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Abstract: Mutations, especially those at the protein-protein interaction (PPI) interface, have been
associated with various diseases. Meanwhile, though de novo mutations (DNMs) have been proven
important in neuropsychiatric disorders, such as developmental delay (DD), the relationship between
PPI interface DNMs and DD has not been well studied. Here we curated developmental delay
DNM datasets from the PsyMuKB database and showed that DD patients showed a higher rate
and deleteriousness in DNM missense on the PPI interface than sibling control. Next, we identified
302 DD-related PsychiPPIs, defined as PPIs harboring a statistically significant number of DNM
missenses at their interface, and 42 DD candidate genes from PsychiPPI. We observed that PsychiPPIs
preferentially affected the human protein interactome network hub proteins. When analyzing DD
candidate genes using gene ontology and gene spatio-expression, we found that PsychiPPI genes
carrying PPI interface mutations, such as FGFR3 and ALOX5, were enriched in development-related
pathways and the development of the neocortex, and cerebellar cortex, suggesting their potential
involvement in the etiology of DD. Our results demonstrated that DD patients carried an excess
burden of PPI-truncating DNM, which could be used to efficiently search for disease-related genes
and mutations in large-scale sequencing studies. In conclusion, our comprehensive study indicated
the significant role of PPI interface DNMs in developmental delay pathogenicity.

Keywords: developmental delay; de novo mutation; protein-protein interaction; PPI interface; protein
interactome; PsymuKB

1. Introduction

Developmental Delay (DD) is a neurodevelopmental psychiatric disorder that affects
individuals’ learning, cognitive, and intellectual abilities from an early age [1]. Several
studies have shown that 12–16% of children in America have at least one developmental
delay symptom (such as learning disability, speech delay, and sensory impairment) [2,3].
Due to the unclear pathogenesis of developmental delay, one-half of the patients cannot
receive the diagnosis on time [4]. Whole-exome sequencing (WES) studies have provided
evidence that de novo mutations (DNMs) are strongly associated with the cause of devel-
opmental delay [5–14]. Moreover, mutations that perturb the function and structure of the
protein are risk factors for developmental disorders [15–18]. However, only a rare portion
of mutations are linked to the cause of disease. How to effectively locate the pathogenic
mutations and relative genes is a question that needs to be answered.

Proteins interact with other proteins to form complexes to perform functions and
complete molecular processes in cells [19]. Protein-protein interactions (PPIs) play a crucial
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role in signal transduction, cell metabolism, and other critical biological processes. The
amino acids at the PPI interface determine the specificity and strength of PPIs [20]. Once
the mutation alters PPI interface residues, it is likely to perturb the normal interaction
and generate disease phenotypes. Such mutations would be identified as disease-related
mutations [21]. Research shows that disease-related mutations often prefer to localize at
PPI interfaces. [22–25]. Cheng et al. [22] found that somatic mutations are enriched at
the PPI interface in cancer patients, and the mutation-enriched PPIs are highly correlated
with the medicine sensitivity and survival period of patients. Yan et al. [26] found that
mutations at the SPRED1-NF1 interface can cause Legius syndrome by reducing the strength
of PPI. Therefore, studying the PPI interface mutations can provide novel insights to
explain disease mechanisms. Nevertheless, such studies are still lacking in the field of
neurodevelopmental disease.

Since the PPI interface residue shows a higher evolutionarily conservation [26–30],
the pinpoint missense mutation at the PPI interface might have a more deleterious out-
come. Previous studies have shown that protein interfaces are enriched in disease-causing
missense mutations compared to other protein regions [31,32]. PPI interface DNM mis-
senses have been proven to correlate with the etiology of cancer and autism spectrum
disorder [22,26,31,33]. However, the association between PPI interface mutations and de-
velopmental delay has not been well-studied. To answer the question, we established a
framework to evaluate the harmfulness and pathogenesis of PPI interface DNM missenses
in developmental delay.

To investigate the contribution of DNMs missense on the protein-protein interaction
interface to developmental delay, we collected DD and sibling controls’ DNM missenses
from the PsyMuKB database [34] (Supplementary Table S1). Protein-protein interaction
interface residue data were collected from the interactome INSIDER database [22]. We
first compared the mutation rate and deleteriousness of DD PPI interface DNM missenses
with sibling control. Further, we investigated the network properties of proteins that
correspond to PPIs that are significantly enriched with PPI interface DNMs missense.
Finally, we demonstrated that genes that carry DNM missenses significantly enriched in the
PPI interface were associated with disease pathogenesis through gene enrichment analysis.
Our study indicated that PPI interface DNMs play a critical role in the pathogenesis of
developmental delay. Moreover, our PPI-based framework provides an efficient method to
localize disease-related genes and mutations in human neurodevelopmental diseases.

