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Abstract: Drug repositioning, an important method of drug development, is utilized to discover
investigational drugs beyond the originally approved indications, expand the application scope of
drugs, and reduce the cost of drug development. With the emergence of increasingly drug-disease-
related biological networks, the challenge still remains to effectively fuse biological entity data and
accurately achieve drug-disease repositioning. This paper proposes a new drug repositioning method
named EMPHCN based on enhanced message passing and hypergraph convolutional networks
(HGCN). It firstly constructs the homogeneous multi-view information with multiple drug similarity
features and then extracts the intra-domain embedding of drugs through the combination of HGCN
and channel attention mechanism. Secondly, inter-domain information of known drug-disease
associations is extracted by graph convolutional networks combining node and edge embedding
(NEEGCN), and a heterogeneous network composed of drugs, proteins and diseases is built as an
important auxiliary to enhance the inter-domain message passing of drugs and diseases. Besides, the
intra-domain embedding of diseases is also extracted through HGCN. Ultimately, intra-domain and
inter-domain embeddings of drugs and diseases are integrated as the final embedding for calculating
the drug-disease correlation matrix. Through 10-fold cross-validation on some benchmark datasets,
we find that the AUPR of EMPHCN reaches 0.593 (T1) and 0.526 (T2), respectively, and the AUC
achieves 0.887 (T1) and 0.961 (T2) respectively, which shows that EMPHCN has an advantage over
other state-of-the-art prediction methods. Concerning the new disease association prediction, the
AUC of EMPHCN through the five-fold cross-validation reaches 0.806 (T1) and 0.845 (T2), which
are 4.3% (T1) and 4.0% (T2) higher than the second best existing methods, respectively. In the case
study, EMPHCN also achieves satisfactory results in real drug repositioning for breast carcinoma and
Parkinson’s disease.

Keywords: drug repositioning; enhanced message passing; hypergraph convolutional network; node
and edge embeddings

1. Introduction

The process of developing a new drug typically continues for 15–20 years with high
costs, less success rate and huge risk from the idea identification to the marketing ap-
proval [1]. Drug repositioning, an important part of drug development, refers to the
discovery of new and reliable indications for existing drugs. Drug repositioning enables
pharmaceutical researchers to save time and reduce costs, thus becoming an effective
strategy for the development of new drugs [2,3]. However, drug repositioning still requires
intensive study due to unknown and potentially complex pharmacology and biology.

Currently, the methods of drug repositioning mainly include the network-based
diffusion analysis method, the machine learning-based method, and the method based on
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deep learning. Martinez et al. [4] proposed a method called DrugNet concerning network-
based diffusion analysis to find new uses for existing drugs. DrugNet implements drug-
disease and disease-drug prioritization by propagating information in a heterogeneous
network. Wang et al. [5] proposed a TL_HGBI algorithm that integrates similarity and
association data about diseases and drugs for predicting drug-related targets. Luo et al. [6]
advised an MBiRW method, which applies comprehensive similarity measures and a bi-
random walk algorithm to the drug-disease association prediction. In addition, genomics
is also combined with network-based methods for drug repositioning. The Connectivity
Map (CMap) can be defined as a combination of genome-wide transcriptional expression
data that helps in revealing functional connections between drugs, genes, and diseases [7].
Jiang et al. [8] used CMap data to build networks for different types of cancers to identify
relationships between small molecules and miRNAs in human cancers and finally came up
with therapeutic potentials and new indications for existing drugs.

Although the network-based method has good interpretability, its performance still requires
improvement [9]. Machine learning techniques have widely been used in developing more
accurate prediction models of drug-disease associations. For example, Gottlieb et al. [10]
built the Naive Bayes model to infer the drug indication using the side effects as features.
Yang et al. [11] utilized multiple similarity measures of drugs and diseases as features and
used the logistic regression model for potential drug indication prediction. However, these
feature-based classification methods rely heavily on the feature extraction and selection of
negative samples. Recently, matrix factorization and completion methods have been popular in
drug repositioning as a result of the flexibility in integrating prior information. For instance,
Zhang et al. [12] suggested a matrix factorization method named SCMFDD, which incorporates
drug features and disease semantic information into the matrix factorization approach for
drug-disease association prediction. Luo et al. [13] recommended a drug repositioning method
called DRRS for the new drug indication prediction. It assumes that the drug-disease matrix
is low-rank and applies a fast singular value thresholding (SVT) algorithm to complete the
drug-disease matrix. Yang et al. [14] used a matrix complementation algorithm called bounded
nuclear norm regularization (BNNR) to construct a low-rank drug-disease association matrix
approximation consistent with known associations. Although these matrix decomposition and
complementation methods have been prevalent, there is still a challenge in the deployment of
large-scale network data due to the high complexity of matrix operation.

