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Abstract: With its fast-paced mutagenesis, the SARS-CoV-2 Omicron variant has threatened many
societies worldwide. Strategies for predicting mutagenesis such as the computational prediction of
SARS-CoV-2 structural diversity and its interaction with the human receptor will greatly benefit our
understanding of the virus and help develop therapeutics against it. We aim to use protein structure
prediction algorithms along with molecular docking to study the effects of various mutations in the
Receptor Binding Domain (RBD) of the SARS-CoV-2 and its key interactions with the angiotensin-
converting enzyme 2 (ACE-2) receptor. The RBD structures of the naturally occurring variants
of SARS-CoV-2 were generated from the WUHAN-Hu-1 using the trRosetta algorithm. Docking
(HADDOCK) and binding analysis (PRODIGY) between the predicted RBD sequences and ACE-2
highlighted key interactions at the Receptor-Binding Motif (RBM). Further mutagenesis at conserved
residues in the Original, Delta, and Omicron variants (P499S and T500R) demonstrated stronger
binding and interactions with the ACE-2 receptor. The predicted T500R mutation underwent some
preliminary tests in vitro for its binding and transmissibility in cells; the results correlate with the
in-silico analysis. In summary, we suggest conserved residues P499 and T500 as potential mutation
sites that could increase the binding affinity and yet do not exist in nature. This work demonstrates
the use of the trRosetta algorithm to predict protein structure and future mutations at the RBM of
SARS-CoV-2, followed by experimental testing for further efficacy verification. It is important to
understand the protein structure and folding to help develop potential therapeutics.

Keywords: trRosetta; AlphaFold; SARS-CoV-2; receptor-binding motif; angiotensin-converting
enzyme 2 receptor; HADDOCK

1. Introduction

The determination of protein 3D structure is crucial to understand its biological func-
tion. However, it is time-consuming and expensive. For several decades, the prediction of
protein structure directly from sequence information has been an unachievable dream. The
advancements in different computational methods to predict protein tertiary structures
have now allowed one to study folds and local motifs, molecular folding, evolution, and
structure/function relationships in proteins. The BigNet model was the first proposed
application of a back propagation neural network (BPNN) to predict the protein 2D and
3D structures [1]. In 1994, Burkhard Rost et al. used evolutionary information as multiple
sequence alignments in neural networks as an input which significantly increased the
accuracy of the protein prediction [2]. K. T. Simons et al. used simulated annealing and
Bayesian scoring function to generate tertiary protein structure based on fragments of
unrelated proteins [3]. To date, various methods based on machine learning programs,
such as feedforward neural networks, two input neurons, radial basis function neural
networks, two neural networks (SPINE-2D), SVM-based contract predictors [4–8], and
deep learning programs, such as bidirectional recurrent neural network, residue-residue
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coevolution, a balanced network deconvolution (BND), and deep neural network [9–12],
have been proposed to find protein tertiary structure. However, proteins usually function
through interactions with other proteins or molecules and predicting protein interactions
has been even more challenging. For each structure prediction, many short simulations
starting from different random sequences are carried out to generate an ensemble of decoy
structures that have both favorable local interactions and protein-like global properties [13].
The substantial progress of blind protein prediction using protein ranking refinement and
prediction of multimeric complexes has been acknowledged in the Critical Assessment of
Structure Prediction (CASP) competition [14–17]. Different techniques have been devel-
oped, and benchmarks have been drawn to elucidate the advantages and disadvantages of
different methods. For instance, Google’s DeepMind developed AlphaFold, a highly rank-
ing method [12]. Another example is the Zhang server, built on iTasser and QUARK [14].
Protein structure prediction using AlphaFold and Rosetta algorithms have been widely
used methods and perhaps the most successful methods for de novo protein structure
prediction since its inception [12,13,18]. Additionally, several databases and coevolution
have been used to predict these interactions [19–21].

DeepMind developed AlphaFold1, which ranked at the top in CASP13 [22]. Inspired
by its successes, Baker lab proposed that limitations in AlphaFold1 could be further im-
proved by using inter-residue orientations as well as distance measurements [23]. “trRosetta
uses both residue-residue distances and orientations, which gives richer information on the
structure compared to distances only,” explained Baker [24]. The components of the method
trRosetta include (1) a deep residual-convolutional network which takes an MSA as the in-
put and outputs information on the relative distances and orientations of all residue pairs in
the protein and (2) a fast Rosetta model building protocol based on restrained minimization
with distance and orientation restraints derived from the network outputs [25]. trRosetta
helps predict inter-residue orientations and distances from co-evolutionary data by ap-
plying deep knowledge, which significantly improves protein structure prediction [23]
from amino acid sequences. One of the key features of trRosetta is that it originally had de
novo modeling. However, later automated template detection by HHsearch was included
to improve the accuracy. It has been reported that sequence design using trRosetta has a
remarkable ability to capture properties of the energy landscape and consider alternative
states that can reduce the occupancy of the desired target structure [24,26]. As per Du et al.,
since its release in 2020, the standalone package has been downloaded by >2000 registered
users [23]. The trRosetta models were shown to fit well with the cryo-electron microscopy
experimental data [27,28]. They have been intensively used to understand the structure
and function of lipid transporters [29], protein function deficiency [30], the Magnaporthe
oryzae secretome [31], the structural characterization of S59L for efficient treatment for
ALS and FTD diseases [32], 3D modeling of antibody domains [33], predicting vaccine
construct [34], and more. The results of these studies have encouraged researchers and
beyond. However, in CASP14, DeepMind’s AlphaFold2 replaced almost all components
of AlphaFold1, solving the single-chain-based protein structure prediction problem and
creating a milestone [35].

The COVID-19 pandemic has become an international event leading to international
devastation, closing, affecting all aspects of normal life. However, the introduction of
vaccines in the first half of 2021 caused an evolutionary shift toward immune-escaping
variants. The most notable, Omicron BA1, was discovered in South Africa [1,2]. Thus, it is
imperative to understand the reasons why certain mutations were able to cause such sig-
nificant viral changes in pathogenicity, virulence, and transmissibility [3]. Various studies
have proposed or undergone in vitro cultivation and examination of the RNA and protein
sequences of the viruses, and their results further our understanding of COVID-19 [4].
However, large-scale prophylactic work has not been conducted as the scope of such labo-
ratory experiments is constrained by the time required to culture and mutate individual
pathogens when attempting to evaluate for different mutations. However, experimental
structures of many proteins are still not available to date. Thus, recently, computational
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methods have been gaining in popularity compared to experimental methods. According
to previous studies on vaccine efficacy, the Receptor-Binding Domain (RBD), a part of the
S1 subunit in the spike (S) (Figure S1) protein of the SARS-CoV-2 virus, interacts directly
with the angiotensin-converting enzyme 2 (ACE-2) (EC:3.4.17.23) receptor within the sus-
ceptible host. The S glycoprotein facilitates the introduction of viral material into the host
cell [36–38]. The domain is located between residues 319–541 of the spike protein. Thus,
any potential mutations within the RBD or the S protein may present significantly stronger
mechanisms of cell infiltration, increasing the ability of the virus to infect human cells [39].
A thorough examination of the RBD protein structure and potential mutation residues can
allow for predictions and, thus, prevention against even more deleterious variants that may
arise in the future, saving lives. A novel and promising solution is the implementation of
de novo protein folding algorithms to generate a large database of variants, followed by
protein–protein interaction analysis to determine the protein function [9], diagnosis [10],
and phylogenetic analysis [11].

In this study, we use de novo or ab initio prediction of the 3D structures of the
receptor-binding sequences of COVID-19 using trRosetta algorithm, a separate algorithm
from AlphaFold v2. Subsequently, refinement of predicted complexes is conducted using
HADDOCK, an information-driven flexible docking approach; and PRODIGY, a binding
affinity descriptor based only on structural properties of a protein–protein complex between
the RBD mutations and the ACE-2 receptor. We predicted the 3D structures of different
naturally occurring variants of COVID-19 and compared them with the existing structure
from an experimental PDB structure. This provided insight into variations of the RBD and
its interactions with the ACE-2 receptor in relation to infiltration and infectivity, leading
us to the residues of the Receptor-Binding Motif (RBM). We further predicted potential
mutations at specific conserved RBM residues of different naturally occurring variants using
trRosetta. We also predicted the mutations’ interactions with the ACE-2 receptor using
HADDOCK and PRODIGY. Our study revealed certain mutations yet to be in existence
with the potential to have higher binding affinity to the ACE-2 receptor. Additionally, the
efficacy of the proposed mutation was further assessed using experimental testing. This
study introduces a pipeline methodology that can be used in future studies of COVID-19
and as a guide for strategies to combat new/old diseases.

2. Materials and Methods
2.1. Sequence Identification

The spike protein sequence for the Original Wuhan strain of COVID-19 (Gene ID:
43740568, Sequence: NC_045512.2) was retrieved from the NCBI database (https://www.
ncbi.nlm.nih.gov/ accessed on 23 June 2021) in FASTA format. In addition, we generated
the sequences of the Alpha, Beta, Gamma, Delta, and Omicron variants by manually editing
the original Wuhan strain with the RBD residue mutations provided by the CDC (https:
//www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html, accessed
on 23 June 2021) (Table S1).

2.2. De Novo Protein Folding and Structural Analysis

The SARS-CoV-2 Receptor-Binding Domain (RBD), residues 319–541, of each variant,
were selected for de novo protein folding. We initially used both transform-restrained
Rosetta (trRosetta) (https://yanglab.nankai.edu.cn/trRosetta/ accessed on 23 June 2021)
and AlphaFold v2.1.0 de novo protein folding algorithms, respectively, for the sequences of
the six variants (Original, Alpha, Beta, Gamma, Delta, and Omicron) to construct a 3D com-
puter model of the protein. The multi-sequence alignment (MSA) inputs were conducted
using the HH-suite3 script (https://github.com/soedinglab/hh-suite, accessed on 23 June
2021) with operational instructions available on an open-source GitHub repository [13]. The
HH-suite3 script uses the UniRef30 database (https://colabfold.mmseqs.com/ accessed on
23 June 2021) of MSAs to search with the target sequence using HHblits with all subsequent
instructions detailed in the GitHub ReadMe [14]. The multi-sequence alignment features
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were then uploaded into the trRosetta online portal, where MSA files can be uploaded to
generate the final PDB model with default parameters [15].

