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Abstract: Alternative splicing is an important means of generating the protein diversity necessary for
cellular functions. Hence, there is a growing interest in assessing the structural and functional impact
of alternative protein isoforms. Typically, experimental studies are used to determine the structures
of the canonical proteins ignoring the other isoforms. Therefore, there is still a large gap between
abundant sequence information and meager structural data on these isoforms. During the last decade,
significant progress has been achieved in the development of bioinformatics tools for structural and
functional annotations of proteins. Moreover, the appearance of the AlphaFold program opened up
the possibility to model a large number of high-confidence structures of the isoforms. In this study,
using state-of-the-art tools, we performed in silico analysis of 58 eukaryotic proteomes. The evaluated
structural states included structured domains, intrinsically disordered regions, aggregation-prone
regions, and tandem repeats. Among other things, we found that the isoforms have fewer signal
peptides, transmembrane regions, or tandem repeat regions in comparison with their canonical
counterparts. This could change protein function and/or cellular localization. The AlphaFold
modeling demonstrated that frequently isoforms, having differences with the canonical sequences,
still can fold in similar structures though with significant structural rearrangements which can lead
to changes of their functions. Based on the modeling, we suggested classification of the structural
differences between canonical proteins and isoforms. Altogether, we can conclude that a majority of
isoforms, similarly to the canonical proteins are under selective pressure for the functional roles.

Keywords: isoform; large-scale analysis; protein structure; AlphaFold; canonical protein

1. Introduction

Alternative splicing is one of the principal sources of structural and functional diversity
in the proteomes of multicellular organisms. It is a process that may include or exclude
particular exons of a multi-exonic gene from its processed messenger RNA. Different
combinations of exons can produce multiple mRNA isoforms of a single gene. It is estimated
that up to 95% of human multi-exonic genes are alternatively spliced [1,2]. The average
number of splice variants per human gene is equal to four [3]. All this can drastically
increase the number of different proteins in the proteome. Today, most genome-wide
information about alternative splicing is generated on the nucleic acid level thanks to high-
throughput data such as expressed sequence tags (ESTs) [4], microarrays [5], and RNA-seq
data [6]. However, not all splicing variants are expressed as functional proteins. Although
a very large number of alternatively spliced variants are detected in RNA-seq studies,
large-scale mass spectrometry-based proteomics analyses detect only a small fraction of
alternative isoforms on the protein level [7]. One of today’s problems in this area is to
establish the real number of splice variants that appear as functional proteins for each gene.
In addition to the application of genome-wide mass spectrometry analyses, researchers pay
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special attention to the protein isoforms with the most cross-species conservation and those
that are able to maintain protein structure integrity [1,8–10].

Although the way to obtain the exact set of real protein variants may take some time,
the data already available thanks to a combination of approaches (proteomics, cross-species
conservation, and 3D mapping) can be used for the subsequent structural and functional
annotations. Today, high-quality collections of protein isoforms are stored in UniProt, NCBI
RefSeq, