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1 Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
2 Department of Physiology and Patophysiology, Wroclaw Medical University, 50-368 Wroclaw, Poland
3 Institute of Heart Diseases, Student Scientific Organization, Wroclaw Medical University,

50-368 Wroclaw, Poland
4 Faculty of Electrical Engineering, Warsaw University of Technology, 00-614 Warszawa, Poland
5 Department of Information and Knowledge Engineering, Prague University of Economics and Business,

W. Churchill Sq. 1938/4, 130 67 Prague, Czech Republic
* Correspondence: szymon.urban.wro@gmail.com

Abstract: Acute heart failure (AHF) is a common and severe condition with a poor prognosis. Its
course is often complicated by worsening renal function (WRF), exacerbating the outcome. The
population of AHF patients experiencing WRF is heterogenous, and some novel possibilities for its
analysis have recently emerged. Clustering is a machine learning (ML) technique that divides the
population into distinct subgroups based on the similarity of cases (patients). Given that, we decided
to use clustering to find subgroups inside the AHF population that differ in terms of WRF occurrence.
We evaluated data from the three hundred and twelve AHF patients hospitalized in our institution
who had creatinine assessed four times during hospitalization. Eighty-six variables evaluated at
admission were included in the analysis. The k-medoids algorithm was used for clustering, and the
quality of the procedure was judged by the Davies–Bouldin index. Three clinically and prognostically
different clusters were distinguished. The groups had significantly (p = 0.004) different incidences
of WRF. Inside the AHF population, we successfully discovered that three groups varied in renal
prognosis. Our results provide novel insight into the AHF and WRF interplay and can be valuable
for future trial construction and more tailored treatment.

Keywords: acute heart failure; machine learning; clustering; artificial intelligence; cardiorenal syndrome

1. Introduction

Acute heart failure (AHF) remains a significant problem with a high mortality and
a massive financial burden for healthcare providers [1,2]. AHF is a multidimensional state
with a complex interplay between the cardiovascular and other systems, including the
renal. The pathological condition of simultaneous dysfunction of the kidneys and heart, in
which the disorder of one organ induces the damage of the second one, is called cardiorenal
syndrome [3]. One of the clinical manifestations of cardiorenal syndrome is the worsening
renal function (WRF), which can be defined as, e.g., an increase in serum creatinine or/and
a decrease in urine output in a specified period [4]. WRF is a frequent complication
overlapping the AHF, especially in conditions of intensive cardiac care units [5], and is
associated with prolonged hospitalization and diminished survival [4]. The population
of AHF patients endangered by the WRF is heterogenous, and so is the postulated WRF’s
impact on prognosis. Some authors showed contrary evidence that WRF has a negative,
neutral, or even positive effect [4,6,7]. Considering this uncertainty, we presumed that the
current lack of well-established classifications describing the risk of WRF is insufficient and
does not reflect significant clinical differences between AHF patients. Thus, we decided
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to analyse the heterogeneity of the AHF population by resorting to novel methods of
data analysis, aiming to describe different risk groups of WRF and, further, its impact on
prognosis. Importantly, we have only included variables, which are the standard-of-care
parameters routinely assessed during AHF patient monitoring.

Data science algorithms, especially Machine Learning (ML), enable novel, clinically
important insight into existing data and distinguish previously unrecognized patterns [8].
Clustering is an unsupervised ML technique that organizes the set of data into internally
similar subgroups. We presumed that this technique, which was successfully leveraged in
marketing [9], could as well prove its value in cardiovascular research. Considering these
advances, we decided to implement clustering in the AHF population to understand the
occurrence and significance of the WRF better.

2. Materials and Methods
2.1. Study Population

We have retrospectively analysed three hundred and twelve acute heart failure
(AHF) patients from two registries conducted in our institution between 2010–2012 and
2016–2017. Our previous papers described the eligibility criteria in both registries [10].
Heart failure diagnosis was stated according to the current ESC guidelines by a responsible
physician [11,12]. To ensure the creatinine course in every patient and avoid missing values
in the analysis, we have only included the patients who had serum creatinine assessed at
four points, i.e., at admission, after 24 and 48 h of hospitalization, and at discharge.

2.2. Worsening of the Renal Function Evaluation

As there was a significant lack of data about diuresis and GFR or parameters indis-
pensable for its calculation, we have based the diagnosis of worsening renal function (WRF)
and acute kidney injury (AKI) on creatinine assessment only. AKI was defined according
to the KDIGO guidelines as the ≥0.3 mg/dL increase of serum creatinine in 48 h [13].
WRF was defined as the ≥0.3 mg/dL increase of serum creatinine at any point during
hospitalization. We decided to analyse both of these phenomena in order to caption as
many renal endpoints as possible. Throughout the paper we will stick to using the term
WRF, as it is a broader qualification.