The AlphaFold algorithm AlphaFold v2.1.0 has been released as open source by Deep
Mind, with a version available for use on a Colab notebook [12]. The sequences were
directly run as per the directions on the Colab notebook (https://colab.research.google.
com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb, accessed on
23 June 2021) with enough computational power, such as through utilizing Colab Pro’s
access to faster GPUs and TPUs. The AlphaFold algorithm produces Protein Data Bank
(PDB) files, which is a way to encode a 3D computer protein model.

2.3. Visualizing and Preliminary Analysis

The models generated from trRosetta and AlphaFold v2.1.0 for the naturally occurring
variants were then superimposed and aligned using the PyMol software (https://pymol.
org/2/ accessed on 23 June 2021) [16] against a laboratory model of the RBD–ACE-2 com-
plex (PDB: 6M0J) retrieved from the Protein Data Bank (https://www.rcsb.org, accessed
on 23 June 2021). We utilized the PyMol super command, which super aligns two protein
selections. Super does a sequence-independent structure-based dynamic programming
alignment (unlike the align command) followed by a series of refinement cycles intended
to improve the fit by eliminating pairing with high relative variability [17]. The super com-
mand is more reliable than the align command for proteins with low sequence similarity,
generating a numerical Root-Mean-Square-Deviation (RMSD) value for quantification.

2.4. Docking Analysis

The receptor-binding domains were then computationally docked with the ACE-2
receptor using High Ambiguity Driven Biomolecular DOCKing (HADDOCK 2.4) [17]
(https://wenmr.science.uu.nl/haddock2.4/ accessed on 23 June 2021). All the sequences
were divided into two sets; Molecule 1 was the RBDs produced from trRosetta, and
Molecule 2 was the ACE-2 receptor from PDB: 6M0J. HADDOCK 2.4, an experimentally
based docking program, was used to dock Molecule 1 to Molecule 2 uploaded respectively
with a default setting. To launch the docking process, we selected the active residues for
Molecule 1, roughly 151-186 aa, which was closest to the ACE-2 receptor (residues 1-48 aa)
of PDB: 6M0J’s interaction interface that is corroborated by literature [19]. Furthermore,
the PRODIGY (protein binding energy prediction) webserver (https://wenmr.science.uu.
nl/prodigy/ accessed on 23 June 2021) was used to calculate the binding affinity either as
Gibbs free energy (∆G, kcal/mol) or as a dissociation constant (Kd, M) at 25 ◦C between
the RBD’s and the ACE-2 receptor. Molecule 1 and Molecule 2 were labeled as different
chains and merged into a single file using PyMol to upload with a default setting [20].

2.5. In Vitro Test

All chemicals are reagent grade and were obtained from Millipore-Sigma-Aldrich Co.,
St. Louis, MO, USA and all tissue culture reagents were from Life Technologies (Invitrogen
TM) Framingham, MA, USA.

1. SARS-CoV-2 Spike protein (Sp) expression constructs: Spike protein (Sp) constructs
were used in the experiments: mRFP-Spike Protein (Sp) Original (mRFP-Sp WT, EX-
NV219-M55) and Kappa (B.1.617.1, mRFP-Sp Kappa, EX-NV248-M55) were purchased
from Genecopoeia, Inc. Rockville, MD, U.S.A. Kappa includes the following eight
mutations: K19R, G142D, E154K, L452R, E484Q, D614G, P681R, and Q1031H. Human
ACE-2 conjugated mono-GFP (ACE-2-GFP, EX-U1285-M98) was also acquired from
Genecopoeia, Inc.

(1) Based on the kappa plasmid, the delta (B.1.617.2, mRFP-Sp Delta) was gener-
ated in the lab with the following nine mutations: T19R, 156&157del, R158G,
L452R, T478K, D614G, P681R, and Q1031H.

(2) As predicted, Threonine (Thr) at residue 500 of the delta variant was mutated
to Arginine (Arg) to obtain the T500R mutations (mRFP-Sp Delta-T).

https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb
https://pymol.org/2/
https://pymol.org/2/
https://www.rcsb.org
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/prodigy/
https://wenmr.science.uu.nl/prodigy/
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2. Antibodies: Primary antibodies used were SARS-COV-2 Spike Protein (E7B3E) (Cell
Signaling Technology, Inc. Danvers, MA, U.S.A. #63847, rabbit monoclonal, 1:2000
for WB, 1:200 for IF). SARS-COV-2 Spike Protein (2B3E5) (Cell Signaling Technology,
Inc. #52342S, mouse monoclonal, 1:2000 for WB, 1:200 for IF). SARS-CoV-2 Spike
RBD (R&D Systems, Inc. Minneapolis, MN, U.S.A. AB#105401, mouse monoclonal,
1:2000 for WB, 1:200 for IF). Beta-actin (13E5) (Cell Signaling Technology, Inc. #4970,
rabbit monoclonal, 1:2000 for WB, 1:200 for IF). Beta-actin (C4) (Santa Cruz Bio, Santa
Cruz, CA, USA, SC-47778, mouse monoclonal, 1:1000 for WB, 1:100 for IF). Secondary
antibodies for immunofluorescence were Alexa Fluora® 488- and Alexa Fluor® 594
conjugated secondary antibodies (Jackson ImmunoResearch, West Grove, PA, USA)
and IRDye 800CW Goat anti-Rabbit (Li Cor Biosciences, Lincoln, NE, USA, 926-
32211, 1:20,000) and IRDye 680LT Goat anti-Mouse IgG (Li Cor Biosciences, 926-68020,
1:20,000) for Western blotting.