Deep learning methods have also been successfully applied in drug-disease associa-
tion prediction. For example, Pham et al. [15] used graph neural networks and multi-head
attention mechanisms to predict differential gene expression profiles perturbed by de novo
chemicals, which can be applied to drug repurposing in COVID-19. Zeng et al. [16] pro-
posed a network-based deep learning method named deepDR, which uses a multimodal
deep autoencoder to fuse positive pointwise mutual information (PPMI) matrices com-
puted from drug-related networks, and then infers drug-disease associations by using a
collective variational autoencoder. Recently, graph convolutional networks (GCN) [17]
have been introduced for drug- and disease-related association prediction. For instance,
Li et al. [18] suggested a NIMCGCN method, which uses GCN to extract the embeddings
of miRNAs and diseases from miRNA and disease similarity networks, respectively, and
brings a neural inductive matrix completion method to predict miRNA–disease associations.
Li et al. [19] constructed an integrated model incorporating GCN, CNN and a channel
attention mechanism named GCSENet, which enables the effective implementation of
miRNA-disease association prediction. Wang et al. [20] introduced a triple association
network including drugs, proteins, and diseases and achieved the fusion of inter-domain
information using a bipartite graph convolutional network method (BiFusion), but the
network ignored the intra-domain features for the prediction. Yu et al. [21] recommended
a method called LAGCN for drug-disease association prediction. It integrates known
drug-disease correlations, drug-drug similarity and disease-disease similarity into a hetero-
geneous network and learns drug and disease embeddings for the heterogeneous network
using GCN. Cai et al. [22] applied a bilinear aggregator and GCN to form a drug-disease
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inter-domain feature extraction module based on the drug and disease similarity networks
by considering various network topology information. Ultimately, the inter-domain and
intra-domain embeddings are fused in parallel to obtain the drug and disease embedding
representation. Although GCN achieves satisfactory performance for the drug-disease
association, it has difficulty in capturing the higher-order features of nodes in the graph
network. The hypergraph convolution model [23], on the other hand, can effectively solve
this problem and has drawn wide attention in recent years.

In order to effectively extract information about the higher-order feature of nodes in
the drug- and disease-related network, we propose a new drug repositioning method based
on the enhanced message passing and hypergraph convolutional networks (EMPHCN).
The contributions of this work are summarized as follows: (1) a multimodal heterogeneous
network is built to reveal association information between drugs and diseases by connect-
ing drug-disease association, drug-drug similarity, disease-disease similarity, drug-protein
association, protein-protein interaction, and disease-protein association. The foundation
for enhanced message passing is provided by this related knowledge. (2) The designed
EMPHCN is applied to explicitly model the higher-order associations within the respective
domains of drugs and diseases by hypergraph convolution for extracting the intra-domain
information. And it uses graph convolutional networks combining node and edge embed-
ding (NEEGCN) to effectively extract the inter-domain information of known drug-disease
associations. (3) In addition, it constructs multi-views of multiple drug similarities and
extracts the feature of multi-homogeneous information by HGCN combined with the chan-
nel attention mechanism, which enhances the intra-domain message passing and forms
the intra-domain embedding. Besides, it transfers the feature by a heterogeneous network
composed of drugs, proteins, and diseases with GAT and fuses it with the inter-domain
feature of known drug-disease associations to form the enhanced inter-domain embedding,
and then combines previous intra-domain and inter-domain embeddings to obtain the final
embedding of drugs and diseases.

2. Materials and Methods
2.1. Dataset

The drug-disease associations in dataset 1 (T1) of this paper are selected from the
Zhang dataset [12], which contains 18,416 drug-disease associations between 269 drugs
and 598 diseases from CTD [24] (http://ctdbase.org/ (accessed on 8 April 2021)). This
dataset also collects comprehensive information about drugs such as target, enzyme, drug-
drug interaction, pathway and substructure, and these five drug similarity features can
be obtained by computation. We select 15,630 drug-disease associations from the 18,416
drug-disease associations in this dataset. Dataset 2 (T2) of this paper is obtained from
1921 known drug-disease relationships for therapeutic indications collected from 6677
approved indications in the repoDB database [25], where we consider only FDA-approved
small-molecule drugs. We obtained 10 drug similarity features by referring to the method
proposed by Zeng et al. [16]. In order to fuse more drug features for enhancing the intra-
domain message passing of drug, we input various drug similarity information (e.g., target,
enzyme, drug-drug interaction, and pathway) in T1 as well as T2 (e.g., clinical similarity,
drug side effects’ similarity, and chemical similarity, where the chemical similarity is
computed by Tanimoto score [26], which can be obtained by the Chemical Development
Kit [27] according to the SMILES string [28] of drugs) into the hypergraph convolutional
network as multiple similarity matrices of drugs, respectively.

Although datasets T1 and T2 contain a limited number of disease and drug nodes,
they contain a massive amount of protein association information which is helpful for the
predictions of drug-disease associations. In addition, in order to test the robustness of
our baseline model, we introduce 2 public datasets, Fdataset [10] and Cdataset [6], which
do not contain the protein association network and various drug characteristics. Fdataset
contains 593 drugs, 313 diseases and 1933 confirmed drug-disease associations. Cdataset
includes 2532 associations between 663 drugs and 409 diseases.

http://ctdbase.org/


Biomolecules 2022, 12, 1666 4 of 19

The protein association networks (drug-protein, disease-protein, protein-protein inter-
action (PPI)) in this paper draw data from the databases used by Wang et al. [20] The DGIdb
database [29] (https://dgidb.genome.wustl.edu (accessed on 9 September2021)) is a drug-
gene interaction database, which integrates not only drug-gene interactions reported in the
existing literature, but also records drug-gene interactions in more than 30 databases such
as DrugBank [30], PharmGKB [31], Chembl [32], and TTD [33], providing information on
genes and their known or potential drug associations. We pull target protein-coding genes
of a given drug from DGIdb, and then map genes to proteins according to gene names and
obtain the drug-protein association. At least 2 targets are required for each drug which is
motivated by the notion that a drug is utilized to treat a distinct disease, most likely due to
its off-target activities.