2. Materials and Methods
2.1. Collection and Preparation of DNM Missenses and PPI Interface Data

We downloaded the de novo mutations data from the PsyMuKB database (http:
//psymukb.net (accessed on 7 July 2022)) [34] for developmental delay and sibling con-
trol subtypes. De novo missense mutations were included in this study. We filtered out
frameshift, synonymous, and all non-missense mutations manually. As a result, 4712 in
developmental delay and 2074 in sibling control DNM missenses were applied in this study.

We used ANNOVAR (https://doc-openbio.readthedocs.io/projects/annovar/en/
latest/ (accessed on 7 July 2022)) to measure the functional impact of DNM missenses by
both SIFT and Polyphen-2 scores [35] SIFT predicts whether an amino acid substitution
affects protein function based on sequence homology and the physical properties of amino
acids. SIFT can be applied to naturally occurring nonsynonymous polymorphisms and
laboratory-induced missense mutations [36]. The SIFT score of a mutation ranges from 0–1,
and can be classified as deleterious (SIFT ≤ 0.05) and tolerated (SIFT > 0.05). PolyPhen-2
(Polymorphism Phenotyping v2 (http://genetics.bwh.harvard.edu/pph2/ (accessed on
7 July 2022)) is a tool that predicts the possible impact of an amino acid substitution on the
structure and function of a human protein using straightforward physical and comparative
considerations [37]. The Polyphen-2 score of a mutation ranges from 0–1, and can be
classified as probably damaging (≥0.957), possibly damaging (0.453 ≤ polyphen-2 ≤ 0.956),
and benign (≤0.452). We obtained SIFT and Polyphen-2 scores from the ANNOVAR

http://psymukb.net
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annotation database in this analysis. When the DNM missenses’ amino acid change hits the
protein interface residue index, we consider such mutations occurring on the PPI interface.

Protein-protein interaction interface data were downloaded from the interactome
INSIDER database (http://interactomeinsider.yulab.org/ (accessed on 7 July 2022)) [22]. We
only chose the protein-level residue data with the highest confidence interfaces of H. Sapiens
from the database. The highest confidence interface included interface residues calculated
from PDB structures, homology models, and the “Very High” and “High” interface potential
categories from ECLAIR. We used the Uniprot ID mapping tool (http://www.uniprot.org/
uploadlists/ (accessed on 7 July 2022)) [38] to convert Uniprot ID to Gene ID.

2.2. Enrichment of DNM Missenses on Interaction Interfaces

A total number of 473 in DD and 125 in control proteins with PPI interface DNM
missenses containing at least one interaction interface and one known domain was included
for calculating DNM missense distribution. The protein sequences were divided into
‘interaction interface’, ’domain’, and ‘other’. Interaction interfaces were determined by
the interactome INSIDER database [22]. Domain refers to protein domains that exclude
interaction interface in INSIDER. The rest of the sequences were considered as ‘other’. The
possibility of mutations occurring in the above three regions p was calculated by adding
the total sequence length of each region in all proteins and dividing it by the length of all
proteins combined. The number of observed mutations in each region was called S, and N
is the total number of dnMis missense mutations. An exact binomial test was computed
from p, S, and N. CIs are based on the 95% CI for an exact binomial and then transformed
to the risk ratio (enrichment).

2.3. Significance Test of PPI Interface Mutations and Identification of PsychiPPI

A pair of protein-protein interactions harboring a statistically significant excess number
of PPI interface DNM missenses in one or the other of the two protein-binding partners
would be defined as a PsychiPPI. For each gene gi and respective interfaces, we assumed
that the observed mutation number for a given interface follows a binomial distribution,
binomial (T, pgi), T is the total mutation number observed in one gene, and pgi is the
estimated mutation rate for the region of interest. Length(gi) is the sequence length of the
protein product of gene gi. pgi = length o f interaction inter f ace

length(gi)
. For each interface, we computed

the p-Value—the probability of observing > k mutations around this interface out of T total
mutations observed in this gene—using the following equation:

P(X ≥ k) = 1 − P(X < k) = 1 −
k−1

∑
x=0

(
T
x

)
px

gi(1 − pgi)
T−x

The significance of each PPI was defined as the p-Values of two proteins. All p-Values
were adjusted for multiple testing using the FDR correction. A PPI will be recognized as
PsychiPPI only if q ≤ 0.05.

2.4. Interactome Network Analysis of PsychiPPI Identified DD Candidate Proteins

We downloaded the comprehensive human binary protein-protein interactome data
from the interactome INSIDER database (http://interactomeinsider.yulab.org/ (accessed on
7 July 2022)) [22]. The interactome network only included the PPIs, which are experimen-
tally determined. A total amount of 121,575 PPIs (edges or links) connecting 15,046 unique
proteins (nodes) were present in the network.