3. Cells lines and culture: HEK 293T cell line (CRL-11268TM, ATCC) and COS7 cells
(CRL-1651TM, ATCC) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)
with 10% FBS and incubated in a humidified incubator at 5% CO2 and 37 ◦C.

4. Soluble Spike proteins preparation from cells (Freeze & Thaw lysis): 293T cells were
set up in p100 dishes and transfected with 8 µg of different Sp plasmids with Lipo-
fectamine 3000 (Thermo Fisher Scientific, Waltham, MA, USA) for 2 days. Cells were
then scraped and transferred to 1.5 mL microfuge tube with 1 mL ice-cold PBS. After
centrifuge, the pellet was resuspended in 500 µL lysis buffer (600 mM KCl, 20 M
Tric-Cl (pH 7.8), and 20% Glycerol) with protease inhibitor (Roche Applied Sciences,
Penzberg, Germany). The tube was sealed and frozen using liquid nitrogen, then
thawed on ice. After three rounds of the “Freeze–Thaw” process, 250U of Benzonase
was added to digest DNA for 10 min at RT (or alternatively via sonication). Af-
ter a quick vortex, the samples were centrifuged with maximum speed for 30 min
in a cold room, and 100 µL per tube of supernatants was aliquoted and saved as
ligand samples.

5. Ligand bound assay and Western blot analysis: COS7 cells were set up in p60 dishes.
After overnight plating, the total amount of Sp proteins (around 300 ng) was added
to the cells. Then, 2 h after incubation, the cell dishes were washed twice with PBS
for 5 min to remove unbound ligands. A total of 125 µL SDS sample loading buffer
was used to lysis cells and collected into the 1.5 mL micro-centrifuge tubes. The cell
lysates in the tube were heated at 100 ◦C for 7 min and centrifuged for 5 min. The
standard purified His-Sp (R & D System) was used as control for quantification. One-
third of the total lysates were loaded to sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) gel and transferred to a PVDF membrane (Immobilon-FL
membrane, 0.45 µm, IPFL00010). The membranes were blocked in Intercept Blocking
buffer (Li Cor Biosciences, 927-60001) for 30 min at room temperature and then
incubated overnight at 4 ◦C with primary antibodies. The next day, membranes were
incubated at room temperature for 1 h with secondary antibodies. The fluorescent
signal was assayed using an Odyssey Infrared Imaging system (Li Cor Biosciences).

6. Immunofluorescence: COS 7 Cells cultured on coverslips after spike protein adding
were fixed in 4% paraformaldehyde for 12 min at room temperature (RT), then perme-
abilized TBS with 0.1% Triton X-100 for 5 min. After blocking with 5% BSA/TBS for
30 min at RT, the coverslips were incubated with either primary individual antibodies
or combined antibodies from different species in at cold room overnight, followed
by incubation of primary antibodies overnight, secondary antibodies for 1 h and
DAPI-Fluoromount-G® (0100-20; South-ern Biotech, Birmingham, AL, USA) stain.
Images were analyzed using a fluorescence microscope (Nikon Image system).

7. Ligand-receptor endosomal assay: COS7 cells were cultured on coverslips overnight
and added with ligand (mRFP-Sp) for 2 h, then cells on a coverslip were quickly
treated with 0.025% Trypsin for 1 min after being washed with PBS. Next, cells were
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stained following the immunofluorescence procedures. Heatmap was considered for
the intensity comparison (LUT).

8. Cell in-fusion assay: 293T cells were set up in p60 dishes and individually transfected
with 3 µg of different mRFP-Sp plasmids (Sp Delta and Sp Delta T500R), mRFP, eGFP,
and ACE-2-GFP with Lipofectamine 3000 for overnight. All transfected cells were
trypsinized and resuspended in a 4 mL culture medium. Different combinations
were set (eGFP + mRFP, eGFP + mRFP-Sps, ACE-2-eGFP + mRFP, and ACE-2-eGFP +
mRFP-Sps), an example like: 0.5 mL of ACE-2-eGFP transfected 293T cells was mixed
with 0.5 mL of 293T cells with mRFP-Sp delta, in 15mL falcon tubes for 15 min at
37 ◦C cell incubator, then diluted in the 3mL culture medium and settled down on the
coverslips for live imaging and were monitored for 4 h, 8 h and overnight to check
cell in fusion statues. In-fusion percentages of ACE-2-eGFP were compared among
different spike protein variants or mutations.

9. Statistical Analysis: The data were analyzed by Student’s t-test or two-tailed t-tests
(two-way ANOVA) with the Prism 8 (GraphPad) or Excel (Microsoft) software.
p-values < 0.05 were considered statistically significant.