2.3. Clustering and Data Analysis

Variables included in the analysis are shown in Table 1. Initially, we chose 86 variables
regarding the patient’s clinical status, i.e., HF subtype, aetiology, comorbidities, symptoma-
tology, and biochemical presentation. All parameters were assessed at patient admission to
the hospital. Variables were manually screened to eliminate potential errors; e.g., anomalies,
single values out of range, etc. The dataset was implemented into RapidMiner and au-
tocleaning was performed. Variables with over 90% stability, 10% of missing values, or
correlated with at least r = 0.6 were meant to be removed, but none of the variables fulfilled
these criteria. Missing values were replaced by average values, as clustering algorithms
cannot proceed with missing values. Further, nominal values were converted into numeri-
cal, and all the numerical parameters were normalized to range from 0 to 1, so each variable
had the same impact on the calculated distance.

Clustering is a widely used descriptive data analysis method on the border between
statistical analysis and data mining with a relatively long history. The goal of clustering
(also called segmentation) is to identify groups of similar examples. Thus, the critical issue
in clustering is a proper definition of similarity or distance. There are several clustering
methods and algorithms that can be divided into various types, such as hierarchical versus
partitional, exclusive versus overlapping versus fuzzy, and complete versus partial [14].

We used the k-medoids algorithm in our experiments. K-medoids is a partitional
method that creates non-overlapping clusters. The number of resulting groups must be spec-
ified in advance. The algorithm repeatedly re-assigns the examples into the given number
of clusters by minimizing their distance to a centroid and recomputes the centroids. Unlike



Biomolecules 2022, 12, 1616 3 of 14

k-means clustering, where cluster centroids are computed by averaging values for examples
in a given cluster, each cluster in k-medoids clustering is represented using an existing,
most representative example. This makes the results of the k-medoids clustering easier to
interpret. The implementation in RapidMiner luckily offers the option to tune hyperparam-
eters of the algorithm automatically. In our case, we adjusted the number of clusters and
the similarity measure. The process of the clusters’ calculation performed in RapidMiner is
displayed in Figure 1, and the file is attached in Supplementary Materials File S1.

Table 1. Variables included in the analysis. All parameters were assessed at admission.

Demographics Age, Sex

HF characteristics De novo or chronic HF, Etiology

Comorbidities
Coronary artery disease, myocardial infarction, PCI/CABG,

Hypertension, Valvular heart disease, Diabetes, Diabetes treated with
insulin, oral drugs or diet, stroke, COPD

Clinical status

Dyspnoea at rest, Dyspnoea at rest (since number of days),
NYHA scale at admission, Swelling of the lower limbs, Decrease in
exercise tolerance, Decrease in exercise tolerance (since number of

days), Body weight, Systolic pressure, Diastolic pressure, Heart rate,
Jugular veins pressure, Pulmonary congestion, Pulmonary

congestion, Ascites, Hepatomegaly, Implantable device: none = 0,
1-PM, 2-ICD, 3-CRT2

Lifestyle factors

Smoking status (0 = never, 1 = now, 2 = in the past), how many
cigarettes did the patient smoke,

Active alcohol use, how many cigarettes patients smoke daily, ow
many years did/does the patient smoke

Laboratory parameters

PH serum, pCO2, pO2, ctO2, BO2, HCO3, HCO3std, ctCO2, BE, sO2,
FO2Hb, FHHb, ctHb, Lac, mOsm, HGB, HCT, RBC, MCV, MCH,

MCHC, RDW, WBC, LYMPH, MONO, NEUTR, PLT, Na serum, K
serum, Creatinine serum, Urea serum, Glucose serum, Ast, Alt, CRP,
GGTP, NTproBNP, Total_bilirubin, INR, Albumins serum, Na urine, K
urine, Urea urine, Creatinine urine, Fe, TIBC, Tsat, sTfR, Ferritin, IL-6