The network was visualized using Cytoscape [39]. Protein’s characteristics within the
network, such as degree, betweenness, and the average shortest path length, were analyzed
by Network Analyzer, a plugin in Cytoscape.

http://interactomeinsider.yulab.org/
http://www.uniprot.org/uploadlists/
http://www.uniprot.org/uploadlists/
http://interactomeinsider.yulab.org/
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2.5. Haploinsufficiency and Loss of Function Tolerance Analysis of Candidate Genes

The pLI score shows the tolerance of a candidate gene to the loss of function (Lof)
on the basis of the number of protein-truncating variants. The pLI score ranges from 0–1
for the most tolerant to the most intolerant genes, respectively. A gene with a pLI score
over 0.9 will be classified as intolerant to Lof mutation. We obtained the pLI score for each
candidate gene from ExAC database [40].

Human cells have two copies of most genes. If a mutation alters one copy, the other is
usually sufficient to maintain gene function. For haploinsufficient genes, both copies must
be functioning for the organism to have a normal life. A gene with a haploinsufficiency score
over 0.9 will be classified as a haploinsufficient gene. We acquired the haploinsufficiency
score for each candidate gene from the ClinGen database [41].

2.6. Gene Ontology and Gene Set Analysis

We used Metascape (https://metascape.org/gp/index.html#/main/step1 (accessed on
7 July 2022)) [42] for enrichment analysis of genes in the Gene ontology [43] and Dis-
GeNET [44]. The p-Values were calculated by a hypergeometric test.

2.7. Spatio-Temporal Expression Patterns of Candidate Genes

The Spatio-temporal expression data of respective genes were downloaded from Hu-
man Brain Transcriptome database (https://hbatlas.org/ (accessed on 7 July 2022)) [45].
The expression images displayed log2-transformed signal intensity across analyzed re-
gions/areas and periods using a heat map color scale from low (blue). to high (red).

3. Results
3.1. More De Novo Missense Mutations Were Observed on the Protein-Protein Interaction
Interface in DD Patients Than in Controls

Large-scale studies have reported that disease-related mutations are significantly
enriched at the protein-protein interaction interface [22–25,32,33,46,47]. Those interface
mutations can alter the specific interface residue to influence the original PPI, which is
crucial in the pathogenesis of many diseases and related genes [20,30,46,48]. To study the re-
lationship between de novo missense mutations and developmental delay, we extracted the
DD-related DNM missenses from the PsymuKB database [34]. We then mapped them to the
PPI interface residues using interactome INSIDER [22] to investigate the PPI interface muta-
tion rate between DD patients and sibling control. First, in DD, PPI interfaces covered 4.06%
of proteins harboring these DNM missenses and 10.10% of the DNM missenses located at in-
teraction interfaces (Enrichment = 2.49, p-Value = 2.03 × 10−70 by two-tailed exact binomial
test). In sibling control, DNM missenses showed a relatively lower enrichment at the PPI
interface (observed 6.12% vs. expected 3.49%, Enrichment = 1.75, p-Value= 3.80 × 10−9)
(Figure 1a). Though we observed that both DD patients and sibling controls showed
more enrichment missenses on PPI interaction interfaces than non-interface regions, PPI
interfaces in DD still showed significantly more missense mutations than in controls. We
observed that the rate of missense mutation on PPI interface in DD patients is significantly
higher than in sibling control (10.10% vs. 6.12%, 1.65-fold, p-Value= 5.92 × 10−8 by a
two-tailed Fisher’s test) (Figure 1b). Since PPI interface residues determine the strength
and specialty of protein interactions, which is critical to the protein function, the signifi-
cantly higher PPI interface DNM missense rate and enrichment make PPI interface DNM
missenses could contribute to DD etiology by altering the PPI interface residue.

https://metascape.org/gp/index.html#/main/step1
https://hbatlas.org/
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Figure 1. PPI interface DNMs enrichment and deleteriousness in DD. (a) Distribution of DNMs
from the PsyMuKB across different protein locations. Enrichment was calculated as the ratio of the
mutation rate of DNMs at the protein-protein interaction interface over the possibility of interface
residues on corresponding proteins. p-Values were calculated using a two-tailed exact binomial test
(** p < 0.01; *** p < 0.001). The error bars indicate standard error. (b) Mutations rate of DNM missenses
at protein-protein interaction interface between developmental delay and sibling controls from the
PsyMuKB. p-Values were calculated by a two-tailed Fisher’s test. (c,d) Cumulative frequencies of
SIFT (c) and PolyPhen-2 (d) scores for protein-protein interface mutations.