3. Results

Previous bioinformatic analyses have shown that the spike protein RBD generates pro-
teins that are essential for host binding and prone to new mutations [40,41]. To investigate
and compare the RBD, we initially used the amino acid sequences of the Original variant
obtained from NCBI and then manually edited the residues for the other five naturally
occurring variants, namely the Alpha variant, Beta variant, Gamma variant, Delta variant,
and Omicron variant (Figure S1). These sequences were then processed using trRosetta
suite and AlphaFold v2.1.0 individually. Although the experimentally solved structures are
available on public databases, our aim was to evaluate the algorithm so that it can regularly
predict protein structures even in cases when no similar structure is known/available. The
predicted models generated by trRosetta and AlphaFold v2 were then superimposed against
the laboratory derived PDB: 6M0J through the “super” command of PyMol (Figure 1). We
observed that for most pairs of the trRosetta-generated models and PDB: 6M0J residues, the
RMSD ranges from 0.69 to 0.77 Å, and AlphaFold-generated models give RMSD ranges from
0.83 to 1.6 Å. Lower RMSD indicates a good alignment of the RBDs. Thus, we considered
trRosetta-generated models for further analysis (Table 1). Qualitative structural changes
observed through superimposing the trRosetta-generated naturally occurring variants in
Figure 1A-a suggest that the mutations were focused on the interaction interface located
on the bottom section of the RBD (Figure 1A-b,A-c). The Receptor-Binding Motif (RBM) is
the main functional motif in the RBD, and upon highlighting the residues (Figure 1B-a) of
6M0J, we observe structural changes in comparison to the Delta and Omicron sequences
(Figure 1B-b,B-c).

Table 1. RMSD (root mean square deviation of atomic positions) score for both trRosetta-generated and
AlphaFold-generated RBD models superimposed on PDB: 6M0J. The root-mean-square deviation of
atomic positions is the measure of the average distance (Å) between the atoms of superimposed proteins.

Models Root-Mean-Square Deviation (RMSD)
for trRosetta-Generated Models (Å)

Root-Mean-Square Deviation
(RMSD) for AlphaFold

v2.1.0-Generated Models (Å)

Original Variant 0.705 for 1434 atoms 1.257 for 1442 atoms

Alpha Variant 0.694 for 1446 atoms 1.596 for 1444 atoms

Beta Variant 0.777 for 1434 atoms 0.969 for 1505 atoms

Gamma Variant 0.762 for 1474 atoms 1.199 for 1488 atoms

Delta Variant 0.785 for 1466 atoms 1.407 for 1370 atoms

Omicron Variant 0.732 for 1421 atoms 0.828 for 1482 atoms
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The trRosetta-generated structures of RBD were then docked with the ACE-2 receptor
from 6M0J using the HADDOCK server. The HADDOCK program generated several
complexes and clustered them. The cluster with the highest HADDOCK score and lowest
electrostatic energy was selected. The best complex was chosen based on cluster size,
HADDOCK score, and electrostatic energy. The HADDOCK generates water-refined
interaction conformations of both interacting molecules and groups similar conformations
in clusters. The superimposed structures of all the complex structures in one cluster were
generated along with the plots of HADDOCK scores, Cluster size, RMSD, Van der Waals
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energy, electrostatic energy, desolvation energy, restraint violation energy, buried surface
area, and Z-score. The best possible interaction complex for all receptors with the best
HADDOCK score was then selected for refinement (Table S2). Considering the fact that
both the Original variant sequence and the crystal structure of SARS-CoV-2 spike RBD
in 6M0J was from the Wuhan strain of COVID-19, the HADDOCK scores from the RBD-
ACE2 complex of the Original variant and the 6M0J were taken as thresholds. The docked
complexes were further analyzed in PRODIGY for the number and types of interactions
between the RBD and the ACE-2 receptor. PRODIGY generates a binding affinity value (∆G)
and a total number of interactions between both molecules. Additionally, the information
on the total number of charged–charged interactions, charged–polar, charged–apolar, polar–
polar, polar–apolar, and apolar–apolar interactions was generated in the analysis provided
in Table S3.

Previous literature has established that the spike protein of SARS-CoV-2 binds to the
ACE2 receptor via its receptor-binding domain (RBD). The cartoon representation of the
refined structure and interaction complexes generated by PRODIGY was then visualized
on PyMol (Figure 2). We observe that the binding affinity (∆G) of the Alpha and Omicron
variants are the lowest (−14.5 kcal/mol and −14.2 kcal/mol, respectively). The higher
binding interaction with the ACE2 receptor might reflect a greater ability for potential
immune evasion risk and high transmissibility [42] as we have observed with the Omicron
variant. We also observe the presence of hydrogen bonding between G496 of the RBM and
K671 of the ACE-2 receptor of the Original variant. In addition, T500 changes for the Alpha,
Beta, and Gamma variants, where we can also see it bind to P499 of the RBM (Figure 2D–F).
However, the binding of G496 is consistent between the Delta and Omicron variants, even
with the natural mutation of G496S in Omicron (Figure 2G,H).

Considering the variations of interactions observed between the residues of the RBM
of the naturally occurring variants binding to K671 of the ACE-2 receptor, we generated
new variants with mutations on the corresponding amino acids on the RBM of the naturally
occurring variants and grouped them as Variant 1 to Variant 11 (Table 2). To understand
if the change in the interaction between K671 and P499/T500 affects the binding affinity,
Variant 1 was generated with all the mutations found in the Alpha and Delta variants.
Then, we generated various known point mutations in the Original variant, such as N501Y
(Variant 2) and S494P (Variant 3). Since S494P is absent in the Delta and Omicron vari-
ants (Figure S1), we generated those mutations to see the alterations in their interactions
(Variants 4 and 5). We then generated mutations at P499 and T500, as these were part
of conserved residues in the naturally occurring variants. Considering the Mutagenetix
database, http://mutagenetix.utsouthwestern.edu accessed on 23 June 2021, we selected
the most possible incidental mutation of Proline to Serine (Variant 6, 7, and 8) for P499 and
the least possible mutation of Threonine to Arginine (Variant 9, 10, and 11) for T500.