The disease-protein associations are extracted from DisGeNET [34] (https://www.disgenet.
org (accessed on 5 May 2021)), where we extract the protein-coding genes of specific diseases and
then map them to the corresponding protein. It is required that at least 1 protein is associated
with each disease which makes it more biologically meaningful. The drug name is represented
by the DrugBank ID, and the common name of each disease is annotated according to MeSH [35]
(http://www.ncbi.nlm.nih.gov/ (accessed on 8 April 2021)), which can be converted to UMLS
ID [36] using DisGeNET to discover the related protein.

For the PPI network, we refer to the human PPI information compiled by Menche et al. [37]
to extract the protein-protein associations; that is, the initial weight of each edge is set to 1, and
one protein is associated with at least 1 protein. Ultimately, we obtain the multi-association
networks by combining the above data, as shown in Table 1.

Table 1. Data information on our network construction for drug repositioning.

Dataset P Drug Disease Protein Domain Interaction Sparsity

T1 4 263 480 6059

drug-disease 15,630

0.1238
drug-protein 5620

disease-protein 20,019
protein-protein 49,406

T2 3 850 339 5105

drug-disease 1921

0.0067
drug-protein 10,872

disease-protein 12,625
protein-protein 41,903

Cdataset 1 663 409 - - - - - - - - - - drug-disease 2532 0.0093

Fdataset 1 593 313 - - - - - - - - - - drug-disease 1933 0.0104

Note: P denotes the number of similarity matrices for drugs in various datasets. Sparsity represents the ratio of
the number of known associations to the number of all possible associations.

2.2. Multi-Association Network Construction

We apply the multiple similarity matrices of the drugs mentioned in the previous
section to construct a drug multi-view network; namely, the set of multiple similarity
matrices of drugs is denoted as Pr =

{
Pr

1 , Pr
2 , . . . , Pr

S
}

, Pr
S ∈ RM×M, where M is the number

of drugs, and S represents the total number of the similarity matrices. And then, it is
used to construct the multi-view network as Gr =

{
Gr

1, Gr
2, . . . , Gr

S
}

, in which the set of its
adjacency matrices is denoted as Ar = Pr =

{
Pr

1 , Pr
2 , . . . , Pr

S
}

.
The similarity matrix of diseases is expressed as Sd ∈ RN×N , where N denotes the num-

ber of diseases. The similarity between diseases is obtained from the MeSH database [35],
in which diseases are classified into various categories. We construct a directed acyclic
graph (DAG) to compute the semantic similarities of diseases based on the reference of
Wang et al. [38]. The disease-disease similarity network is denoted as Gd and its adjacency
matrix is Ad = Sd ∈ RN×N .

Here, the known drug-disease association network is represented as a graph Grd with
the adjacency matrix Ard ∈ {0, 1}M×N (If drug ri is associated with disease dj, Ard

ij = 1.

https://dgidb.genome.wustl.edu
https://www.disgenet.org
https://www.disgenet.org
http://www.ncbi.nlm.nih.gov/
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Otherwise, Ard
ij = 0). In addition to the above-constructed graphs Gr, Gd and Grd, we build

the graph structures by using the association data of protein-drug, protein-disease and
PPI described in the previous section, which are denoted as Gdp, Grp, and Gp, respectively.
The overall association network is shown in Figure 1.
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2.3. Model Framework

In this section, we introduce a deep learning model named EMPHCN to predict the
association information between drugs and diseases. The overall workflow is shown in
Figure 2, which includes the intra-domain and inter-domain message passing of drugs and
diseases. A multi-view network is constructed according to multiple similarity features of
drugs for the intra-domain message passing of drugs, which is enhanced by the combination
of HGCN and channel attention mechanism (Figure 2a). Besides, we directly apply HGCN
to extract the intra-domain embeddings of diseases. The inter-domain message passing
includes 2 parts (Figure 2b): 1 is the inter-domain message passing for known drug-disease
associations, which is enhanced by graph convolutional networks with node and edge
embedding (NEEGCN), and the other is a heterogeneous network composed of proteins,
drugs and diseases, which enriches the message passing according to GAT. The embedding
of 2 parts is then summed to obtain the inter-domain feature of drugs and diseases, and
ultimately, all intra-domain and inter-domain features are integrated for the prediction of
the drug-disease association.

2.4. Drug and Disease Intra-Domain Message Passing

We first employ hypergraph convolutional networks (HGCN) [23] in the intra-domain
message passing to extract the intra-domain information of drugs and diseases in Gr and Gd,
respectively. The general graph network structure is usually represented by an adjacency
matrix, where each edge connects only two vertices. Hypergraphs, on the other hand,
can be used to encode the higher-order data correlation (beyond pairwise connections) by
using their degree-free hyperedges, i.e., hypergraphs with flexible hyperedge properties
are easily scalable for multi-modal data.



Biomolecules 2022, 12, 1666 6 of 19
Biomolecules 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 
Figure 2. EMPHCN framework diagram. (a) Intra-domain message passing enhancement of drugs. 
(b) Inter-domain message passing enhancement of drugs and diseases. 

2.4. Drug and Disease Intra-Domain Message Passing 
We first employ hypergraph convolutional networks (HGCN) [23] in the intra-do-

main message passing to extract the intra-domain information of drugs and diseases in 𝐺  and 𝐺 , respectively. The general graph network structure is usually represented by 
an adjacency matrix, where each edge connects only two vertices. Hypergraphs, on the 
other hand, can be used to encode the higher-order data correlation (beyond pairwise 
connections) by using their degree-free hyperedges, i.e., hypergraphs with flexible hy-
peredge properties are easily scalable for multi-modal data. 