3.2. DNM Missenses at PPI Interface Are Significantly More Deleterious in DD Patients Than in
Sibling Control

Since the PPI interface residues are more evolutionary conservative than other regions
of proteins, theoretically, mutations that occur in such positions could lead to a delete-
rious result [28–30]. To verify the theory and to study the impacts on PPI interface by
DD DNM missenses, we used SIFT [36] and PolyPhen-2 [37] predictions to evaluate the
possible outcome of both mutations happening on or off the PPI interface between DD and
sibling control. We observed that PPI interface mutations were more likely to be classed
as ‘deleterious’ and ‘possibly damaging’ in SIFT and PolyPhen-2 results (Supplementary
Figure S1a,c). Moreover, SIFT predictions results showed that DD interface mutations were
significantly deleterious than interface mutations from sibling control (81.26% vs. 67.21%,
p-Value = 0.0013 by a two-tailed Fisher’s test) (Figure 1c). The PolyPhen-2 predictions
showed the same result that DD PPI mutations were more likely to damage the protein func-
tion than healthy control (71.46% vs. 52.80%, p-Value = 1.06 × 10−4) (Figure 1d). Moreover,
we found that the PPI interface DNM missenses have a higher chance of being deleterious
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in all of the DD patients’ DNMs (Supplementary Figure S1b,d). Our SIFT and Polyphen-2
prediction results (Figure 1c,d) showed that DNM missenses at DD PPI interface might
have a significantly higher chance of negatively impacting proteins and causing diseases.
Additionally, mutations classified as ‘possibly damaging’ tend to disrupt the respective
PPI [31], suggesting that PPI interface DNM could associate with the pathogenesis of
developmental delay.

3.3. Extracting Potential DD Genes and DNM Missenses by Identifying PsychiPPI

Our results showed that DD DNM missenses preferentially occur at the PPI interface
with deleterious impacts on the proteins. However, it is unlikely that every PPI interface
mutation is pathogenic in DD. Research in other area studies has already shown that PPIs
with interaction interface enriched with somatic mutations could be associated with the
etiology of the disease [32]. Therefore, we hypothesized that PPIs with interacting interfaces
significantly enriched with DNM missense would contribute more to the pathogenesis of
DD than PPIs with unaffected interacting interfaces. Thus, we defined PsychiPPI as those
PPIs harboring a statistically significant excess number of DNM missenses at the interacting
interface (See Methods) to investigate their characteristics. We used a binomial statistical
model to calculate the significance of each PsychiPPI. We observed 302 PsychiPPIs among
a total of 5562 PPIs, reaching a significance level (q-Value ≤ 0.05) after FDR adjustment
(Supplementary Figure S2 and Table S1).

Given the potential severity of PsychiPPIs, we subsequently considered genes carrying
PsychiPPI interface mutations as DD candidate genes and identified 42 DD candidate genes
from PsychiPPI set to investigate the genes which carry the DNM missenses in DD. We
observed that only 24 of 42 have been reported to associate with the etiology of DD, and
18 of them have not been reported yet (Table 1). By visualizing the PsychiPPI network via
Cytoscape [39], we observed that some of the candidate proteins’ mutations could directly
affect the interaction with several partner proteins by altering the specific residue of the
PPI interface (Supplementary Figure S2). For instance, p.Glu198Lys and p.Pro201Arg in
PPP2R5D may directly perturb 40 PPI interactions, and the SIFT and Polyphen-2 results
both showed above missense mutations are deleterious, suggesting that the mutation
impact might disrupt these PPIs. In sum, by defining PsychiPPI and extracting associated
proteins, we systematically defined the potential pathogenic genes with DNM missense
enriched in PPIs interacting interfaces in developmental delay for the following analyses.

Table 1. List of all DD candidate genes identified by PsychiPPI.

Gene Interface/
Mutation Protein Change SIFT Polyphen2 Ref

CREBBP 6/10 p.C1788W
p.H1791D

p.C1370W
p.N1551K

p.Y613C
p.Y651C D D [49]

PPP2R5D 14/16 p.E198K p.P201R D D, P [50]
PUF60 3/3 p.E138K p.D142N p.G448E D, T D, B [51]
KIF1A 4/8 p.R307P p.R465W p.R307Q D D [52]

NAA10 4/5 p.R82Q
p.H114P p.H120P p.R83C D D, P [13]

ZMYND11 5/6 p.R546W
p.C520R

p.C489R
p.R583W p.V493I D, T D, B [53]

DDX3X 8/15
p.C325R
p.R360C
p.A217V

p.P568L
p.C452Y

p.V535I
p.R475G D P, D, B [54]

CSNK2A1 6/8 p.K62R
p.I38M p.F61I p.R191Q D D, P [14]

MECP2 6/9 p.R145C p.R133H p.T158M D D [55]
ATRX 1/2 p.L191F D D [56]

DYRK1A 5/7 p.L169P
p.S337P

p.L198P
p.A277P p.D287V D D [57]
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Table 1. Cont.