Echocardiography Reduced ejection fraction; ejection fraction
Abbreviations: pCO2—partial pressure of CO2, pO2—partial pressure of O2, ctO2—concentration of O2,
BO2 -, HCO3—bicarbonate, HCO3std—bicarbonate standardized, ctCO2—CO2 concentration, BE—base ex-
cess, sO2—O2 saturation, FO2Hb—fraction of oxygenated haemoglobin, FHHb—fraction of deoxyhemoglobin
in total hemoglobin, ctHb—total hemoglobin, Lac—lactates, mOsm –milliosmoles, HGB—hemoglobin,
HCT—hematocrit, RBC—red blood count, MCV—mean corpuscular volume, MCH—mean corpuscular
hemoglobin, MCHC—mean corpuscular hemoglobin concentration, RDW—red cell distribution width,
WBC—white blood count, LYMPH—lymphocytes percentage, MONO—monocytes, NEUTR—neutrophiles,
PLT—platelets count, Ast—aspartate aminotransferase, Alt—alanine transaminase, CRP—C-reactive protein,
GGTP—gamma-glutamyl transpeptidase, NTproBNP—N-terminal prohormone of brain natriuretic peptide,
INR—international normalized ratio, Fe—total iron amount in blood, TIBC—total iron-binding capacity,
Tsat—transferrin saturation, sTfR—Soluble Transferrin Receptor, IL-6—interleukin 6th, eGFR—estimated glomeru-
lar filtration rate.

We assessed the quality of clustering using the Davies–Bouldin index [15]. This index
evaluates the quality of clustering considering the intra-cluster distance (that should be low)
and inter-cluster distance (that should be high). The lower the value of the Davies–Bouldin
index, the better the clustering.

Associations between clusters and clinical variables were evaluated. The normality
was checked using K-S, Shapiro–Wilk, and Lilliefors tests. Parameters with normal distribu-
tions are shown as means ± standard deviations. The non-normal variables are displayed
as the medians and interquartile ranges. Categorical variables are shown as numbers and
percentages (Table 2). Statistical significance was evaluated using analysis of variance;
the p below 0.05 was considered statistically significant. Clustering was performed in
RapidMiner 9.1 (RapidMiner GmbH, Dortmund, Germany), and the statistical assessment
was conducted in STATISTICA 12 (StatSoft Polska Sp. z o.o., Krakow, Poland).
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Figure 1. The process of the clusters’ calculation was performed in RapidMiner. The file is attached
in the Supplementary Materials.

Table 2. Characteristics of patients in each cluster and the whole group. The lowest values are marked
green and the highest ones are red.

Parameter Cluster 0 Cluster 1 Cluster 2 Global p

Demographics

n 158 (51%) 110 (35%) 44 (14%) 312

Sex, male (n) 138 (87%) 53 (48%) 43 (98%) 234 (75%) <0.001

Age (years) 69.192 ± 11.826 72.217 ± 11.736 56.015 ± 13.273 68.4 ± 13.054 <0.001

AHF characteristics

Ejection fraction 30 (25–38.5) 43 (30–53.5) 25 (15–35) 32 (25–45) <0.001

Chronic HF (n) 133 (84%) 29 (26%) 34 (77%) 196 (63%) <0.001

Reduced EF (n) 133 (84%) 59 (54%) 34 (77%) 226 (72%) <0.001

Aetiology <0.001

Coronary artery disease (n) 120 (76%) 19 (17%) 8 (18%) 147 (47%)
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Table 2. Cont.

Parameter Cluster 0 Cluster 1 Cluster 2 Global p

Valvular (n) 12 (8%) 21 (19%) 6 (14%) 39 (13%)

Hypertension (n) 5 (3%) 6 (5%) 0 (0%) 11 (4%)

Other (n) 21 (13%) 64 (58%) 30 (68%) 115 (37%)

Comorbidities

Coronary artery disease (n) 139 (88%) 37 (34%) 7 (16%) 183 (59%) <0.001

Myocardial infarction in the
past (n) 73 (46%) 22 (20%) 4 (9%) 99 (32%) <0.001

PCI/CABG in the past (n) 75 (47%) 19 (17%) 3 (7%) 97 (31%) <0.001

Hypertension (n) 127 (80%) 100 (91%) 10 (23%) 237 (76%) <0.001

Valvular disease (n) 113 (72%) 62 (56%) 29 (66%) 204 (65%) 0.037

Diabetes mellitus (n) 63 (40%) 56 (51%) 5 (11%) 124 (40%) <0.001

Diabetes treatment (n) 0.002

Insulin 25 (16%) 11 (10%) 1 (2%) 37 (12%)

Oral drugs 28 (18%) 25 (23%) 4 (9%) 57 (18%)

Diet 6 (4%) 4 (4%) 0 (0%) 10 (3%)

Stroke (n) 21 (13%) 14 (13%) 6 (14%) 41 (13%) 0.986

COPD (n) 27 (17%) 9 (8%) 4 (9%) 40 (13%) 0.073

Clinical status

Dyspnoea at rest (n) 131 (83%) 84 (76%) 35 (80%) 250 (80%) 0.299

Dyspnoea at rest lasts for
(number) days 3 (2–7) 2 (1–7) 5.5 (2.5–8.5) 3 (1–7) 0.370

Deterioration of effort
tolerance (n) 152 (96%) 103 (94%) 39 (89%) 294 (94%) 0.175