A hypergraph is usually defined as G = (V, E), where V represents the vertex set, and 
E denotes the hyperedge set. An incidence matrix 𝐻 ∈ ℝ ×  is used to represent con-
nections among vertices on the hyper-graph, where 𝑁  is the number of vertices and 𝑁  
is the number of hyperedges. Each element in H is defined as ℎ(𝑣, 𝑒) =   1,   𝑖𝑓 𝑣 ∈ 𝑒 0,   𝑖𝑓 𝑣 ∉ 𝑒 (1)

For any vertex 𝑣 ∈ 𝑉, ℎ(𝑣, 𝑒) = 1 when the hyperedge e ∈ E is associated with ver-
tex 𝑣, otherwise ℎ(𝑣, 𝑒) = 0. Simultaneously, the degree 𝑑(𝑣) of vertex v and the degree 𝛿(𝑒)  of hyperedge 𝑒  are represented by the diagonal matrix 𝐷 ∈ ℝ ×  and 𝐷 ∈ℝ × , respectively, then the degree of the vertex and the degree of the hyperedge can be 
defined as 𝑑(𝑣) = ∑ ℎ(𝑣, 𝑒)∈ , 𝛿(𝑒) = ∑ ℎ(𝑣, 𝑒)v∈ . 

The incidence matrix H and vertex feature X can be fed into the hypergraph neural 
networks with a hypergraph convolutional layer defined as 𝑋 = 𝐷 / 𝐻𝐷 𝐻 𝐷 / 𝑋 𝜃  (2)

where two diagonal matrices 𝐷 /  and 𝐷  are used for normalization, 𝜃  is the learn-
able weight and 𝑋  is the feature embedding learned by the HGCN. Each hyperedge in 

Figure 2. EMPHCN framework diagram. (a) Intra-domain message passing enhancement of drugs.
(b) Inter-domain message passing enhancement of drugs and diseases.

A hypergraph is usually defined as G = (V, E), where V represents the vertex set,
and E denotes the hyperedge set. An incidence matrix H ∈ RNv×Ne is used to represent
connections among vertices on the hyper-graph, where Nv is the number of vertices and Ne
is the number of hyperedges. Each element in H is defined as

h(v, e) =
{

1, i f v ∈ e
0, i f v /∈ e

(1)

For any vertex v ∈ V, h(v, e) = 1 when the hyperedge e ∈ E is associated with vertex
v, otherwise h(v, e) = 0. Simultaneously, the degree d(v) of vertex v and the degree δ(e)
of hyperedge e are represented by the diagonal matrix Dv ∈ RNv×Nv and De ∈ RNe×Ne ,
respectively, then the degree of the vertex and the degree of the hyperedge can be defined
as d(v) = ∑e∈E h(v, e), δ(e) = ∑v∈V h(v, e).

The incidence matrix H and vertex feature X can be fed into the hypergraph neural
networks with a hypergraph convolutional layer defined as

Xl+1 = D−1/2
v HD−1

e HT D−1/2
v Xlθl (2)

where two diagonal matrices D−1/2
v and D−1

e are used for normalization, θl is the learnable
weight and Xl+1 is the feature embedding learned by the HGCN. Each hyperedge in
EMPHCN is built by connecting a vertex with its neighboring K vertices (Here, we set
K = 15) based on the adjacency relationship on the graph, so N vertices construct N
hyperedges with the incidence matrix H ∈ RN×N .

Specifically, we use the initial input graph Gr, Gd to construct the hypergraphs re-
spectively, and the corresponding hypergraph incidence matrices are set as Hr and Hd,
respectively. Here, Hr =

{
Hr

1, Hr
2, . . . , Hr

S
}

, Hr
S ∈ RM×M, Hd ∈ RN×N , M is the number
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of drugs, S is the total number of incidence matrices of drugs, and N is the number of
diseases. We use one of Hr (Here, we chose Hr

1) and Hd as the initial input X0
intra_r, X0

intra_d
of the model [

X0
intra_r

X0
intra_d

]
=

[
Hr

1
Hd

]
(3)

According to Equation (2), the updated embeddings in the disease and drug domains
can be obtained as Xl+1

intra_r, Xl+1
intra_d respectively

Xl+1
intra_r = D−1/2

vr HrD−1
er Hr

T D−1/2
vr Xl

intra_r θl
intra_r

Xl+1
intra_d = D−1/2

vd HdD−1
ed Hd

T D−1/2
vd Xl

intra_d θl
intra_d

(4)

From Equation (4), we can calculate the multi-channel drug embedding
Xl+1

intra_r= [Xl+1
intra_r1

, Xl+1
intra_r2

, . . . , Xl+1
intra_rS

], Xl+1
intra_r ∈ RM×F×S by the hypergraph convo-

lution of each incidence matrix of drugs and similarly obtain the disease embedding
Xl+1

intra_d ∈ RN×F. Here, F is the dimensionality of the embedding.
Furthermore, in order to utilize the multivariate feature information of drugs for

the intra-domain message passing enhancement, we employ the attention mechanism
ECA-Net [39] to learn the importance of each channel in Xl+1

intra_r.
The specific operation process is as follows: we first use the global average pooling

on the spatial dimension to perform the feature compression and get the new embedding
Zr ∈ R1×1×S,

Zr = g
(

Xl+1
intra_r

)
(5)

where g(x) = 1
F×M ∑F,M

i=1,j=1 xij is the global average pooling (GAP), and then we further
compute the attention factor ωr corresponding to each channel, and in order to reduce the
model complexity, we use a 1D convolution operation to realize that all channels share the
same parameters

ωr = σ(conv1dk(Zr)) (6)

whereωr= [ω r
1,ωr

2, . . . ,ωr
S],ω

r ∈ R1×S, conv1d stands for the 1D convolution, k represents
the convolution kernel size (Here, we set it as k = 3× 1), σ it the Sigmoid activation function.