Gene Interface/
Mutation Protein Change SIFT Polyphen2 Ref

FOXP1 5/7 p.A534E, p.F500L p.A533E D D [58]
SOX5 2/2 p.A561P p.A596P D D [59]
TCF4 2/4 p.R576W p.R579W D D [60]

CSNK2B 1/2 p.R86C D D [14]

SATB2 5/5 p.E402K
p.R389L

p.R389C
p.R399H p.G515S D D, P [61]

SMC3 3/4 p.G1188A p.Q1147E D D [62]
GRIN2B 3/8 p.E807K p.S628F p.N615K NA D [63]

DMD 1/1 p.D97N D B [64]
U2AF2 1/4 p.T252I D D [65]
RAC1 2/3 p.Y64D p.P73L D P, D [66]
PTEN 2/2 p.L313F p.D268E D, T D, B [67]
EZH2 2/2 p.R679C p.R679H D D [68]
NF1 1/2 p.R1830C D D [69]

STAG1 2/2 p.R216G D D NA
PTPN3 1/1 p.K708N D D NA
PITX2 1/1 p.R115G D D NA

MAP3K7 1/2 p.R238Q D, T B NA
FGFR3 1/1 p.G380R D D NA

TOR1AIP1 1/1 p.R438H D B NA
ING4 1/1 p.Y195C D D NA

NFAT5 1/1 p.E462D D D NA
DOT1L 1/1 p.R292C D B NA
INPPL1 1/2 p.R581Q D D NA
PFKP 2/2 p.I473V p.I651V D B NA

RBM12 1/1 p.V867M D D NA
FGFR4 2/2 p.D507N p.R567G D D, P NA
ALOX5 1/1 p.G528S D D NA
SMAD3 1/1 p.G249C D D NA
TDRD7 1/1 p.T6I D D NA

ANKRD28 1/1 p.G247E D D NA
H2BC3 1/2 p.S56L NA B NA

D, damaging, T, tolerate, B, benign. P, probably damaging. NA, no association reported yet.

3.4. PsychiPPI Affected Hub Proteins in the Human Interactome

Studies in various inherited diseases show that protein networks encoded by disease-
associated genes have distinct interactome network properties, such as degree, betweenness,
and average shortest path length, compared to networks encoded by non-disease-associated
proteins [70,71]. Previous research reported that disease-associated genes tend to encode
hub proteins which mediate a significantly larger number of protein interactions than other
proteins in the human protein interactome [72,73]. To investigate if PsychiPPI proteins
carrying mutations from DD have a greater impact on human interactome than all proteins
carrying PPI interface mutations in DD and sibling control. We analyzed the candidate
proteins’ topological network features from an unbiased human protein-protein interactome
network constructed by PPIs generated from experiments only (see Methods).

First, we calculated the degree of all proteins from PPI with an interacting interface
carrying DNM missenses. We demonstrated that candidate proteins identified by PsychiPPI,
on average, have a significantly higher degree than all DD proteins harboring interacting
interface DNM missenses (mean ± s.e.m.: 28.76 ± 1.61 vs. 22.83 ± 0.69, fold change
(FC) = 1.26, p-Value = 9.83 × 10−4 by a two-tailed U-test), and PPI interface mutated
proteins from sibling control (mean ± s.e.m.: 28.76 ± 1.61 vs. 18.58 ± 1.34, FC = 1.55,
p-Value = 1.64 × 10−6) (Figure 2a). We further analyzed the same group of proteins
by calculating their betweenness in the network. We found that DD candidate proteins
also have a significantly higher betweenness value than all the PPI interface mutated
proteins in DD patients (mean ± s.e.m.: 0.075 ± 0.004 vs. 0.061 ± 0.002, FC = 1.23,
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p-Value = 0.012) and sibling control (mean ± s.e.m.: 0.075 ± 1.61 vs. 0.052 ± 0.004, FC = 1.43,
p-Value = 5.65 × 10−5) (Figure 2b). At last, we explored whether DD candidate proteins
identified by PsychiPPIs tend to form interconnected modules within the interactome
network. We found that DD candidate proteins identified by PsychiPPI have a significantly
shorter average shortest path length compared to all the proteins of PPI with interface
missense mutations from DD patients (mean ± s.e.m.: 3.20 ± 0.03 vs. 3.27 ± 0.02, FC = 0.94,
p-Value = 0.006) or sibling control (mean ± s.e.m.: 3.20 ± 0.03 vs. 3.39 ± 0.04, FC = 0.98,
p-Value = 3.69 × 10−5) (Figure 2c). The result implied that proteins harboring mutations
residing on PsychiPPI interfaces preferred to be closely connected in the interactome
network. Such inner-connected modules may serve specific roles in the etiology of DD.
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Figure 2. DD candidate genes’ human interactome and haploinsufficiency analysis. (a,b), Degree (a)
and betweenness (b) distributions of DD candidate proteins identified by PsychiPPI, and all proteins
carry PPI interface mutations in DD patients and sibling controls. Degree and betweenness values are
transformed by log2 and cube root (ˆ1/3) for presentation purposes, respectively. (c), Average shortest
path length distributions of proteins in the respective group.(d,e), Haploinsufficiency (d) and pLI (e)
distributions of genes carry PPI interface DNM missenses. Genes with available haploinsufficiency
or pLI scores were included in the analysis. (DD PsychiPPI, n = 113; DD interface, n = 472; Con,
n = 122) Violin plots: black horizontal solid line, median; black dotted line, interquartile range;
whiskers, upper and lower limits; the width of each plot is proportional to element abundance,
p-Values were calculated using a two-tailed U-test (* p < 0.05; ** p < 0.01; *** p < 0.001).