Deterioration of effort
tolerance (number) days 14 (7–21) 14 (7–30) 14 (7–30) 14 (7–28) 0.021

NYHA (n) <0.001

I 5 (3%) 3 (3%) 4 (9%) 12 (4%)

II 39 (25%) 8 (7%) 9 (20%) 56 (18%)

III 42 (27%) 19 (17%) 14 (32%) 75 (24%)

IV 64 (41%) 62 (56%) 14 (32%) 140 (45%)

Swelling of lower limbs (n) 0.050

Swelling of lower limbs 0 43 (27%) 32 (29%) 8 (18%) 83 (27%)

Swelling of lower limbs 1 37 (23%) 25 (23%) 8 (18%) 70 (22%)

Swelling of lower limbs 2 50 (32%) 32 (29%) 12 (27%) 94 (30%)

Swelling of lower limbs 3 28 (18%) 20 (18%) 16 (36%) 64 (21%)

JVP (n) 0.005

JVP 1 97 (61%) 70 (64%) 17 (39%) 184 (59%)

JVP 2 51 (32%) 38 (35%) 23 (52%) 112 (36%)

JVP 3 10 (6%) 1 (1%) 4 (9%) 15 (5%)

Pulmonary congestion (n) 147 (93%) 91 (83%) 40 (91%) 278 (89%) 0.026

Pulmonary oedema (n) 0.108

no 11 (7%) 18 (16%) 4 (9%) 33 (11%)
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Table 2. Cont.

Parameter Cluster 0 Cluster 1 Cluster 2 Global p

up to 1/3 of lungs 102 (65%) 48 (44%) 33 (75%) 183 (59%)

up to 2/3 35 (22%) 24 (22%) 5 (11%) 64 (21%)

>2/3 10 (6%) 19 (17%) 2 (5%) 31 (10%)

Ascites (n) 19 (12%) 7 (6%) 15 (34%) 41 (13%) <0.001

Hepatomegaly (n) 25 (16%) 14 (13%) 26 (59%) 65 (21%) <0.001

Implantable device (n) <0.001

PM 16 (10%) 7 (6%) 1 (2%) 24 (8%)

ICD 43 (27%) 2 (2%) 3 (7%) 48 (15%)

CRT 15 (9%) 2 (2%) 4 (9%) 21 (7%)

Systolic pressure (mmHg) 130 (110–150) 145 (124–171) 110 (100–127) 130 (110–150) <0.001

Diastolic pressure (mmHg) 75.5 (70–87) 83 (70–100) 70 (60–83.5) 80 (70–90) <0.001

Heart rate (beats
per minute) 78 (70–100) 90 (72–110) 100 (80–110) 83 (70–100) <0.001

Body weight (kg) 80 (72.55–93) 78.25 (68.5–88.6) 76 (67–87.8) 79.2 (70–91) 0.437

Lifestyle factors

Smoking status (n) <0.001

Never 74 (47%) 74 (67%) 15 (34%) 163 (52%)

Active 18 (11%) 15 (14%) 15 (34%) 48 (15%)

In the past 66 (42%) 21 (19%) 14 (32%) 101 (32%)

How many cigarettes
patient smoke daily (n) 10 (0–20) 10 (0–20) 10 (0–20) 10 (0–20) 0.797

How many years did the
patient smoke/does the

patient smoke cigarettes (n)
20 (0–30) 10 (0–30) 13 (0–30) 20 (0–30) 0.380

Active alcohol use (n) 40 (25%) 18 (16%) 29 (66%) 87 (28%) <0.001

Laboratory parameters

HGB (g/dL) 13.232 ± 1.993 12.955 ± 1.892 13.975 ± 1.759 13.239 ± 1.947 0.013

HCT (%) 39.844 ± 5.535 39.145 ± 5.233 41.766 ± 5.173 39.868 ± 5.427 0.025

RBC (× 1012/L) 4.482 ± 0.663 4.389 ± 0.568 4.552 ± 0.586 4.459 ± 0.621 0.274

MCV (fL) 89.195 ± 6 89.31 ± 5.743 92.125 ± 7.124 89.649 ± 6.145 0.015

MCH (pg) 29.597 ± 2.253 29.546 ± 2.466 30.828 ± 2.992 29.749 ± 2.472 0.008

WBC (× 109/L) 8.54 (6.5–10.3) 8.1 (6.5–10.4) 8.45 (7.1–9.85) 8.3 (6.6–10.3) 0.872

PLT (× 109/L) 196 (159–242) 201 (158–248) 207 (174–250) 198 (159–245) 0.777

pH 7.45 (7.42–7.48) 7.425 (7.375–7.465) 7.45 (7.43–7.49) 7.44 (7.41–7.47) 0.003

sO2 (%) 92.85 (90.1–95.45) 93.55 (91.3–94.9) 93.8 (88.7–96.3) 93.2 (90.4–95.4) 0.946

pO2 (mmHg) 65.35 (57.9–73.25) 67.4 (62.4–74.45) 66.9 (55.2–80.6) 66.1 (59–74.6) 0.956

pCO2 (mmHg) 34.65 (32.15–38.8) 35.8 (32.4–39.25) 33.4 (30.4–36.9) 35.2 (32–38.9) 0.517