Ultimately, we sum up the features of all channels to get X̃l+1
intra_r ∈ RM×F, which is

used as the drug embedding of the next layer of network input

X̃l+1
intra_r =

S

∑
i=1

ωr
i Xl+1

intra_ri
(7)

2.5. Drug and Disease Inter-Domain Message Passing

Drug-disease inter-domain message passing contains the known drug-disease associa-
tion network, which is treated as the main part of message passing. Moreover, we enhance
the inter-domain message passing by introducing a heterogeneous network composed of
proteins, drugs and diseases.

2.6. Known Drug-Disease Inter-Domain Message Passing

GCN has widely been used in the recommendation system and the prediction model [40].
However, it usually only considers the node embedding in the graph convolutional process
while ignoring the role of edges [41]. We introduce a novel graph convolution model (NEEGCN)
for bipartite graph link prediction, which can combine the embedding of edges and nodes. We
first map the edge information into the node domain to obtain the corresponding drug node
feature Xl

r_e and disease node feature Xl
d_e, respectively,

Xl
r_ei

=
N

∑
j

Ard
ij wl

r_e , Xl
d_ej

=
M

∑
i

(
Ard

ij

)T
wl

d_e (8)
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where Ard denotes the adjacency matrix of the known drug-disease association graph
network, W l

r_e and W l
d_e are the trainable weight matrices. We refer to the intra-domain

initial input in Equation (3) above as the initial inter-domain input, the edge information
mapped to the drug and disease node embeddings is then fused with the original drug
and disease node embeddings, and the message passing between the nodes of drugs and
diseases is defined as

Xl+1
inter_ri

= ∑
(dj)∈N(ri)

1√
|N(dj)||N(ri)|

(Xl
inter_dj

⊙
Xl

d_ej
)W(l)

d→r

Xl+1
inter_dj

= ∑
(ri)∈N(dj)

1√
|N(dj)||N(ri)|

(Xl
inter_ri

⊙
Xl

r_ei
)W(l)

r→d

(9)

where N(ri) and N
(
dj
)

are the set of inter-domain neighbors of node ri and node dj

respectively, and 1√
|N(dj)||N(ri)|

is the regularization form of GCN, which can avoid the

random embedding explosion with propagation. We combine edge features with node
features by the element-wise multiplication of 2 vectors. W(l)

d→r and W(l)
r→d are trainable

weights for projecting the node embedding from 1 domain to another.

2.7. Protein-Related Inter-Domain Message Passing

In addition to using the known drug-disease network for the message passing, we
add a heterogeneous network composed of proteins, diseases and drugs and combine them
to form an inter-domain message-passing enhancement module for extracting the inter-
domain features of drugs and diseases. We refer to the method suggested by Wang et al. [20]
and achieve message-passing between them by the graph attention network (GAT) [42],
which can help us score a vast amount of protein-association information to filter out the
important association information. The propagation process is first implemented as

El
r→p = GATr→p

(
Xl

r

)
El

d→p = GATd→p

(
Xl

d

)
El

p = concat
(

El
r→p, El

d→p

) (10)

where Xl
r and Xl

d are the disease and drug embeddings of the lth layer and El
r→p, El

d→p
are the information from drug to protein through GAT and the information from disease
to protein through GAT in the lth layer, respectively, and we fuse them to get the protein
embedding El

p. Here, GAT is used to achieve the projection of node information from the
v-domain to the u-domain, and the updated formula is

GATv→u :
→
xui = ReLU( ∑

vj∈Nui

αui ,νjW
v→x vj) (11)

where Wv is a trainable weight matrix,
→
x vj represents the feature of the node and νj, αui ,νj

is the attention weight coefficient as

αui ,νj =
exp(ρ(

→
a

T[
Wu→x ui ‖Wv→x vj

]
))

∑vj∈Nui
exp(ρ(

→
a

T[
Wu→x ui ‖Wv→x vj

]
))

(12)

where ρ is the LeakyReLU activation function,
→
a denotes the weight vector, and ‖ is the

concatenation operation.
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Then, in order to enable smooth features between protein neighborhood nodes, a
single layer of GAT is applied to perform the protein intra-domain message passing by the
PPI network

Ẽl
p = GATp→p(El

p) (13)

We project the updated protein node embedding Ẽl
p back to the drug and disease

domains to obtain the drug embedding Xl
p_r and the disease embedding Xl

p_d, respectively.Xl
p_r = GATp→r

(
El

p

)
Xl

p_d = GATp→d

(
Ẽl

p

) (14)

2.8. Association Prediction for Drugs and Diseases

After computing the respective intra-domain and inter-domain features of drugs and
diseases, we fuse these embeddings of drugs and diseases as

Xl+1
r = Xl

intra_r + Xl
inter_r + Xl

p_r
Xl+1

d = Xl
intra_d + Xl

inter_d + Xl
p_d

(15)

where Xl+1
r , Xl+1

d are the embeddings of the next layer of drugs and diseases, respectively.
We can similarly obtain Xl+2

r and Xl+2
d , and then combine them via a skip connection to get

the final embeddings of drugs and diseases X̂r, X̂d respectively

X̂r = Xl+1
r + Xl+2

r , X̂d = Xl+1
d + Xl+2

d (16)

Lastly, we obtain the final association information between drugs and diseases by the
matrix multiplication with the following equation

Ârd = sigmoid(X̂rX̂d
T) (17)

where the matrix Ârd is the predicted score probability matrix, and the values in Ârd

represent the probability of drug-disease association.