Biomolecules 2022, 12, 1643 9 of 19

In conclusion, by analyzing the topological network properties of selected protein
groups, we demonstrated that DD candidate proteins tend to locate at the human interac-
tome network hub, which significantly impacts the protein interactome more than all the
other interface mutated proteins. The network analysis can assist in interpreting how PPI
interface DNM missenses could affect protein complexes and functional modules.

3.5. PsychiPPI-Related DD Candidate Genes Tend to Be Haploinsufficient

It is known that heterozygous deleterious DNM missenses could only affect one copy
of the genes, whereas a single copy of the wild-type gene is insufficient to carry out the
normal function for haploinsufficient genes [74]. In DD patients included in the study,
we observed that genes carrying DNM missense in PsychiPPI exhibited a significantly
higher haploinsufficiency score [75] than all the genes carried PPI interface mutation
(mean ± s.e.m.: 0.67 ± 0.03 vs. 0.55 ± 0.02, FC = 1.21, p-Value = 4.25 × 10−4 by a two-tailed
U-test). In addition, we found that in the DD group, both kind of genes residing on or off
PPI interface mutations had a significantly higher probability of being haploinsufficient
(Supplementary Figure S3a). Meanwhile, we demonstrated, in the same group of genes,
DD candidate genes were less tolerant to genetic variation. PsychiPPI-related DD candidate
genes had an average higher pLI score than all the genes that carry PPI interface mutations
in DD (mean ± s.e.m.: 0.85 ± 0.03 vs. 0.64 ± 0.02, FC = 1.33, p-Value = 2.69 × 10−7), at the
same time, DD patients’ dnMis genes showed a higher pLI score [76] in both on or off PPI
interface mutated genes than sibling control (Supplementary Figure S3b). Both results from
haploinsufficiency and pLI showed DD candidate genes might contribute significantly
toward the phenotype of developmental delay via dosage effect [76,77].

3.6. PsychiPPI-Related DD Candidate Genes Are Enriched in Curated DD-Related Geneset

Given results from interactome and haploinsufficiency showing the potential pathogenic
contribution of DD candidate genes and respective mutations, we next investigated the
possible association between the curated disease gene set and candidate genes to evaluate
the fundamental connection between genes and disease. Thus, we prioritized all 42 DD
candidate genes according to 11 independent sources of evidence with a background gene
list as all protein-coding genes. We found that PsychiPPI identified DD candidate genes were
significantly enriched in DD-related curated pathogenic gene sets, such as developmental
delay gene set (Count: 19, p-Value < 0.001), Constraint gene set (Count: 17, p-Value < 0.001),
FMRP target gene set (Count: 7, p-Value = 1.58 × 10−3) (Figure 3b), we also observed SMAD3,
a candidate gene with limited literature studies, is also included in the Developmental delay
gene set (Figure 3a).

We also used the DisGeNET database [44] to evaluate the gene-disease association
to verify our result with all protein-coding genes as a background gene list. The out-
come showed DD candidate genes were enriched in developmental disabilities (Count: 18,
log10(P) = −23), neurodevelopmental disorders (Count: 16, log10(P) = −17), Mental retar-
dation (Count: 15, log10(P) = −16, and other diseases with similar symptoms (Figure 3c).
The gene set enrichment analysis results indicated the significant association between
PsychiPPI-identified DD candidate genes and developmental delay. It also implicated the
PPI interface mutations with the cause of DD.
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Figure 3. The pathogenicity of DD candidate genes was identified in the present study.
(a,b), Integrative analysis of the potential pathogenicity of DD candidate genes (a), DD-related
pathogenesis gene set enrichment analysis of candidate genes (b), and eleven independent sources of
evidence were used to analyze DD candidate genes. Gene ratio is the number of differential genes
enriched in a particular gene set to the total number of candidate genes. (c), DisGnNET enrichment
analysis of DD candidate genes.
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3.7. Identification of New Potential DD Genes and De Novo Mutations