HCO3 (mmol/L) 24.025 ± 3.223 22.805 ± 3.416 23.939 ± 4.62 23.578 ± 3.558 0.025

BE mEq/l 0.197 ± 3.42 -1.252 ± 3.712 0.3 ± 4.523 -0.304 ± 3.755 0.007

mOsm (Osm/L) 281 (274–286) 286 (280–290) 274 (264-285) 282 (274–288) <0.001

Na (mmol/L) 139 (137–142) 140 (138–142) 136.5 (133.5–141) 139 (136–142) 0.007

K (mmol/L) 4.117 ± 0.549 4.296 ± 0.627 4.107 ± 0.537 4.179 ± 0.581 0.031
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Table 2. Cont.

Parameter Cluster 0 Cluster 1 Cluster 2 Global p

Lactates (mmol/L) 1.9 (1.5–2.4) 2 (1.5–2.7) 2 (1.6–3) 2 (1.5–2.55) 0.088

Glucose (mg/dL) 120 (102–157) 131 (106–186) 107.5 (94.5–126.5) 120 (102.5–152) 0.001

INR 1.37 (1.12–1.8) 1.32 (1.12–1.93) 1.35 (1.175–1.7) 1.345 (1.12–1.8) 0.102

Albumin (g/dL) 3.775 ± 0.367 3.743 ± 0.402 3.602 ± 0.42 3.738 ± 0.39 0.036

Ast (IU/L) 26 (19–34.5) 29.5 (22–41) 28.5 (20.5–40) 27 (20–38) 0.004

Alt (IU/L) 28 (17.5–47) 31 (20.5–55.5) 28 (18.5–44) 29 (19–48) 0.019

Total bilirubin (mg/dL) 1.06 (0.77–1.6) 0.9 (0.63–1.47) 1.415 (0.905–2.455) 1.04 (0.72–1.67) <0.001

GGTP (IU/L) 70 (45–135) 54.5 (29–103) 99 (48–206) 69.5 (40–123.5) 0.021

CRP (mg/L) 7.04 (4–15.4) 6.2 (2.6–14) 10.25 (4.35–24.35) 7.1 (3.4–16.2) 0.513

IL6 (pg/mL) 8.346 (1.155–21.1) 11.705
(3.257–26.299)

11.352
(6.338–30.117) 10.056 (2.508–22.9) 0.734

Ferritin (ng/mL) 101.9 (51.94–191) 125.6 (65.5–218.75) 115.15 (51–287.9) 105.7 (57.08–212) 0.372

Tsat (%) 16.1 (12.3–21.9) 15.608
(11.9–18.519) 16.026 (10.7–26.6) 15.84 (11.82–21.1) 0.030

sTfR (mg/L) 1.885 (1.495–2.46) 1.82 (1.46–2.46) 1.755 (1.4–2.53) 1.85 (1.46–2.46) 0.972

TIBC (µg/dL) 352.192 ± 72.92 338.052 ± 62.645 366.357 ± 76.825 349.514 ± 70.639 0.075

Fe (µg/dL) 56 (43–79) 51 (40–64) 60.5 (43–88) 54 (42–73) 0.005

NTproBNP (pg/mL) 5291 (3081–9203) 5525 (2755–13,629) 7106 (5026–11,759) 5659 (3119–10,572) 0.021

Creatinine (mg/dL) 1.21 (1.04–1.47) 1.23 (0.95–1.62) 1.14 (0.925–1.44) 1.21 (1.005–1.49) 0.761

Urine Creatinine (mg/dL) 69.4 (37.1–126.5) 43.5 (27.6–88.7) 73.6 (34.7–125.9) 61.5 (31.6–110.9) 0.026

Urea (mmol/L) 52 (39–73) 48 (38–73) 56 (39–74) 51 (38–73) 0.224

Urine Urea (mmol/L) 841 (506–1413) 581 (384–1232) 1122.5 (482–1663) 813 (433–1437) 0.023

Urine K (mmol/L) 30 (20.53–43.27) 26 (17–39) 28.415 (19.6–45) 29 (19–42.59) 0.249

Urine Na (mmol/L) 88.253 ± 38.623 97.721 ± 32.398 84.786 ± 48.268 91.05 ± 38.333 0.078

3. Results
3.1. Population Characteristics

The population consisted of 312 patients, predominantly men (75%). The mean age
was 68.4 ± 13.054. Average values of important clinical parameters were systolic blood
pressure-130 mmHg (110–150), ejection fraction–32% (25–45), NT-proBNP–5659 pg/mL
(3119–10,572), and serum creatinine −1.21 mg/dL (1.005–1.49). A detailed description of
the patient’s characteristics, including characteristics by clusters, is displayed in Table 2.