2.9. Optimization and Parameter Setting

Since the number of experimentally confirmed associations is much smaller than the
number of drug-disease pairs, and because the sparsity of various drug-disease datasets
is inconsistent, we adopt the weighted binary cross-entropy as a loss function to balance
the positive and negative sample ratios. We denote known drug-disease association pairs
as positive samples and other pairs as negative samples, and the loss function is defined
as follows

Loss = − 1
N ×M

(λ× ∑
(i,j)∈y

logArd
ij + ∑

(i,j)∈y

(
1− logArd

ij

)
) (18)

where y and y are the number of negative and positive samples, respectively, and the
balance factor is λ = |y|/|y|. We use the Adam optimizer [43] to minimize the loss function.

The EMPHCN is divided into two hidden layers, and the main parameters of this
framework include the first and second hidden layer embedding dimensions, k1 = 256,
k2 = 128, the initial learning rate of the optimizer, lr = 0.002, the regular dropout rate, β = 0.4.
According to the sparsity of the dataset, we set the edge dropout rate γ and the training
epoch µ as γ(T1) = 0.35, γ(T2) = 0.1, µ(T1) = 4500, µ(T2) = 3200, respectively.

3. Results
3.1. Ablation Experiment of EMPHCN Model

We conduct the ablation experiment to verify the effectiveness of each part of our
EMPHCN model. Specifically, we analyzed the impact of each part in our model according
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to the results of a 10-fold cross-validation on the dataset T1. The performance of different
variants of EMPHCN is shown in Figure 3. We first used the GCN to replace the HGCN
and found that the AUC and AUPR values achieved by the GCN were 0.4% and 0.8%
lower than those of the HGCN, respectively. For the baseline model EMP_base (with the
HGCN and the NEEGCN), we set a single drug similarity matrix in the intra-domain
of drugs and only used known drug-disease associations in the inter-domain. Then we
introduced the drug multi-view information and integrated the HGCN and ECA-Net to
form an intra-domain fusion enhancement module. We found that the AUC and AUPR
values using the intra-domain fusion enhancement module were better than those of the
baseline method using a single similarity matrix, which both had a 0.3% improvement,
as shown in Figure 3. In addition, we introduced additional networks Gdp, Grp, and Gp
into the inter-domain information and combined known drug-disease associations to form
the inter-domain fusion enhancement module. We found that the AUC and AUPR values
achieved by the inter-domain fusion enhancement module were 0.5% and 0.6% higher than
those of the baseline method, respectively, whose inter-domain module is only composed of
known drug-disease associations. According to these comparisons, we can clearly see that
the EMPHCN using HGCN and intra-domain and inter-domain fusion modules (with the
intra-domain and inter-domain message passing enhancement) produced an improvement
in the performance of drug repositioning.
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3.2. Comparison between EMPHCN and Other Methods

In this section, we compare EMPHCN with six state-of-the-art drug repositioning
methods listed below. Among these methods, the LAGCN method [21] uses an attention
mechanism to combine the embeddings from multiple graph convolutional layers to pre-
dict drug-disease associations. The SCMFDD [12] provides a similarity constraint matrix
decomposition method for predicting drug-disease correlations. The NIMCGCN [18] ap-
plies GCNs to learn the intra-domain information of miRNA and disease from similarity
networks and builds a neural inductive matrix completion model to predict miRNA-disease
associations. BNNR [14] proposes a bounded nuclear norm regularization method to com-
plete a drug-disease heterogeneous network for drug repositioning. DRRS [13] constructs
a drug repositioning recommendation system for novel drug indications by integrating
related data sources and validated information on drugs and diseases. The DRHGCN [22]
designs inter- and intra-domain feature extraction modules which learn drug and disease
embeddings by GCNs, and then parallelly fuse these embeddings for drug and disease
association prediction.

We applied 10-fold cross-validation when comparing the EMPHCN with other meth-
ods. The results are shown in Table 2 as well as Figure 4a–d. On dataset T1, EMPHCN
obtains the highest average AUPR and AUC at 0.593 and 0.887, respectively. On dataset T2,
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EMPHCN outperforms the other six models with a final average AUC of 0.961, which is
2.3% higher than the second-best method, DRHGCN, and achieves a final average AUPR
of 0.526, which is 3.4% higher than the second-best method, BNNR. Because we introduce
more homogeneous and heterogeneous networks and apply HGCN to extract the feature in
intra-domain as the message passing, EMPHCN can achieve a satisfactory prediction result
for the drug repositioning. At the same time, we find that the EMPHCN baseline model
(EMP_base) also keeps excellent results in the comparative experiment (Figure 5, Table 2),
which achieved the highest average AUC and AUPR values (0.941 and 0.593, respectively)
in the benchmark datasets.
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Table 2. Result comparison of 10-fold cross-validation experiments with different methods on
benchmark datasets.