The integrative analysis and literature search have proven the association between
disease and PsychiPPI-identified DD candidate genes. We observed that 25 genes had been
reported to be associated with the pathology of DD out of the total number of 42 candidate
genes. In order to find out the potential DD-related genes and mutations from the rest of the
unreported candidate genes, we analyzed the enrichment of DD candidate genes in Gene
Ontology terms. We found DD candidate genes are significantly enriched in DD-related
GO terms, such as cell cycle process (Count: 9, log10(P) = −6.21), MAPK cascade (Count: 7,
log10(P) = −4.38), and skeletal system development (Count: 7, log10(P) = −5.24) [78,79]
(Figure 4a). We next investigated the presence of unreported potential DD-related genes in
GO biological process and cellular component terms. We observed that FRFR3 is present
in developmental maturation, developmental growth, regulation of growth, regulation of
MAPK cascade, and response to growth factors, which are highly disease-related biological
process terms [80]. Meanwhile, ALOX5 is a crucial part of cellular components such as the
nuclear matrix, ficolin-1-rich granule, and nuclear membrane (Figure 4b). These outcomes
indicated the potential relationship between FGFR3, ALOX5, and developmental delay.
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Figure 4. FGFR3 and ALOX5 are potential DD-related genes according to GO enrichment analysis.
(a), Gene ontology enrichment analysis of DD candidate genes. (b), FGFR3 is present in DD-related
GO BP sub-term: developmental maturation, developmental growth, regulation of growth, regulation
of MAPK cascade, and response to growth factor. ALOX5 is present in DD-related GO CC sub-term:
nuclear matrix, ficolin-1-rich granule, and nuclear membrane.
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The main symptoms of DD include delayed physical and cognitive development in
children before they reach the age of adolescence [81]. These characteristics make spatial
brain development in different parts of regions crucial to the mechanism of DD. To evaluate
the association between our potential disease-related genes and DD, we investigated the
expression trajectories of ALOX5 and FGFR3 in neurodevelopmental processes in respective
brain regions from the Human Brain Transcriptome database [45]. We observed that the
expression of FGFR3 shows a dramatic rising from the late fetal developmental stage till the
end of the late infancy stage in the neocortex, which is highly correlated with the visual and
motor cortex in the neocortex [82] (Figure 5a). ALOX5 also demonstrated a rapid increase
in expression from the infancy stage till the end of adolescence in the cerebellar cortex,
which controls the physical motors [83] (Figure 5b). Previous studies have shown that the
abnormalities in the neocortex and cerebellar cortex could contribute to the phenotype and
pathogenesis of developmental delay [84–87].
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Figure 5. Spatio-temporal expression patterns of ALOX5 and FGFR3. (a,b), left: spatio-temporal
expression pattern of ALOX5 (a) and FGFR3 (b) across age. right: heat map matrix representations
of spatio-temporal expression of ALOX5 and FGFR3. The heatmap display log2-transformed signal
intensity across analyzed regions and periods using a heat map color scale from low (blue) to high
(red). The dashed horizontal dotted line separates NCX areas from other brain regions. The birth
time is marked by a vertical solid line. Abbreviation: NCX, Neocortex; OFC, Orbital prefrontal cortex;
DFC, Dorsolateral prefrontal cortex; VFC, Ventrolateral prefrontal cortex; MFC, Medial prefrontal
cortex; M1C, Primary motor cortex; S1C, Primary somatosensory cortex; IPC, Posterior inferior
parietal cortex; A1C, Primary auditory cortex; STC, Posterior superior temporal cortex; ITC, Inferior
temporal cortex; VIC, Primary visual cortex; HIP, Hippocampus; AMY, Amygdala; STR, Striatum;
MD, Mediodorsal nucleus of the thalamus; CBC, Cerebellar cortex.
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Moreover, FGFR3 plays a crucial role in regulating cell growth and neural devel-
opment [88]. Mutations on FGFR3 could prematurely trigger intracellular signaling to
terminate cell proliferation [89]. ALOX5 is also related to the progression of neurodegenera-
tive diseases such as Alzheimer’s disease [90]. The suppression of the expression of ALOX5
could reduce inflammation-induced neuro cell death [91,92]. All results above suggested
the potential association of DD-related pathogenesis between FGFR3 and ALOX5.and their
respective DNM missenses.

4. Discussion

The growing number of research has shown that mutations at the protein-protein inter-
action interface are highly associated with the etiology of cancer and rare diseases [31–33].
Based on these findings, we designed a framework to effectively identify potential disease-
related genes and mutations based on the location and enrichment of mutations on the
PPI interface. In the present study, we focused on DNM missenses from the PsyMuKB
database because of its adequate DD and sibling control de novo mutations data. Our
results showed that DD-related DNM missenses are more likely to occur on the PPI inter-
face than in healthy control. Additionally, the deleterious predicted outcome of DD PPI
interface DNM missenses proved that such mutations tend to alter protein functions and
structures. Using a binomial statistical model, we identified 302 PsychiPPIs harboring a
statistically significant excess number of DNM missenses at the PPI interface (PsychiPPI).
We extracted 42 DD candidate genes according to the mutated genes in the PsychiPPI.
The candidate proteins identified by PsychiPPI preferentially hit the hub protein in the
interactome, a common feature for disease-related genes. The Integrative analysis and
literature research demonstrated a significant association between DD candidate genes
and the etiology of developmental delay, reinforcing the efficiency of our disease-related
gene exploring framework. Combining the Gene ontology analysis results and Human
Brain Transcriptome database, we showed that FGFR3 and ALOX5 could serve as novel
developmental delay candidate genes. In sum, our finding suggests the significant role of
DNM missenses at PPI interfaces in the pathogenesis of developmental delay. Meanwhile,
the evaluation of DD-related PsychiPPI could contribute to discovering new disease-related
genes and respective etiology.