3.2. Clustering

The population was segmented into three clusters, enumerated from 0 to 2. Groups
included were, respectively, 158, 110, and 44 patients.

3.2.1. Cluster 0

Cluster 0 was the most numerous one. It comprised the highest proportion of chronic
HF with reduced ejection fraction, with the underlying cause of coronary artery disease.
Patients usually had a history of PCI/CABG and electrical device implantation. COPD
and insulin-dependent diabetes were most frequently reported. Clinical status comprised
common pulmonary congestion, moderate limb oedema, and the lowest heart rate. In
laboratory parameters, they presented the lowest Ast, Alt, ferritin, IL-6, and NT-proBNP.
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3.2.2. Cluster 1

Among other clusters, this group was composed predominantly of older women.
They manifested the first manifestation of HF, with preserved ejection fraction and high
comorbidity burden, i.a., diabetes and hypertension. Their clinical presentation was re-
flected by the most frequent NYHA IV, least frequent lower limb oedema and pulmonary
congestion, and highest blood pressure. In laboratory measurements, they reached the
lowest haemoglobin, HCO3, bilirubin, GGTP, and the highest serum sodium and potassium
concentration, serum osmolarity, glucose, Ast, Alt, IL-6, and ferritin.

3.2.3. Cluster 2

The last group was the youngest, with the highest proportion of males and the lowest
ejection fraction. They reported the highest stroke history and presented with frequent
ascites and hepatomegaly. They achieved the highest HGB, HCT, MCV, bilirubin, GGTP, Fe,
NT-proBNP, urine creatinine, and urea and the lowest albumin in laboratory parameters.
They were also the most frequent active alcohol users and smokers.

The most important clinical features of each cluster are shown in Table 3 and Figure 2.

Table 3. Key clinical features of each cluster.

Cluster Key Clinical Features

Cluster 0

Most numerous cluster. Highest: % of chronic and reduced EF HF, CAD,
Valvular heart disease, COPD, implanted electric devices, pulmonary

congestion, albumins, HCO3, Tsat, insulin-dependent, and diet-treated
diabetes. Lowest: deterioration of effort tolerance (number) of days, HR,
MCV, Ast, Alt, NT-proBNP. Non-significant: highest % of dyspnea at rest,

deterioration of effort tolerance, swelling of the lower limbs 1, 2, body
weight, past smokers. Lowest: limbs oedema III, JVP II, active

smokers—elderly chronic HFrEF male, with mild congestion, moderate
WRF and AKI, and one-year mortality occurrence

Cluster 1

Highest: % of females, age, ejection fraction, % of de novo HF and
preserved EF, valvular and hypertension aetiology, hypertension, diabetes,
RR, mOsm, Na, K, glucose, Ast, Alt, lowest: ascites, hepatomegaly, HGB,

HCT, MCH, pH HCO3, urine creatinine and urea, Non-significant: highest:
NYHA IV, limbs oedema I, JVP I, no pulmonary oedema, pCO2, IL-6,

ferritin, creatinine, urine Na—first manifestation of HFpEF older woman,
with high inflammatory markers, creatinine and osmolarity, highest

AKI and WRF occurrence, and moderate one-year mortality

Cluster 2

Highest: % of males, other aetiology, stroke history, ascites, hepatomegaly,
HR, active alcohol users, HGB, HCT, MCV, bilirubin, GGTP, Fe,

NT-proBNP, and urine creatinine and urea. Lowest: age, ejection fraction,
CAD history, RR, mOsm, Na, K, glucose, and albumin Non-significant:

highest: active smokers, limbs oedema III, pulmonary oedema I. Lowest:
body weight, CO2, creatinine, urine Na—young men, with massive

oedema and substance abuse involvement, low AKI and WRF
occurrence, and highest one-year mortality

Abbreviations: EF—ejection fraction, HF—heart failure, CAD—coronary artery disease, COPD—chronic ob-
structive pulmonary disease, Tsat—transferrin saturation, HR—heart rate, MCV—mean corpuscular volume,
Ast—aspartate aminotransferase, Alt—alanine transaminase, NT-proBNP—N-terminal brain natriuretic pep-
tide, JVP—jugular venous pressure, HFrEF—heart failure with reduced ejection fraction, WRF—worsening of
renal function, AKI—acute kidney injury, RR—blood pressure, mOsm—osmolarity, N—sodium, K—potassium,
HGB—haemoglobin, HCT—haematocrit, MCH—mean corpuscular haemoglobin, NYHA—New York Heart
Association scale, IL-6—interleukin 6, GGTP—gamma-glutamyl transferase, and Fe—iron.
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Figure 2. Summary of the most important cluster characteristics and association with renal function.

