IVF failures. By deeper analysis, it is seen that samples KM22_SE and KM21_SE are
associated with samples predicted, as well as in reality, non-successful in the IVF process.
This result suggests the probability of the existence of another reason why these samples
were inappropriately predicted.

Biomolecules 2022, 12, 1687 9 of 17 
 

 

 
Figure 8. Visualization of identified anomalous samples in successful embryo prediction. 

A blinded step validation (Figure 9) of the BioMAI predictor was also performed by 
using 12 newly sequenced SBM samples, the samples not used in the exploratory phase 
on which the model was trained. Based on a specific combination of models of sncRNAs, 
the BioMAI predictor was able to differentiate a quality/competitive embryo from a non-
competitive embryo one with a probability of 100% (all samples were properly predicted). 

 
Figure 9. LDA projection for multifactor analysis of validation dataset: Samples with success/failure 
implanted embryos are grouped of different separation success embryo transfer/ competence em-
bryo and failed embryo transfer/non-competence embryo (legend of abr. ET—fresh embryo transfer, 
CT—cryo transfer). 

Based on the model results and the relation between the accuracy of each model and 
the number of traits for both monitored indicators of AUC, ROC (Figure 10), and F1 score 

Figure 8. Visualization of identified anomalous samples in successful embryo prediction.



Biomolecules 2022, 12, 1687 9 of 16

Biomolecules 2022, 12, 1687 9 of 17 
 

 

 
Figure 8. Visualization of identified anomalous samples in successful embryo prediction. 

A blinded step validation (Figure 9) of the BioMAI predictor was also performed by 
using 12 newly sequenced SBM samples, the samples not used in the exploratory phase 
on which the model was trained. Based on a specific combination of models of sncRNAs, 
the BioMAI predictor was able to differentiate a quality/competitive embryo from a non-
competitive embryo one with a probability of 100% (all samples were properly predicted). 

 
Figure 9. LDA projection for multifactor analysis of validation dataset: Samples with success/failure 
implanted embryos are grouped of different separation success embryo transfer/ competence em-
bryo and failed embryo transfer/non-competence embryo (legend of abr. ET—fresh embryo transfer, 
CT—cryo transfer). 

Based on the model results and the relation between the accuracy of each model and 
the number of traits for both monitored indicators of AUC, ROC (Figure 10), and F1 score 

Figure 9. LDA projection for multifactor analysis of validation dataset: Samples with success/failure
implanted embryos are grouped of different separation success embryo transfer/ competence embryo
and failed embryo transfer/non-competence embryo (legend of abr. ET—fresh embryo transfer,
CT—cryo transfer).

A blinded step validation (Figure 9) of the BioMAI predictor was also performed by
using 12 newly sequenced SBM samples, the samples not used in the exploratory phase
on which the model was trained. Based on a specific combination of models of sncRNAs,
the BioMAI predictor was able to differentiate a quality/competitive embryo from a non-
competitive embryo one with a probability of 100% (all samples were properly predicted).

Based on the model results and the relation between the accuracy of each model and
the number of traits for both monitored indicators of AUC, ROC (Figure 10), and F1 score
versus several miRNAs and piRNAs predictive biomarkers, there was agreement that
confirmed the number of predictive molecules to be seven molecules and their predictive
ability to differentiate embryo quality in the IVF process to be over 86%.
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4. Discussion

Machine learning algorithms are becoming a revolutionary new milestone in assisted
reproduction techniques. Herein the article proposed a novel machine-learning predic-
tor pipeline, BioMAI, combining bioinformatics and biostatistics analyses for predicting
high-quality embryos for transfer in the IVF process by using sncRNA from the spent
blastocyst media.
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Among the most important signaling pathways of the implantation of the embryo
are VEGF (vascular endothelial growth factor), ERKs (extracellular signal-regulated ki-
nases), MAPKs (Mitogen-activated protein kinases), PI3K/AKT/mTOR (phosphoinositide
3-kinase/protein kinase B/mammalian target of rapamycin) [28], TGF-β (tumor growth
factor-beta), Notch (Neurogenic locus notch homolog protein) signaling [29], and ERBB2
(Erb-B2 Receptor Tyrosine Kinase 2) [9]. The family of VEGF (VEGF-A-F, PlGF—placental
growth factor, EG-VEGF—endocrine gland-derived vascular endothelial growth factor),
and its antagonist sFlt-1 (Soluble Fms-Like Tyrosine Kinase-1) [10], Ang-1/2 (angiopoi-
etin1/2) [11], and endoglin [12] are pivotal for regulation of angiogenesis of mother’s
endometrium as well as of embryo (Figure 11). In recent years, differences in miRNA
occurrence in SBM of implanted and non-implanted blastocysts have been confirmed
(Supplementary Table S1). These miRNAs are relevant in the angiogenesis pathway and
represent communication between the blastocyst and uterus endometrium.
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Figure 11. Angiogenesis in the endometrium under physiological conditions. BioMAI-selected
miRNAs and piRNAs are directly involved in the regulation of this process.