Dataset DRRS NIMCGCN SCMFDD BNNR LAGCN DRHGCN EMP_base EMPHCN

AUROC
T1 0.846 ± 0.002 0.848 ± 0.004 0.864 ± 0.002 0.867 ± 0.001 0.877 ± 0.002 0.876 ± 0.001 0.879 ± 0.001 0.887 ± 0.002
T2 0.889 ± 0.002 0.766 ± 0.002 0.734 ± 0.004 0.920 ± 0.001 0.772 ± 0.003 0.938 ± 0.002 0.958 ± 0.003 0.961 ± 0.003

Cdataset 0.947 ± 0.002 0.856 ± 0.004 0.794 ± 0.001 0.951 ± 0.001 0.923 ± 0.004 0.963 ± 0.001 0.971 ± 0.001 - - - - - - - - -
Fdataset 0.930 ± 0.002 0.836 ± 0.004 0.775 ± 0.001 0.934 ± 0.001 0.892 ± 0.003 0.948 ± 0.002 0.954 ± 0.002 - - - - - - - - -

Avg 0.903 0.827 0.792 0.918 0.866 0.931 0.941 - - - - - - - - -

AUPR
T1 0.451 ± 0.002 0.502 ± 0.004 0.550 ± 0.002 0.546 ± 0.001 0.579 ± 0.002 0.574 ± 0.001 0.578 ± 0.001 0.593 ± 0.003
T2 0.379 ± 0.002 0.047 ± 0.002 0.049 ± 0.003 0.492 ± 0.001 0.138 ± 0.004 0.475 ± 0.001 0.501 ± 0.003 0.526 ± 0.002

Cdataset 0.574 ± 0.003 0.445 ± 0.002 0.060 ± 0.002 0.679 ± 0.001 0.194 ± 0.002 0.655 ± 0.002 0.688 ± 0.002 - - - - - - - - -
Fdataset 0.475 ± 0.006 0.354 ± 0.005 0.062 ± 0.002 0.601 ± 0.001 0.134 ± 0.002 0.566 ± 0.002 0.604 ± 0.002 - - - - - - - - -

Avg 0.470 0.337 0.180 0.580 0.261 0.568 0.593 - - - - - - - - -
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on four benchmark datasets. (a) Average AUC comparison of different methods. (b) Average AUPR
comparison of different methods.

We also evaluated the effect of the ratio of positive and negative samples in the
training set on the performance of the EMPHCN. We chose the T2 dataset with sparse
positive samples and selected positive and negative sample ratios of 1:10, 1:50, 1:80, 1:100,
1:120, and 1:140 (where 1:140 is close to the maximum ratio in the dataset). Besides, we
various-ly set a small portion of the positive samples missing as a control group, i.e., set the
number of positive samples as {100%, 95%, 90%, and 85%} of the original positive samples,
respectively. The test results are shown in Figure 6. We find that the performance of the
model is improved as the number of positive samples is increased, probably because more
positive samples are beneficial for the message passing in the prediction model. In addition,
we find when the ratio of positive samples is in the range of 90% to 100%, the performance
of the model is stable and improves slightly with the increase in the proportion of negative
samples, probably because of the double influence of the increase of the number of training
samples and negative samples.
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In addition, we implement the statistically significant difference analysis on the T1
dataset for the AUROC and AUPR results of 10-fold cross-validation between EMPHCN
and other methods. Figure 7 demonstrates that when the p-value = 0.05, EMPHCN consid-
erably differs from other approaches.
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3.3. Investigation of Novel Predictions

To validate the ability of diverse models to recover new disease associations corre-
sponding to drugs (i.e., no drug association information for new diseases), we first choose
20% of the disease nodes as the test set, and for each disease in the test set, we delete all
known drug-disease associations associated with that disease. Then we use the remaining
80% of the disease nodes corresponding to known drug-disease associations as the training
set. This process ensures that the disease nodes in the test sample are unknown new nodes.
We repeat the test five times for each prediction model to obtain an average result. The cor-
responding results, including ROC and PR curves, are shown in Table 3 and Figure 8a–d.
We find that EMPHCN achieved excellent performance on datasets T1 and T2 (AUC = 0.806
on T1, 0.845 on T2), which were superior to other state-of-the-art prediction methods.

Table 3. The results of novel predictions on datasets T1 and T2 by different methods.

Dataset Methods AUPR AUC RE ACC F1

T1 LAGCN 0.228 0.678 0.503 0.756 0.325
NIMCGCN 0.234 0.625 0.438 0.757 0.289
SCMFDD 0.372 0.763 0.531 0.845 0.417

DRRS 0.212 0.650 0.555 0.662 0.295
BNNR 0.217 0.625 0.580 0.582 0.269

DRHGCN 0.328 0.748 0.539 0.788 0.368
EMPHCN 0.396 0.806 0.547 0.859 0.442

T2 LAGCN 0.053 0.630 0.098 0.986 0.094
NIMCGCN 0.009 0.562 0.474 0.689 0.022
SCMFDD 0.018 0.559 0.067 0.987 0.072

DRRS 0.065 0.741 0.249 0.981 0.156
BNNR 0.073 0.805 0.165 0.987 0.153

DRHGCN 0.051 0.696 0.167 0.985 0.141
EMPHCN 0.092 0.845 0.261 0.986 0.178
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In addition, we further validate the number of positive samples successfully recovered
from the first k candidate samples. Considering the various number of positive samples in
various datasets, we set the threshold k to 3000 (T1) and 300 (T2), respectively. Under the T1
dataset, we find that the number of positive samples successfully recovered by EMPHCN
and SCMFDD is significantly higher than those of other models, as shown in Figure 9a.
For the T2 dataset, the number of positive samples successfully recovered by EMPHCN is
significantly higher than in other models, as shown in Figure 9b, which indicates again that
EMPHCN has the outstanding ability to prioritize potential disease-related drugs.
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3.4. Case Study