3.3. Outcome

The global one-year mortality in the studied group was 24% (74 events occurred). The
mortality did not significantly differ between the clusters (p = 0.2), from cluster 0 to cluster
2: 22% vs. 22% vs. 34%. The Cox regression was performed, but none of the cluster’s
hazard ratios reached statistical significance (p = 0.35, p = 0.75, p = 0.0.09), and neither did
the Kaplan–Meier estimation (p = 0.21).

Clusters differed in terms of the time of hospitalization, AKI, and WRF occurrence.
Patients in cluster 2 were the least likely to develop AKI or WRF and were hospitalized for
the longest time.

The outcomes and findings are summarised in Table 4.

Table 4. Outcome by cluster and in the whole group.

Parameter Cluster 0 Cluster 1 Cluster 2 Global p

WRF, n 24 (15%) 26 (24%) 1 (2%) 51 (16%) 0.004

AKI, n 12 (8%) 17 (15%) 0 (0%) 29 (9%) 0.007

Time of hospitalization (days) 6 (5–9) 7 (5–9) 8 (6–14) 7 (5–9.5) 0.006

In hospital deterioration
of HF, n 9 (6%) 7 (6%) 3 (7%) 19 (6%) 0.856

One year mortality, n 35 (22%) 24 (22%) 15 (34%) 74 (24%) 0.200
Abbreviations: WRF—worsening of the renal function, AKI—acute kidney injury, HF—heart failure.

4. Discussion

The WRF and AKI in AHF are common complications associated with ominous
outcomes [4]. The occurrence of AKI has been estimated at 9–13% of AHF patients [16,17].
The underlying causes of the WRF in AHF are complex and not fully understood; the most
prominent hypotheses include the impact of, i.a., congestion [18]. Given this lack of specific
evidence, we decided to analyse the heterogeneity of the AHF population in the context of
WRF occurrence and possible clinical phenotypes which determine it.

The ML-based analysis is gaining popularity in cardiovascular research [19]. There
were some magnificent attempts to implement ML in the HF population [20–26]. Yagi tried
to identify distinct phenotypes among AHF patients who experienced WRF [27]. Neverthe-
less, our study is the first to incorporate clustering into the analysis of the HF population,
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aiming to distinguish subgroups varied in terms of the WRF. The clustering techniques
were able to distinguish three interesting clinical subtypes with different pathophysiology
and implications for the outcome.

4.1. Cluster 0

This cluster represents the population of older men with chronic HF. We can assume
that these patients represent the population with a relatively long history of cardiovascular
treatment as they are frequently secured with the electric device and have undergone
coronary intervention. They have also been saddled with comorbidities, i.e., end-stage
insulin-dependent diabetes and COPD. As these patients represent the group of the chronic
and fragile population, therapeutic interventions should be targeted at stable heart failure
and comorbidities management [28–30].

4.2. Cluster 1

Cluster 1 is mainly composed of females. It is the oldest population with the first
manifestation of HF, non-ischaemic aetiology, and preserved ejection fraction. They present
signs of minimal congestion. In the biochemical assessment, patients in cluster 1 reached the
highest serum creatinine, sodium potassium, and osmolarity. This phenotype corresponds
with the described HFpEF phenotype [31]. Cluster 1 achieved the highest concentration
of selected inflammatory biomarkers (IL-6, ferritin), and high activation of inflammatory
pathways was reported to be unique for the HFpEF [32]. Recent studies showed that higher
osmolarity correlates with the incidence of WRF in AHF [33]. Importantly, this group
reached the highest incidence of AKI and WRF but moderate mortality; our consideration
of its explanation is presented in the next paragraph. As the HFpEF population currently
suffers from the lack of evidence-based treatment, therapeutic interventions should focus
on comorbidities management and lifestyle changes [2]. Some hope for efficient pharma-
cotherapy is provided by the recent trials on SGLT-2 inhibitors [34–36].