Designing accurate biomarkers for embryo selection and detection of its compatibility
with the mother’s endometrium is the main challenge for reproductive medicine. The
endometrium becomes a well-vascularized tissue with increased vascular permeability,
edema, angiogenesis, and perception of blastocyst implantation for a short period (4–5 days)
during the middle secretory phase (6–9 days after the peak of luteinizing hormone) of
the menstrual cycle [11,30]. The blastocyst (compatible competitive embryo) can invade
into uterus endometrium only during the WOI [7]. Perfect timing increases the chance of
a successful IVF process. The biggest causes of the negative outcome of the IVF process
are poor embryo quality and low endometrial receptivity [31]. One of the most relevant
aspects of assisted reproductive technology is the selection of the optimal embryo for
transfer. The most widely used method of selecting a suitable embryo for transfer is
a standardized evaluation system for selection by an embryologist (Gardner´s scoring
system), which means that the evaluation of the embryo’s morphological quality is still
burdened by the subjective view of the embryologist [24,32], and an EmbryoScope, which
monitor the dynamics of division, compaction, and cavitation with a camera capture to
shoot a photograph of every embryo several times an hour in the incubator [33]. The more
morphologically appropriate embryo is transferred to the uterus, the higher its probability
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to implant in the uterus and the higher the success of IVF [34]. However, the implantation
capacity of a morphologically high-quality embryo reaches only 50% [35] and the success
rate of IVF may therefore still not exceed 30% [7].

Increasing the possibility of the pregnancy after IVF process is also possible by the
preimplantation genetic diagnostic which is performed by collecting several cells of the
trophectoderm in the stage of the expanded blastocyst and is an invasive intervention to
the embryo and can negatively affect its further development [36]. Therefore, emphasis
is being placed on the introduction of embryo quality assessment methods that are not
subjective, non-invasive, and that are reproducible.

Spent blastocyst medium has shown to be an easily harvested biological material
that can be obtained in a non-invasive way for laboratory analyses [15]. Currently, the
idea of using artificial intelligence prevails, not only from the point of view of embryo
quality detection within the evaluation of images in the EmbryoScope but also as another
supporting bioinformatics tool in the detection of embryo quality based on the evaluation
of sequencing data, spent blastocyst medium after sequencing [26]. Artificial intelligence
could improve the success rate of the IVF process with quick and accurate evaluation of
target biomarkers to facilitate clinicians’ decisions.

Currently, artificial intelligence is used in EmbryoScopes, which continuously mon-
itors the development of the embryo for the first five days and, based on an objective
assessment of the morphology of the embryo, assesses the potential for the embryo’s via-
bility and its suitability for transfer [33]. Machine learning-based prediction models have
been implemented in the field of assisted reproduction to determine a competent embryo
for optimizing clinical outcomes by analyzing either the hormonal profile, endometrial
thickness, BMI of the patients, etc. [27,37,38] or by characterizing human preimplantation
development and/or embryo morphology [39–41], but none of them have been concerned
with the sncRNA profile from SBM so far.

The major sncRNAs represented in oocytes and early stages of the embryo are miR-
NAs, piRNAs, and endo-siRNAs (endogenous small interfering RNAs) [42]. The strength
of the prediction of embryo implementation into the uterus is narrowly determined by a
combination of biomarkers (miRNA and piRNA). MicroRNAs are a family of small non-
coding RNAs (19–23 nucleotides) with an important regulatory role in biological processes
such as proliferation, differentiation, angiogenesis, migration, apoptosis, and carcinogene-
sis [43]. The gene silencing mechanism of miRNA is provided by direct binding to specific
target mRNA sequences, thus allowing their degradation or translational repression [44].
Piwi-interacting RNAs form the largest class of non-coding RNAs that are slightly longer
(24–31 nucleotides) than miRNAs and play a role in silencing transposons to ensure normal
gametogenesis and reproduction [45]. The molecules themselves do not have significant
predictive power but as a complex form a sensitive predictive biomarker. The sncRNAs
are important as biomarkers either in combination with protein expressions of affected
regulatory points of the angiogenic pathway (such as PI3K, ERK, JAK/STAT, NOTCH3,
TGF-β/ALK1, and TGF-β/ALK5) [9–12,28,29] or as a cluster of sncRNAs that affects
“jointly” the change in the expression of targets but nowhere sncRNA by itself [23,43–45].

The BioMAI predictor identified two miRNAs, namely miR-92a-3p, and miR-16-5p,
and five piRNAs, namely piR-28263, -18682, -23020, -414, and -27485, as potential biomark-
ers for the identification of embryos suitable for implantation, from an 11 sncRNAs with
the high importance score based on the combination of three selective models (XGBoost,
Lasso, Extra Random trees) from 118,338 molecules identified in gene sequencing.

The BioMAI-predicted miR-16-5p was previously described as an age-related down-
regulated molecule in follicular fluid [46] and was also upregulated in patients with PCOS
(polycystic ovary syndrome) during pregnancy [47]. Another study found miR-16-5p in
the SBM of both implanted and non-implanted blastocysts, however, a higher level was
found in the SBM of successfully implanted blastocysts [18]. MiR-16-5p was observed
downregulated in case of fetal growth restriction during pregnancy in the mother´s periph-
eral blood [47] and it is a putative marker of fetal growth restriction. Further, miR-16-5p
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was also studied as a major molecule of interest in embryo-conditioned culture media by
Russell et al. [48]. The role of this miRNA in gestational diabetes mellitus [49] and a link to
diabetic embryopathy, especially neural and cardiac malformations, were studied in a mice
model. The inflammatory diseases in the first trimester of pregnancy were associated with
the dysregulation of miR-16 [50]. This could lead to pregnancy failure by proxy, as it has
been observed, that disrupted inflammatory responses to infectious diseases in the first
trimester such as those of the urinary tract can lead to miscarriage in early pregnancy or
preeclampsia in later pregnancy [51–53].