To further verify the reliability and capability of the drug-disease association prediction
model, we applied the EMPHCN to predict candidate drugs for two diseases, including
breast carcinoma and Parkinson’s disease (PD). When identifying potential drugs for breast
carcinoma and Parkinson’s disease, we used all known drug-disease associations in T2 as a
training set to predict whether a missing drug-disease association existed and ranked the
predicted drug candidates according to the magnitude of their probability values.

The top 10 drug candidates for breast carcinoma predicted by the EMPHCN are listed
in Table 4. We found that 10 of these (100% success rate) are confirmed by various published
pieces of evidence. For instance, topotecan is an antineoplastic agent used to treat ovarian
cancer, small-cell lung cancer or cervical cancer. A previous study reports that primary
chemotherapy with topotecan is an effective and well-tolerated treatment for patients with
breast cancer and central nervous system (CNS) metastases [44]. Herein, topotecan is
the first predicted candidate for potentially treating breast carcinoma. Carboplatin, an
organoplatinum antineoplastic alkylating agent, used in the treatment of advanced ovarian
carcinoma, is predicted by EMPHCN to be associated with breast carcinoma. The study
by Martin et al. [45] indicates that carboplatin is an active drug in metastatic breast can-
cer (MBC) patients without previous exposure to chemotherapy. Campana et al. [46]
observed that elderly breast cancer patients were highly responsive to the toxicity of elec-
trochemotherapy (ECT) and achieved durable local tumor control, where the ECT treatment
schedule consisted of intravenous or intratumoral bleomycin followed by locally-delivered
electric pulses.

Table 4. Top 10 related drugs for breast carcinoma predicted by the EMPHCN.

Disease Rank Candidate Drug Evidence

Breast carcinoma

1 Topotecan [44]
2 Gemcitabine [47]
3 Carboplatin [45]
4 Bleomycin [46]
5 Cisplatin [48]
6 Hydroxyurea [49]
7 Methotrexate [50]
8 Melphalan [51]
9 Thiotepa [52]

10 Trabectedin [53]

For Parkinson’s disease, the top 10 candidate drugs predicted by EMPHCN are listed in
Table 5. We find 8 of which (80% success rate) were confirmed by various literature evidence.
For example, pergolide is an ergot-derived dopamine receptor agonist utilized to treat
Parkinson’s disease and restless legs syndrome. The study by Mizuno et al. [54] confirms
that pergolide has efficacy in patients with Parkinson’s disease, either as monotherapy or
in combination with levodopa. Galantamine is a cholinesterase inhibitor used to manage
mild to moderate dementia associated with Alzheimer’s disease. Aarsland et al. [55] report
that galantamine is approved to be serviceable for patients with Parkinson’s disease.
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Table 5. Top 10 related drugs for Parkinson’s disease predicted by EMPHCN.

Disease Rank Candidate Drug Evidence

Parkinson’s disease

1 Pergolide [54]
2 Metixene [30]
3 Orphenadrine [56]
4 Galantamine [55]
5 Donepezil [57]
6 Cabergoline [58]
7 Cyclobenzaprine [59]
8 Gabapentin [60]
9 Dantrolene NA

10 Mephentermine NA

In addition, we used the same model EMPHCN to predict the top five diseases likely
to be associated with felodipine, as shown in Table 6. Lorimer et al. [61] verified that
felodipine has, overall, a modest but significant anti-anginal benefit when combined with a
beta-blocker.

Table 6. Top five related diseases for Felodipine predicted by the EMPHCN.

Drug Rank Candidate Disease Evidence

Felodipine

1 Angina pectoris [61]
2 Edema [62]
3 Cerebrovascular accident [63]
4 Diabetic nephropathy NA
5 Congestive heart failure [64]

4. Discussion

In this paper, we propose the EMPHCN, a novel prediction model to recover potential
drug-disease associations based on enhanced message passing and hypergraph convolu-
tional networks. Compared with existing methods, the EMPHCN incorporates multiple
drug similarities and enhances the intra-domain message passing by combining hyper-
graph convolution with channel attention mechanism, and improves the inter-domain
message passing by incorporating protein, drug and disease association networks, which
can outperform other drug-disease association prediction methods.

Although the EMPHCN can be chosen as a powerful tool for predicting drug-disease
association information, there are some issues that can be improved in our future work. For
instance, we will consider more biological entities, such as miRNAs and microorganisms
involved in drug-disease associations, to construct a heterogeneous network with more
types of entities and links for a better understanding of drug and disease features for drug
repositioning. Because our current model does not involve genomics, transcriptomics,
other omics and cell line data from an individual patient, we will extend our method
by combining with the multi-omics information to prescribe the patient a specifically
repurposed drug in our future work. In addition, we currently apply the PPI information to
construct the association network for training. In our future work, we will use the protein
similarities to construct the protein-protein association network to research the relationship
between the off-target consequences and the repositioning opportunities.
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