All the “artificial” variants underwent the same aforementioned methodology to
generate a PDB structure using trRosetta with RMSD ranging from 0.59 to 0.81 Å, which
indicated a good alignment of the RBDs (Table S4) and was further analyzed using HAD-
DOCK and PRODIGY.

The trRosetta-generated structures of RBDs of the artificially generated variants were
then docked with the ACE-2 receptor from PDB: 6M0J using the HADDOCK server. Vari-
ants 2, 3, 6, 7, and 8 showed lower HADDOCK scores compared to the naturally occurring
variants, suggesting a stronger interaction between their RBDs and the ACE-2 receptor
(Table S5). Taking into account that Variant 2 [43] and Variant 3 [43] are already recognized
and have been reported to enhance the affinity of RBDs to the ACE-2 receptor, we con-
sidered looking through the other mutations that currently do not exist, such as Variant 6
(−123.5 ± 1.2), Variant 7 (−111.8 ± 2.9), and Variant 8 (−127.1 ± 3.1). These were further
analyzed in PRODIGY for the number and types of interactions (Table S6).

http://mutagenetix.utsouthwestern.edu
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cartoon representation of the interaction between the Omicron RBD and the ACE-2 receptor.
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Table 2. Artificially generated variants with their residues mutated that do not naturally exist as a
pathogenic variant.

Type of Variants Residues Mutated

Variant 1 Mutations from both the Alpha and Delta variants
Variant 2 Mutation only at N501Y residue in the Original variant
Variant 3 Mutation only at S494P residue in the Original variant
Variant 4 Mutation only at S494P residue in the Delta variant
Variant 5 Mutation only at S494P residue in the Omicron variant
Variant 6 Mutation only at P499S residue in the Original variant
Variant 7 Mutation only at P499S residue in the Delta variant
Variant 8 Mutation only at P499S residue in the Omicron variant
Variant 9 Mutation only at T500R residue in the Original variant
Variant 10 Mutation only at T500R residue in the Delta variant
Variant 11 Mutation only at T500R residue in the Omicron variant

The cartoon representation of the refined structure and interaction complexes gener-
ated by PRODIGY is provided in Figure 3B,D. The P499S mutation in Delta showed new
interactions of S499 with T41 of the ACE-2 receptor (H-bond length of 3.2 Å), G498 with
A38 (H-bond length of 2.1 Å), and that G496 bonds with L353 (H-bond length of 2.5 Å)
instead of K671 (H-bond length of 3.2 Å) (Figure 3B). The P499S mutation in Omicron
shows interactions of T500 and S496 with K671 of the ACE-2 receptor (H-bond length
of 3.5 Å and 3.2 Å, respectively), which was initially absent in the naturally occurring
Omicron variant. The mutation also changes the interaction of Y501 with G644 to Y501
with T642 (Figure 3D). The interaction was further studied through PRODIGY, where the
presence of P499S in Delta and Omicron showed binding affinities of −12.2 kcal/mol and
−14.5 kcal/mol, respectively, in comparison with Delta to ACE-2 (−13.8 kcal/mol) and
Omicron to ACE-2 (−14.2 kcal/mol) (Figure 3). Additionally, both P499S mutations in
Delta and Omicron show increased electrostatic energy in comparison to the mutation in
the Original variant, which might be responsible for the higher binding affinity. To further
understand the interaction of T500 with K671, we created T500R mutations in the Origi-
nal, Delta, and Omicron variants. We observed a major difference in the binding affinity
between the naturally occurring variants and the mutated variants. This was reflected in
the cartoon representation, which suggests a complete loss of the H-bond of K671 in Delta
and of G644 in Omicron. However, both mutations still show a decent binding affinity
compared to other variants (Figure 3). Additionally, variations in electrostatic energy and
Van der Waals energy were clearly observed, which might be responsible for the alterations
in binding affinity.

To determine the efficacy of whether the predicted T500R mutation changes the cell
binding affinity in vitro, we carried out some preliminary tests for its binding to the spike
protein and infiltration using a cell-cell fusion assay. Initially, plasmids of the Delta variant
and the T500R Delta variant were made in conjugation with mRFP as described in Materials
and Methods (Figure S1). To prepare the ligand in natural statue, soluble lysates were
prepared via the “Freeze–Thaw” method from transfected 293T cells (Figure S2A). After
filtering through the low retention 0.25 µm filter, the cell lysates containing spike proteins
were added into pre-cultured COS7 cells either on dish for Western blot or coverslip for
staining. Compared with mRFP, the mRFP-Sp was detected on cells, with a majority
surrounding the membrane, and the 100 ng/mL saturation scale was reached (Figure S2B).
To load the same amount of spike proteins, the lysates from the Delta variant and its
mutation were quantified via Western blot with standard purified spike protein (purchased
from company) (Figure 4A-a). Then, the cell-bound assay was performed to dissect the
difference between the Delta variant and its mutation (T500R). Figure 4A-b surprisingly
shows that the T500R mutation enhanced the cell bound to 30% (Figure 4C) after statistical
analysis and was further confirmed with immunofluorescence (Figure 4B).
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Figure 4. T500R increases the spike protein’s cell-bound affinity. (A-a) Quantifications of spike protein Delta variant (Delta) and Delta T500R (Delta-T) in transfected
cell lysates (before binding). The purchased His-Sp was loaded for quantification. (A-b) More bound spike protein on cells was detected in T500R mutation. Spike
proteins (Delta and Delta-T) were added to COS7 cells for bound, and the cell uptake level of spike proteins was checked via WB. Three experiments were repeated.
(B) T500R mutation resulted in more endosomal entering. Delta and Delta-T were added to COS7 cells on coverslip and stained with actin (green) and spike protein
(red) after a one-minute treatment with 0.0025% Trypsin to remove surface unbound ligands. Heatmap (LUT) was presented to indicate the intensity of spike
protein’s stain. Warm color means high intensity. (C). Graph representation of the ratio of T500R/Delta (Delta-T/Delta) band’s intensity. (D) Cell in-fusion assay was
performed to show T500R mutation enhances the ACE-2 binding affinity. Cell in-fusion was observed in the combination of ACE2-eGFP with RFP Sp-Delta or
Delta-T. The efficacy was calculated as the percentage of Cells No. of “overlap of RFP with GFP”/Cells No. of “GFP”. The number was labeled inside the photos.
Scale bar: 20 µm.
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SARS-CoV-2 uses clathrin-mediated endocytosis to gain access to cells, and thus,
endosomes tend to form inside cells once ligands associate with receptors [44]. More
endosome formation was observed for the Delta T500R mutation under heat map (LUT)
presentation. To investigate whether the increased association of T500R on cells was
through ACE-2, ACE-2-eGFP plasmid was transfected and confirmed correct expression
pattern via antibody (Figure S3A). Next, ACE-2-eGFP and mRFP-Sps (Delta and its T500R
mutation) were transfected for cell in-fusion assay (Figure S3B). This was to monitor the
binding activity of the spike proteins by using SARS-CoV-2-S-transfected 293T as effector
cells and ACE-2-expressing 293T as target cells [45]. The cells in the fusion phenome
were only observed in the combination of ACE-2-eGFP and mRFP-Sps instead of others
(Figure S3C). Compared with Delta, the T500R mutation with ACE-2-eGFP exhibited a high
capacity for membrane fusion and was efficient in mediating virus fusion and entry into
target cells.

The in vitro data suggest that T500R enhances the spike protein’s efficacy for fusion
via the ACE-2 receptor’s binding affinity and correlates with the in-silico results. These
results indicate that our algorithm and simulations agree with the in vitro results, and thus
mutations at P499 or T500 that equally increase the RBM’s binding affinity to ACE-2 could
still be a potential target.

4. Discussion

The widely applied and most popular web-based platform trRosetta suite has resolved
some of the greatest challenges in protein folding, presenting a new era of opportunities.
It highlights the combination of Rosetta-based optimization with predicted information
and additional components of the Rosetta energy function, thus generating protein models.
This allows researchers to access de novo protein structures in future research, as protein
folding remains a challenging field among researchers. Probing this technology and its
myriad uses will similarly yield numerous applications that can further our fundamental
understanding of life. We here evaluate and demonstrate an accurate and fully automated
pipeline to predict protein folding and its key interactions with receptors. This specific
approach of using trRosetta algorithm was intriguing to us because it was an available web-
based platform and presented a scalable, efficient method for future researchers to conduct
preliminary analysis into new mutations and variants that may not yet exist under natural
conditions. Additionally, several studies have been reported on protein/peptide predic-
tion of/against novel coronavirus SARS-COV-2 using trRosetta modeling suite [23,46–48].
Instead of time-consuming laboratory work to alter the genetic sequences of pathogens,
large-scale computer generation of proteins could provide an avenue to narrow down
mutations to study, discern patterns that can only be seen with large quantities of data and
identify new therapeutics.

Previous studies conducted on COVID-19 pathogenesis suggest that its spike protein
is critical in both ACE-2 receptor binding and viral fusion into the host cell membrane [49].
Indeed, the spike protein has also been the primary immunogen target for the currently
available COVID-19 vaccines [50,51]. Until now, a countless number of mutations (e.g.,
T19R, A67V, D80A, D80G, T95I, G142D, Y145D, R158G, L212I, D215G, A222V, N234Q,
W258L, N331Q, G339D, N343Q, R346K S371L, S373P, and S375F) have been reported in the
S1 protein. Our approach was first to evaluate both trRosetta and AlphaFold algorithms
with the RBD sequence of naturally occurring variants whose mutations were already
previously characterized, namely the Original variant from the Wuhan, China outbreak,
the Alpha variant, the Beta variant, the Gamma variant, the Delta variant, and the Omicron
variant. The generated models were superimposed on the RCSB PDB:6M0J structure.
The RMSD values from the AlphaFold varied greatly, so we used the trRosetta-generated
models and applied the same methodology to the mutant variants [46]. The aim was to
search for and identify a potential mutation with high binding affinity to the ACE-2 receptor
in comparison to the known mutations.
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This study was mainly focused on investigating the Receptor-Binding Motif (RBM)
of the spike protein, as that portion of the protein is what specifically interacts with the
ACE-2 receptor during viral infiltration and thus increases the transmissibility. The “super”
command on PyMol allowed for a simple yet direct way to establish and measure the differ-
ences and accuracy of the RBD structures between different variants. After superimposing
the variants, we could see some obvious differences (beta sheets disappearing, alpha helices
having different amino acids on them, etc.) (Figure 1). The qualitative structural observa-
tions were performed as a preliminary way to compare the variants. The generated models
were further validated using the modeling approach considering the interaction between
the RBD and the ACE-2 receptor. The interaction was stabilized by several non-covalent
interactions and distinctive binding stimulations. We observe a higher binding interaction
of the Alpha and Omicron variants in comparison to the Original variant, suggesting that
these variants could be highly transmissible. The high transmissibility of the Alpha variant
resulted in the origin of the third wave of COVID-19 encountered in France [52]. However,
the introduction of vaccinations coupled with acquired collective immunity to this allowed
the expansion and circulation of a better-adapted variant, Delta, which eventually was mon-
itored with vaccine introduction. Later, the reduced efficacy of vaccinations contributed to
the selection of the Omicron variant, which showed a greater temporal shift [52]

The identification of P499S as a potential deleterious mutation highlights the fact that
there are numerous potentially dangerous mutations that could give rise to even stronger
variants than the Delta and Omicron variants causing a significant number of cases around
the globe. Such mutations are not an improbability either, as the various case surges around
the world present ample opportunity for various point mutations to be selected and for
these variants to cause significant damage. This has already been proven by the various
mutations increasing their presence in the gene pool significantly, as their docking ability
may have the potential to supersede currently fixed mutations. On correlating the binding
affinity, we also investigated the residue T500 and created the least likely mutagenesis to
observe its effect on binding affinity. To evaluate the efficacy of the predicted mutation,
we undertook a preliminary investigation of the mutation in vitro by monitoring the spike
protein binding and cell-infusion assay, which correlated with the in-silico data. Although
further experimental testing on P499S and T500R must be undertaken to confirm these
conjectures, it would be irresponsible to ignore the potential threat of a more serious variant
mutating at a time when transmission remains high across the globe.

5. Conclusions

In conclusion, we suggest that the higher binding affinity of P499S and T500R indicates
that they could be one of the potential mutations yet to be present in nature. Omicron is a
known fast-paced variant regarding transmissibility, and as per our data, these mutations
show higher binding affinity in comparison to the Omicron variant. This presents additional
corroboration that our computational method may be useful in determining potential future
mutations. This computational model for variant investigation and de novo prediction
requires further refinement. However, it still poses a significant opportunity for researchers
to identify and prophylactically predict dangerous variants in relation to emerging diseases.
Although the model cannot substitute lab work, it can complement research by successfully
presenting a wide variety of potentially deleterious mutations and variants for broad
scientific inquiry in the field.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom12111665/s1, Figure S1: Scheme of COVID-19 Spike protein. (A) Simple diagram of
Spike protein. The three antibodies’ recognized regions are shown. RBD: Receptor-Binding Domain;
RBM: ACE-2 Receptor-Binding Motif; FP: furin process domain; (B) Amino acid alignment of RBM
in all different known variants. (C) Spike mutation of Delta Variant was tagged with mREF in N
terminal. T500% mutation was mutated in the RBM mutation. Figure S2: mREF-Spike protein binds
to cell membrane. (A) Strategy of cell lysate preparation and ligand-cell-bound assay. 293T cells
were transfected with plasmids for two days, and then processed cell lysis was via freeze–thaw

https://www.mdpi.com/article/10.3390/biom12111665/s1
https://www.mdpi.com/article/10.3390/biom12111665/s1
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method. After quantification by Western blot, the exact number of protein lysates were filtered to ass
in pre-cultured COS 7cells. (B) mRFP-Sp protein was detected majority around cell surface either via
RFP (data not shown) or Spike protein antibodies’ staining. (C) Binding affinity by dosage. Different
concentrations of spike protein lysates were added to measure the binding curve. Around 100 ng spike
protein is reaching the station platform. Scale bar: 20 µm. Figure S3: Cell in fusion assay. (A) ACE2-
eGFP was transfected in COS7 cells and correctly confirmed expression pattern by ACE2 antibody.
(B) 293T cells were separately transfected with eGFP, ACE2-eGFP, mRFP, and mRFP-Sp. Overnight
transfected cells were trypsinized, and ACE2-eGFP was mixed with mRFP-Sp for cells in fusion assay.
Other combinations were taken as control. (C) Cell in fusion was only observed in the combination
of ACE2-eGFP and mRFP-Sp. No infusion phenome was observed in control combinations. Scale
bar: 20 µm. Table S1: The list of mutations that each variant possessed compared to the original
spike protein sequence from the COVID-19 virus pathogen identified in Wuhan, China, provided
by the CDC (https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html,
accessed on 23 June 2021). Table S2: The table represents the HADDOCK parameters of naturally
occurring variants after refinement. Table S3: The table represents the binding affinity and number
of interactions between the trRosetta-generated RBDs and the ACE receptor of 6M0J generated by
the PRODIGY server. Table S4: RMSD (root mean square deviation of atomic positions) score for
trRosetta-generated mutated RBD models. The root-mean-square deviation of atomic positions
is the measure of the average distance (Å) between the atoms of superimposed proteins. Table
S5: The table represents the HADDOCK parameters of all the manually mutated variants after
refinement. Table S6: The table represents the binding affinity and number of interactions between
the trRosetta-generated RBDs and the ACE receptor of 6M0J generated by the PRODIGY server.
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