The second predicted miRNA by the BioMAI predicting system was miR-92a-3p which
is associated with a higher success of blastocyst implantation [20,54]. The level of miR-92a-
3p was also studied in the cases of endometriosis and PCOS [55,56] where the level was
downregulated. Endometriosis, as well as PCOS, is a well-known reason for infertility that
reduces the implantation rate after embryo transfer [57,58].

The other group of sncRNAs, piRNAs, have the guiding role in heterochromatin
structure formation during embryogenesis [59]. The silent chromatin state is apparently
transmitted by the heterochromatin system during development when the piRNA system
is largely absent in nongonadal somatic cells [59]. PIWI proteins expressed in the germline
affect the reproductive system in both females and males. For example, in Drosophila and
zebrafish, impairment of the PIWI role leads to sterility, disruption in the piwi genes leads
to sterility exclusively in males, and impairment of the AGO3 protein in Drosophila leads
to sterility in females and semi-sterility in males [42].

In human oocytes, long piRNAs, miRNAs, and os-piRNAs (oocyte short piRNAs)
are expressed and lack endo-siRNAs [42]. It should be noted that many oocytes piRNA
have been derived from poorly annotated genomic regions, which may explain that os-
piRNAs have other roles such as general regulation of gene expression during oocyte
development in addition to TEs (transposable elements) silencing. The cleavage of ex-
pressed TE transcripts during secondary piRNA biogenesis reflects what is probably the
primary and most highly conserved function of the PIWI pathway. The same goes for the
post-transcriptional gene silencing (PTGS) of TEs through the slicer activity of piRISCs and
transcriptional gene silencing (TGS), primarily through directing DNA methylation and
histone modifications [60].

Just a few articles that focus on BioMAI-predicted piwi-interacting RNAs and their
role in fertility were published at the time of writing this article. Piwi-interacting RNA
molecules and PIWI proteins have an important function in the development of germ cells
and are directly connected to fertility in both genders [61]. Recent studies have shown
different expression levels in terms of the morphological grade of the embryo and the
implantation potential of the piRNA molecules from SBM, namely piR20401, piR16735,
piR19675, piR20326, piR17716 [17].

Females with the defective piRNA’s biogenesis including the PIWI proteins family, ex-
hibit normal oogenesis and fertility [62]. The reciprocal regulation of ncRNAs in embryonic
development linked with the piRNAs with sequences homologous to the 5′ seed region
of miR-17-5p/3p was studied in a mice model by Du et al. [63]. The role of piRNAs in
maternal mRNA stability in oocytes and embryos studied in the golden hamster model [64]
showed piRNA pathways in the regulation of female fertility. Another review showed
piRNA’s function in oocytes and embryos [65]. The predominant class of small RNAs
is piRNAs in Xenopus eggs and oocytes (an important model for understanding piRNA
biogenesis, which is more accurate than the mice model) [66] where they are markers of
epigenetic inheritance. However, there is much more evidence on the role of piRNA in
male fertility (level in testicles and ejaculation) [66–69].

Herein the article proposed a pipeline predictor, BioMAI, by using artificial intelli-
gence and combining bioinformatics and biostatistics analyses for predicting high-quality
embryos for transfer in the IVF process by using sncRNA from the spent blastocyst media.
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5. Conclusions

Besides gene expression analysis of target datasets, executed a multifactor analysis of
the validation dataset was provided. The hypothesis tested, whether the pipeline is able
to distinguish between cultivation media of embryos of different ages (4th and 5th day
of cultivation) as well as previous storage (fresh or cryo-preserved). It was managed to
provide deeper and more detailed differentiation of competent and incompetent embryos
based on a subset of molecules miR-92a-3p, -16-5p, piR-28263, -18682, -23020, -414, -27485
available from the spent cultivation medium of the embryo.

The development of a successful embryo score prediction tool with a combination
of presence tools used for precise identification and selection of competitive embryos by
EmbryoScope and sncRNAs from the BioMAI model forms a predictive model enabling the
prognosis of the competence of the embryo for transfer to the uterus during the IVF process,
considering the conditions of cultivation and storage of the embryos. This predictor could
help both patients and medical practitioners make a personalized decision using the tool to
distinguish competitive from non-competitive embryos and increase the success of embryo
implantation. This study used artificial intelligence to identify specific two miRNAs and
five piRNAs from SBM’s sequencing data, which predictively select a competitive quality
embryo suitable for the IVF transfer to the uterus from a non-competitive, low-quality
embryo, with 86% accuracy.

Verification of the BioMAI prediction model in a clinical study could support the use
of BioMAI as an auxiliary tool for identifying a competent embryo. This could subsequently
help increase the success of the IVF process, reducing repeated transfers in women and
reducing the economic costs of infertility treatment, as well as improving the mental health
of infertile couples.

6. Patents

WO 2021/177904 A4: “Non-invasive successfulness test of in vitro fertilization process”,
TRL 5, C12Q 1/6883.
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7. Rabajdová, M.; Urban, P.; Biščáková, Z.; Urdzík, P.; Mareková, M. Endometrial receptivity—A new challenge of infertility
diagnostics in the In Vitro fertilization process. Lek. Obz. 2019, 68, 95–98.

8. Li, L.; Wang, P.; Liu, S.; Bai, X.; Zou, B.; Li, Y. Transcriptome sequencing of endometrium revealed alterations in mRNAs and
lncRNAs after ovarian stimulation. J. Assist. Reprod. Genet. 2020, 37, 21–32. [CrossRef]

9. Ferretti, C.; Bruni, L.; Dangles-Marie, V.; Pecking, A.; Bellet, D. Molecular circuits shared by placental and cancer cells, and
their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Updat. 2007, 13, 121–141.
[CrossRef]

10. Guo, X.; Yi, H.; Li, T.; Wang, Y.; Wang, H.; Chen, X. Role of Vascular Endothelial Growth Factor (VEGF) in Human Embryo
Implantation: Clinical Implications. Biomolecules 2021, 11, 253. [CrossRef]

11. Torry, D.S.; Leavenworth, J.; Chang, M.; Maheshwari, V.; Groesch, K.; Ball, E.R.; Torry, R. Angiogenesis in implantation. J. Assist.
Reprod. Genet. 2007, 24, 303–315. [CrossRef]

12. Varas-Godoy, M.; Acuña-Gallardo, S.; Venegas-Duarte, S.; Hill, C.; Caceres-Verschae, A.; Realini, O.; Monteiro, L.J.; Zavala,
G.; Khoury, M.; Romero, R.; et al. Angiogenic Properties of Menstrual Stem Cells Are Impaired in Women with a History of
Preeclampsia. Stem Cells Int. 2019, 2019, 1916542. [CrossRef]

13. Rosenbluth, E.M.; Shelton, D.N.; Wells, L.M.; Sparks, A.E.; Van Voorhis, B.J. Human embryos secrete microRNAs into culture
media—A potential biomarker for implantation. Fertil. Steril. 2014, 101, 1493–1500. [CrossRef] [PubMed]

14. Ochoa-Bernal, M.A.; Fazleabas, A.T. Physiologic Events of Embryo Implantation and Decidualization in Human and Non-Human
Primates. Int. J. Mol. Sci. 2020, 21, 1973. [CrossRef] [PubMed]

15. Capalbo, A.; Ubaldi, F.M.; Cimadomo, D.; Noli, L.; Khalaf, Y.; Farcomeni, A.; Ilic, D.; Rienzi, L. MicroRNAs in spent blastocyst
culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence
assessment. Fertil. Steril. 2015, 105, 225–235. [CrossRef] [PubMed]

16. Rødgaard, T.; Heegaard, P.M.; Callesen, H. Non-invasive assessment of in-vitro embryo quality to improve transfer success.
Reprod. Biomed. Online 2015, 31, 585–592. [CrossRef] [PubMed]

17. Timofeeva, A.; Drapkina, Y.; Fedorov, I.; Chagovets, V.; Makarova, N.; Shamina, M.; Kalinina, E.; Sukhikh, G. Small Noncoding
RNA Signatures for Determining the Developmental Potential of an Embryo at the Morula Stage. Int. J. Mol. Sci. 2020, 21, 9399.
[CrossRef] [PubMed]

18. Cimadomo, D.; Rienzi, L.; Giancani, A.; Alviggi, E.; Dusi, L.; Canipari, R.; Noli, L.; Ilic, D.; Khalaf, Y.; Ubaldi, F.M.; et al. Definition
and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: Searching for biomarkers of
implantation. Hum. Reprod. 2019, 34, 1746–1761. [CrossRef]

19. Cuman, C.; Van Sinderen, M.; Gantier, M.P.; Rainczuk, K.; Sorby, K.; Rombauts, L.; Osianlis, T.; Dimitriadis, E. Human Blastocyst
Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion. eBioMedicine 2015, 2, 1528–1535. [CrossRef]

20. Borges, E., Jr.; Setti, A.S.; Braga, D.P.A.F.; Geraldo, M.V.; Figueira, R.d.C.S.; Iaconelli, A., Jr. miR-142-3p as a biomarker of blastocyst
implantation failure—A pilot study. JBRA Assist. Reprod. 2016, 20, 200–205. [CrossRef]

21. Abu-Halima, M.; Häusler, S.; Backes, C.; Fehlmann, T.; Staib, C.; Nestel, S.; Nazarenko, I.; Meese, E.; Keller, A. Micro-ribonucleic
acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing In Vitro Fertilization. Sci.
Rep. 2017, 7, 13525. [CrossRef]

22. Kim, J.; Lee, J.; Jun, J.H. Identification of differentially expressed microRNAs in outgrowth embryos compared with blastocysts
and non-outgrowth embryos in mice. Reprod. Fertil. Dev. 2019, 31, 645–657. [CrossRef]

23. Timofeeva, A.V.; Chagovets, V.V.; Drapkina, Y.S.; Makarova, N.P.; Kalinina, E.A.; Sukhikh, G.T. Cell-Free, Embryo-Specific
sncRNA as a Molecular Biological Bridge between Patient Fertility and IVF Efficiency. Int. J. Mol. Sci. 2019, 20, 2912. [CrossRef]
[PubMed]

24. Cimadomo, D.; Capalbo, A.; Ubaldi, F.M.; Scarica, C.; Palagiano, A.; Canipari, R.; Rienzi, L. The Impact of Biopsy on Human
Embryo Developmental Potential during Preimplantation Genetic Diagnosis. BioMed Res. Int. 2016, 2016, 7193075. [CrossRef]
[PubMed]

http://doi.org/10.1016/j.ijgo.2013.09.005
http://www.ncbi.nlm.nih.gov/pubmed/24112745
http://doi.org/10.1016/j.clinbiochem.2018.03.012
http://www.ncbi.nlm.nih.gov/pubmed/29555319
https://www.focusonreproduction.eu/article/News-in-Reproduction-Population?fbclid=IwAR3R3Icjm-LQC8zPLAKBDTLdLxCHKGAOqI1sYBe1eJnEvaAgSf2bUCoTkZ0
https://www.focusonreproduction.eu/article/News-in-Reproduction-Population?fbclid=IwAR3R3Icjm-LQC8zPLAKBDTLdLxCHKGAOqI1sYBe1eJnEvaAgSf2bUCoTkZ0
https://www.focusonreproduction.eu/article/News-in-Reproduction-Population?fbclid=IwAR3R3Icjm-LQC8zPLAKBDTLdLxCHKGAOqI1sYBe1eJnEvaAgSf2bUCoTkZ0
http://doi.org/10.4103/jhrs.JHRS_30_19
http://www.ncbi.nlm.nih.gov/pubmed/32038075
http://doi.org/10.1186/s12958-018-0414-2
http://doi.org/10.1007/s10815-019-01616-5
http://doi.org/10.1093/humupd/dml048
http://doi.org/10.3390/biom11020253
http://doi.org/10.1007/s10815-007-9152-7
http://doi.org/10.1155/2019/1916542
http://doi.org/10.1016/j.fertnstert.2014.01.058
http://www.ncbi.nlm.nih.gov/pubmed/24786747
http://doi.org/10.3390/ijms21061973
http://www.ncbi.nlm.nih.gov/pubmed/32183093
http://doi.org/10.1016/j.fertnstert.2015.09.014
http://www.ncbi.nlm.nih.gov/pubmed/26453979
http://doi.org/10.1016/j.rbmo.2015.08.003
http://www.ncbi.nlm.nih.gov/pubmed/26380864
http://doi.org/10.3390/ijms21249399
http://www.ncbi.nlm.nih.gov/pubmed/33321810
http://doi.org/10.1093/humrep/dez119
http://doi.org/10.1016/j.ebiom.2015.09.003
http://doi.org/10.5935/1518-0557.20160039
http://doi.org/10.1038/s41598-017-13683-8
http://doi.org/10.1071/RD18161
http://doi.org/10.3390/ijms20122912
http://www.ncbi.nlm.nih.gov/pubmed/31207900
http://doi.org/10.1155/2016/7193075
http://www.ncbi.nlm.nih.gov/pubmed/26942198


Biomolecules 2022, 12, 1687 15 of 16

25. Manna, C.; Nanni, L.; Lumini, A.; Pappalardo, S. Artificial intelligence techniques for embryo and oocyte classification. Reprod.
Biomed. Online 2013, 26, 42–49. [CrossRef] [PubMed]

26. Fernandez, E.I.; Ferreira, A.S.; Cecílio, M.H.M.; Chéles, D.; De Souza, R.C.M.; Nogueira, M.F.G.; Rocha, J.C. Artificial intelligence
in the IVF laboratory: Overview through the application of different types of algorithms for the classification of reproductive
data. J. Assist. Reprod. Genet. 2020, 37, 2359–2376. [CrossRef] [PubMed]

27. Raimundo, J.; Cabrita, P. Artificial intelligence at assisted reproductive technology. Procedia Comput. Sci. 2021, 181, 442–447.
[CrossRef]

28. Zhao, Y.; Sun, H.; Feng, M.; Zhao, J.; Zhao, X.; Wan, Q.; Cai, D. Metformin is associated with reduced cell proliferation in human
endometrial cancer by inbibiting PI3K/AKT/mTOR signaling. Gynecol. Endocrinol. 2017, 34, 428–432. [CrossRef]

29. Amjadi, F.S.; Salehi, E.; Zandieh, Z.; Rashidi, M.; Taleahmad, S.; Masrour, M.J.; Aflatoonian, R.; Mehdizadeh, M. Comparative
evaluation of NOTCH signaling molecules in the endometrium of women with various gynecological diseases during the window
of implantation. Iran. J. Basic. Med. Sci. 2019, 22, 426–431. [CrossRef]

30. Ashary, N.; Tiwari, A.; Modi, D. Embryo Implantation: War in Times of Love. Endocrinology 2018, 159, 1188–1198. [CrossRef]
31. Zaninovic, N.; Rosenwaks, Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil. Steril. 2020, 114,

914–920. [CrossRef]
32. Nasiri, N.; Eftekhari-Yazdi, P. An Overview of The Available Methods for Morphological Scoring of Pre-Implantation Embryos in

In Vitro Fertilization. Cell J. 2015, 16, 392–405. [CrossRef]
33. Milewski, R.; Ajduk, A. Time-lapse imaging of cleavage divisions in embryo quality assessment. Reproduction 2017, 154, R37–R53.

[CrossRef] [PubMed]
34. Irani, M.; Reichman, D.; Robles, A.; Melnick, A.; Davis, O.; Zaninovic, N.; Xu, K.; Rosenwaks, Z. Morphologic grading of euploid

blastocysts influences implantation and ongoing pregnancy rates. Fertil. Steril. 2017, 107, 664–670. [CrossRef] [PubMed]
35. Gardner, D.K.; Lane, M.; Stevens, J.; Schlenker, T.; Schoolcraft, W.B. Blastocyst score affects implantation and pregnancy outcome:

Towards a single blastocyst transfer. Fertil. Steril. 2000, 73, 1155–1158. [CrossRef]
36. Moayeri, M.; Saeidi, H.; Modarresi, M.H.; Hashemi, M. The Effect of Preimplantation Genetic Screening on Implantation Rate in

Women over 35 Years of Age. Cell J. 2016, 18, 13–20. [CrossRef]
37. Qiu, J.; Li, P.; Dong, M.; Xin, X.; Tan, J. Personalized prediction of live birth prior to the first in vitro fertilization treatment: A

machine learning method. J. Transl. Med. 2019, 17, 317. [CrossRef]
38. Liu, R.; Bai, S.; Jiang, X.; Luo, L.; Tong, X.; Zheng, S.; Wang, Y.; Xu, B. Multifactor Prediction of Embryo Transfer Outcomes Based

on a Machine Learning Algorithm. Front. Endocrinol. 2021, 12, 745039. [CrossRef]
39. Xi, Q.; Yang, Q.; Wang, M.; Huang, B.; Zhang, B.; Li, Z.; Liu, S.; Yang, L.; Zhu, L.; Jin, L. Individualized embryo selection strategy

developed by stacking machine learning model for better in vitro fertilization outcomes: An application study. Reprod. Biol.
Endocrinol. 2021, 19, 53. [CrossRef]

40. Khosravi, P.; Kazemi, E.; Zhan, Q.; Malmsten, J.E.; Toschi, M.; Zisimopoulos, P.; Sigaras, A.; Lavery, S.; Cooper, L.A.D.;
Hickman, C.; et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ
Digit. Med. 2019, 2, 21. [CrossRef]

41. Liang, P.; Yang, W.; Chen, X.; Long, C.; Zheng, L.; Li, H.; Zuo, Y. Machine Learning of Single-Cell Transcriptome Highly Identifies
mRNA Signature by Comparing F-Score Selection with DGE Analysis. Mol. Ther. Nucleic Acids 2020, 20, 155–163. [CrossRef]

42. Yang, Q.; Li, R.; Lyu, Q.; Hou, L.; Liu, Z.; Sun, Q.; Liu, M.; Shi, H.; Xu, B.; Yin, M.; et al. Single-cell CAS-seq reveals a class of short
PIWI-interacting RNAs in human oocytes. Nat. Commun. 2019, 10, 3389. [CrossRef]

43. Ahmad, J.; Hasnain, S.E.; Siddiqui, M.A.; Ahamed, M.; Musarrat, J.; Al-Khedhairy, A.A. MicroRNA in Carcinogenesis & Cancer
Diagnostics: A New Paradigm. Indian J. Med. Res. 2013, 137, 680–694. [PubMed]

44. Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [CrossRef] [PubMed]
45. Ding, D.; Liu, J.; Dong, K.; Midic, U.; Hess, R.; Xie, H.; Demireva, E.Y.; Chen, C. PNLDC1 is essential for piRNA 3′ end trimming

and transposon silencing during spermatogenesis in mice. Nat. Commun. 2017, 8, 819. [CrossRef] [PubMed]
46. Battaglia, R.; Musumeci, P.; Ragusa, M.; Barbagallo, D.; Scalia, M.; Zimbone, M.; Faro, J.M.L.; Borzì, P.; Scollo, P.; Purrello, M.; et al.

Ovarian aging increases small extracellular vesicle CD81+ release in human follicular fluid and influences miRNA profiles. Aging
2020, 12, 12324–12341. [CrossRef] [PubMed]

47. Hocaoglu, M.; Demirer, S.; Karaalp, I.L.; Kaynak, E.; Attar, E.; Turgut, A.; Karateke, A.; Komurcu-Bayrak, E. Identification of
miR-16-5p and miR-155-5p microRNAs differentially expressed in circulating leukocytes of pregnant women with polycystic
ovary syndrome and gestational diabetes. Gynecol. Endocrinol. 2021, 37, 216–220. [CrossRef] [PubMed]

48. Tagliaferri, S.; Cepparulo, P.; Vinciguerra, A.; Campanile, M.; Esposito, G.; Maruotti, G.M.; Zullo, F.; Annunziato, L.; Pignataro,
G. miR-16-5p, miR-103-3p, and miR-27b-3p as Early Peripheral Biomarkers of Fetal Growth Restriction. Front. Pediatr. 2021,
9, 611112. [CrossRef]

49. Russell, S.J.; Menezes, K.; Balakier, H.; Librach, C. Comprehensive profiling of Small RNAs in human embryo-conditioned culture
media by improved sequencing and quantitative PCR methods. Syst. Biol. Reprod. Med. 2020, 66, 129–139. [CrossRef]

50. Calleja-Agius, J.; Jauniaux, E.; Pizzey, A.; Muttukrishna, S. Investigation of systemic inflammatory response in first trimester
pregnancy failure. Hum. Reprod. 2012, 27, 349–357. [CrossRef] [PubMed]

51. Zahedkalaei, A.T.; Kazemi, M.; Zolfaghari, P.; Rashidan, M.; Sohrabi, M.B. Association Between Urinary Tract Infection in the
First Trimester and Risk of Preeclampsia: A Case–Control Study. Int. J. Womens Health 2020, 12, 521–526. [CrossRef]

http://doi.org/10.1016/j.rbmo.2012.09.015
http://www.ncbi.nlm.nih.gov/pubmed/23177416
http://doi.org/10.1007/s10815-020-01881-9
http://www.ncbi.nlm.nih.gov/pubmed/32654105
http://doi.org/10.1016/j.procs.2021.01.189
http://doi.org/10.1080/09513590.2017.1409714
http://doi.org/10.22038/ijbms.2019.32961.7874
http://doi.org/10.1210/en.2017-03082
http://doi.org/10.1016/j.fertnstert.2020.09.157
http://doi.org/10.22074/cellj.2015.486
http://doi.org/10.1530/REP-17-0004
http://www.ncbi.nlm.nih.gov/pubmed/28408705
http://doi.org/10.1016/j.fertnstert.2016.11.012
http://www.ncbi.nlm.nih.gov/pubmed/28069172
http://doi.org/10.1016/S0015-0282(00)00518-5
http://doi.org/10.22074/cellj.2016.3982
http://doi.org/10.1186/s12967-019-2062-5
http://doi.org/10.3389/fendo.2021.745039
http://doi.org/10.1186/s12958-021-00734-z
http://doi.org/10.1038/s41746-019-0096-y
http://doi.org/10.1016/j.omtn.2020.02.004
http://doi.org/10.1038/s41467-019-11312-8
http://www.ncbi.nlm.nih.gov/pubmed/23703335
http://doi.org/10.1038/nrm3838
http://www.ncbi.nlm.nih.gov/pubmed/25027649
http://doi.org/10.1038/s41467-017-00854-4
http://www.ncbi.nlm.nih.gov/pubmed/29018194
http://doi.org/10.18632/aging.103441
http://www.ncbi.nlm.nih.gov/pubmed/32554857
http://doi.org/10.1080/09513590.2020.1843620
http://www.ncbi.nlm.nih.gov/pubmed/33148068
http://doi.org/10.3389/fped.2021.611112
http://doi.org/10.1080/19396368.2020.1716108
http://doi.org/10.1093/humrep/der402
http://www.ncbi.nlm.nih.gov/pubmed/22131390
http://doi.org/10.2147/IJWH.S256943


Biomolecules 2022, 12, 1687 16 of 16

52. Giakoumelou, S.; Wheelhouse, N.; Cuschieri, K.; Entrican, G.; Howie, S.E.; Horne, A.W. The role of infection in miscarriage. Hum.
Reprod. Update 2016, 22, 116–133. [CrossRef]

53. Ibarra, A.; Vega-Guedes, B.; Brito-Casillas, Y.; Wägner, A.M. Diabetes in Pregnancy and MicroRNAs: Promises and Limitations in
Their Clinical Application. Non Coding RNA 2018, 4, 32. [CrossRef] [PubMed]

54. Winger, E.E.; Reed, J.L.; Ji, X. First-trimester maternal cell microRNA is a superior pregnancy marker to immunological testing for
predicting adverse pregnancy outcome. J. Reprod. Immunol. 2015, 110, 22–35. [CrossRef] [PubMed]

55. Kaczmarek, M.M.; Najmula, J.; Guzewska, M.M.; Przygrodzka, E. MiRNAs in the Peri-Implantation Period: Contribution to
Embryo–Maternal Communication in Pigs. Int. J. Mol. Sci. 2020, 21, 2229. [CrossRef] [PubMed]

56. Bahramy, A.; Zafari, N.; Izadi, P.; Soleymani, F.; Kavousi, S.; Noruzinia, M. The Role of miRNAs 340-5p, 92a-3p, and 381-3p in
Patients with Endometriosis: A Plasma and Mesenchymal Stem-Like Cell Study. BioMed Res. Int. 2021, 2021, 1–15. [CrossRef]

57. Lin, L.; Du, T.; Huang, J.; Huang, L.-L.; Yang, D.-Z. Identification of Differentially Expressed MicroRNAs in the Ovary of
Polycystic Ovary Syndrome with Hyperandrogenism and Insulin Resistance. Chin. Med. J. 2015, 128, 169–174. [CrossRef]

58. Zhong, C.; Gao, L.; Shu, L.; Hou, Z.; Cai, L.; Huang, J.; Liu, J.; Mao, Y. Analysis of IVF/ICSI Outcomes in Endometriosis Patients
with Recurrent Implantation Failure: Influence on Cumulative Live Birth Rate. Front. Endocrinol. 2021, 12, 640288. [CrossRef]

59. Butler, A.E.; Ramachandran, V.; Sathyapalan, T.; David, R.; Gooderham, N.; Benurwar, M.; Dargham, S.; Hayat, S.; Najafi-
Shoushtari, S.H.; Atkin, S.L. microRNA Expression in Women with and without Polycystic Ovarian Syndrome Matched for Body
Mass Index. Front. Endocrinol. 2020, 11, 206. [CrossRef]

60. Gu, T.; Elgin, S.C.R. Maternal Depletion of Piwi, a Component of the RNAi System, Impacts Heterochromatin Formation in
Drosophila. PLoS Genet. 2013, 9, e1003780. [CrossRef]

61. Ding, D.; Chen, C. Cracking the egg: A breakthrough in piRNA function in mammalian oocytes and embryos. Biol. Reprod. 2022,
106, 6–8. [CrossRef]

62. Russell, S.; Stalker, L.; LaMarre, J. PIWIs, piRNAs and Retrotransposons: Complex battles during reprogramming in gametes and
early embryos. Reprod. Domest. Anim. 2017, 52, 28–38. [CrossRef]

63. Kamalidehghan, B.; Habibi, M.; Afjeh, S.S.; Shoai, M.; Alidoost, S.; Ghale, R.A.; Eshghifar, N.; Pouresmaeili, F. The Importance of
Small Non-Coding RNAs in Human Reproduction: A Review Article. Appl. Clin. Genet. 2020, 13, 1–11. [CrossRef] [PubMed]

64. Du, W.W.; Yang, W.; Xuan, J.; Gupta, S.; Krylov, S.N.; Ma, X.; Yang, Q.; Yang, B.B. Reciprocal regulation of miRNAs and piRNAs
in embryonic development. Cell Death Differ. 2016, 23, 1458–1470. [CrossRef] [PubMed]

65. Zhang, H.; Zhang, F.; Chen, Q.; Li, M.; Lv, X.; Xiao, Y.; Zhang, Z.; Hou, L.; Lai, Y.; Zhang, Y.; et al. The piRNA pathway is essential
for generating functional oocytes in golden hamsters. Nature 2021, 23, 1013–1022. [CrossRef] [PubMed]

66. Jia, S.-Z.; Yang, Y.; Lang, J.; Sun, P.; Leng, J. Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with
endometriosis. Hum. Reprod. 2013, 28, 322–330. [CrossRef] [PubMed]

67. Lau, N.L.; Ohsumi, T.; Borowsky, M.; Kingston, R.E.; Blower, M.D. Systematic and Single Cell Analysis of Xenopus Piwi-Interacting
RNAs and Xiwi. EMBO J. 2009, 28, 2945–2958. [CrossRef] [PubMed]

68. Kim, V.N. Small RNAs Just Got Bigger: Piwi-Interacting RNAs (PiRNAs) in Mammalian Testes. Genes Dev. 2006, 20, 1993–1997.
[CrossRef]

69. Gou, L.-T.; Kang, J.-Y.; Dai, P.; Wang, X.; Li, F.; Zhao, S.; Zhang, M.; Hua, M.-M.; Lu, Y.; Zhu, Y.; et al. Ubiquitination-Deficient
Mutations in Human Piwi Cause Male Infertility by Impairing Histone-to-Protamine Exchange during Spermiogenesis. Cell 2017,
169, 1090–1104.e13. [CrossRef]

http://doi.org/10.1093/humupd/dmv041
http://doi.org/10.3390/ncrna4040032
http://www.ncbi.nlm.nih.gov/pubmed/30424584
http://doi.org/10.1016/j.jri.2015.03.005
http://www.ncbi.nlm.nih.gov/pubmed/25965838
http://doi.org/10.3390/ijms21062229
http://www.ncbi.nlm.nih.gov/pubmed/32210170
http://doi.org/10.1155/2021/5298006
http://doi.org/10.4103/0366-6999.149189
http://doi.org/10.3389/fendo.2021.640288
http://doi.org/10.3389/fendo.2020.00206
http://doi.org/10.1371/journal.pgen.1003780
http://doi.org/10.1093/biolre/ioab206
http://doi.org/10.1111/rda.13053
http://doi.org/10.2147/TACG.S207491
http://www.ncbi.nlm.nih.gov/pubmed/32021379
http://doi.org/10.1038/cdd.2016.27
http://www.ncbi.nlm.nih.gov/pubmed/26990662
http://doi.org/10.1038/s41556-021-00750-6
http://www.ncbi.nlm.nih.gov/pubmed/34489574
http://doi.org/10.1093/humrep/des413
http://www.ncbi.nlm.nih.gov/pubmed/23203215
http://doi.org/10.1038/emboj.2009.237
http://www.ncbi.nlm.nih.gov/pubmed/19713941
http://doi.org/10.1101/gad.1456106
http://doi.org/10.1016/j.cell.2017.04.034

	Introduction 
	Materials and Methods 
	Dataset Description 
	SncRNAs Sequencing 
	BioMAI Pipeline Predictor Model 

	Results 
	Ensemble Learning 
	Voting Technique 

	Discussion 
	Conclusions 
	Patents 
	References