The protein-protein interface determines the specificity and strength of protein inter-
actions, mutations on the PPI interface residue could disrupt, decrease or even increase
the normal PPI, which could cause disease by disturbing the function of proteins [20,21].
However, not all genes with PPI interface mutation are pathogenic. Our study shows
that most genes with a statistically significant excess number of DNM missenses at the
PPI interface (PsychiPPI) in DD have been reported to be disease-related. The result is
innovative in neuropsychiatric disease but less surprising in other diseases like cancer.
The previous study has found that PPI harboring a significant excess number of somatic
mutations at the PPI interface is significantly associated with poor survival rate and drug
sensitivity in cancer patients. Our interactome analysis shows that proteins identified by
PsychiPPI are preferentially located at the more central position in the whole human protein
interactome. Interface mutations could not only disrupt the normal PPI, but it has a chance
to cause an unknown consequence by making mutated proteins interact with new partners.
Deleterious mutations on those proteins could significantly impact the whole network and
generate disease phenotypes. On the other hand, studying PPI network perturbations
altered by interface mutations could provide us with a fundamental pathogenic molecular
mechanism of widespread disease.

Our result is not only applicable in the exploration of DD-related genes, but it is also
suitable for neurodevelopmental diseases such as intellectual disability (ID). We found
the same level of enrichment in ID DNM missense on the PPI interface (Supplementary
Figure S4). However, in the result of autism spectrum disorder (ASD) and schizophrenia,
we have not acquired a significant difference between sibling controls. A previous ASD
study has reported a substantial difference in the enrichment of DNM missenses at the PPI
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interface [31], which contradicts our result. One possible explanation is that a different
interactome interface database was used in our study. The negative result from schizophre-
nia agreed with previous research that schizophrenia has a weaker de novo signal than
other psychiatric diseases [93]. Considering these findings, the level of DNM missense
enrichment on the PPI interface must be regarded when our framework is applied to other
neurodevelopmental diseases.

There are a few limitations in our current research. For simplicity, our null model
for calculating PsychiPPI does not consider the DNA sequence, which can influence the
computation of the frequency of nonsynonymous mutations. It is possible that taking into
account the nucleotide frequency may improve the predictions, but we expect that the im-
provement is low. The null model does not consider the known fact that the selective effect
of mutations depends on the protein region where it occurs. For instance, mutations in the
protein core are more detrimental than mutations in the surface, where the protein-protein
interface tends to be, and have higher chances of being eliminated by natural selection at
the developmental stage. This might explain our result that mutations at the protein-protein
interface happen more frequently than expected under the null model both in the cases
and in control, and it is a possible direction to improve the null model that we leave for
future work. Previous studies have shown that disease-causing missense mutations are
enriched in the protein interface compared to other protein surface regions [31]. However,
we recognize that the PPI interface DNMs may be less disruptive than those mutations
on protein cores. If the core of proteins is mutated, it might also disturb normal PPI. The
INSIDER interactome database was the source of PPI interface data. The majority of the PPI
interface data were calculated by deep learning. Despite its sufficient data, the prediction
accuracy needs to be modified. One shortage of our study is that we only consider the
prediction with high confidence, making the interactome seem incomplete in the study. We
believe that the fast-growing interest in determining potential PPI interface residue could
provide us with complete interactome data in the future. Although the Gene Ontology and
the data from Human Brain Transcriptome database support that FGFR3 and ALOX5 and
their mutations are possible diseases related. Moreover, previous studies have reported
that mutated postmitotic principal neurons FGFR3 could result in cortical dysplasia and
axonal tract abnormality during brain development in mice [94]. Moreover, Other studies
have found that the downregulation of FGFR3 signaling may be essential for maintaining
the balance of neurogenesis and neuronal differentiation during cortical development.
Several FGFR3 de novo mutations were identified in thanatophoric dysplasia (TD) patients.
Some patients with these mutations have an intellectual disability and severe skeletal de-
formities, which correspond to the symptom of DD [95]. Additionally, research has shown
that ALOX5 is related to memory deficits and synaptic dysfunction in a mouse model of
Alzheimer’s disease [96]. Despite the supportive evidence, our hypothesis is not entirely
settled. Studies involved in cell or animal models are required to prove our findings.

This study showed a significant association between PPI interface DNMs and de-
velopmental delay, combined with our PsychiPPI-based disease-related genes searching
framework. With the development of whole exome sequencing, researchers worldwide
could identify thousands of DNM missenses in a large-scale study within a relevantly
short time. We may contribute to discovering disease mechanisms and early diagnosis of
developmental delay and other potential neuropsychiatric diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12111643/s1, Table S1: All de novo Missense mutations in
the study, Table S2: PsychiPPI in developmental delay; Figure S1: PPI interface DNMs enrichment
and deleteriousness in DD; Figure S2: PsychiPPI network calculated by a binomial statistical model.;
Figure S3: variant tolerance distribution of the de novo mutations genes; Figure S4: PPI interface
dnMis mutations enrichment and mutations rate in other neuropsychiatric disorders.
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