4.3. Cluster 2

Cluster 2 seems to be the most interesting. It consists almost exclusively of men.
They represent the youngest population with chronic HF with the lowest ejection fraction,
developed on aetiology described as “other”. Patients suffered from the least burden of
comorbidities, which can be explained by their youngest age and probable underdiagnosis
due to low commitment to their health management. These patients can be described
as having toxic aetiology. They represent the highest frequency of active smokers and
alcohol users and have the highest values of GGTP and bilirubin, which reflect the af-
flicted liver function [37]. Moreover, they reached the highest mean value of MCV, which
might be associated with alcohol abuse [38]. In the clinical assessment, they manifest
frequent and massive peripheral oedema, i.e., the highest incidence of lime oedema III,
hepatomegaly, and ascites, but somewhat limited pulmonary congestion. This discrepancy
between the aggravation of oedema in different vascular areas should be further evaluated.
Laboratory signs of congestion, e.g., NT-proBNP, are also the highest among the clusters.
Notably, patients in cluster 2 achieved the lowest pCO2, which can be a sign of heightened
chemosensitivity—the predictor of an a unfavourable outcome [39].

Notably, the cluster with the lowest incidence of AKI and WRF (cluster 2) was the one
with the highest one-year mortality (non-significant). In our opinion, that can be explained
by two intertwined hypotheses. First, creatinine is the late marker of kidney function [40]
and has limited value in assessing renal damage [41]. Some authors distinguish true and
pseudo-WRF based on the concentration of so-called new renal biomarkers, i.e., NGAL,
KIM-1, and cystatin-c [42]. Considering this, the isolated increase in serum creatinine can
be insufficient for an accurate kidney assessment. Secondly, creatinine can rise during
decongestive therapy [43,44]. It was reported that the transient rise of creatinine during
decongestive treatment could even be a promising sign, as it reflects the exhaustiveness
of the decongestion [45]. Thus, increased creatinine during diuretic treatment does not
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necessarily indicate genuine kidney injury, which would worsen the outcome, but it can
be a sign of diminishing volume overload. The incompleteness of the decongestion was
shown to be an important prognostic factor of mortality in AHF [46], which, in our case,
could explain why the cluster with the lowest WRF incidence reaches the highest mortality.

The proposed novel classification may complement the classical ways of AHF patient
profiling and has significant clinical implications. Each of the extracted clusters has a differ-
ent suggested pathophysiology and, therefore, another therapeutic pathway that can be
therapeutically addressed; e.g., cluster 0-uptitration of the evidence-based HFrEF medical
therapy, cluster 1-comorbidities management, and cluster 2-substance abuse counselling
and harm reduction. Focusing on these aspects should lead to more accurate treatment
tailoring and eventually optimization of therapy. The efficiency of the proposed cluster-
based approach to the therapy adjustments should be evaluated in the prospective studies.
Notably, clustering does not reveal baffling relationships. The uncovered connections are
clear for the experienced cardiologist. The value of the presented analyses is that it provides
tangible evidence for the existence of such phenogroups. Potentially, clustering could im-
mediately categorize a patient into one of the groups and suggest to a physician a relevant
proceeding, which can sometimes be omitted due to overworking or lack of experience.

4.4. Limitations

Our study is not free from limitations. Our data comes from the single-centre registries
gathered between 2010–2012 and 2016–2017. Patients in these registries were treated
with the current ESC criteria, which did not mention the modern drugs, i.a., a SGLT-2
inhibitor. This influences the potential extrapolation of our results to the present AHF
population. Further, we did not assess the novel kidney markers, which would increase
the thoroughness of the renal status evaluation. However, the presented assessment
model mirrors the commonly used, well-understood variables. Importantly, we have only
included the patients who had their creatinine evaluated at four time points, including
discharge. Thus, we only included patients who survived the hospitalization. We have
also prespecified the number of clusters, as we wanted to avoid the over-fragmentation
of the data; however, pre-specification of the number of clusters to three follows the
previous papers about clustering in HF [27,47,48]. All the issues mentioned above should
be addressed in further trials.

5. Conclusions

Machine learning techniques provided fresh insights into the existing medical datasets.
We were able to distinguish three clinically and prognostically different phenotypes. Impor-
tantly, these phenotypes are different in terms of the AKI or WRF occurrence. These groups
constitute valuable insight into AHF and WRF interplay and may be leveraged for future
trial construction and more tailored treatments. Our data provides further evidence for
the hypothesis that the serum creatinine concentration should be analysed in the broader
context in the population of decongested patients and that its increase is not necessarily
prognostically worrying.

Noteworthy, we used the k-medoids algorithm instead of the more popular k-means
algorithm because k-medoids represent centroids of clusters as existing data points (patients
in our case). This makes the results better interpretable. The k-medoids algorithm is
also more robust to outliers than the k-means algorithm [49], which is meaningful in
medical data.
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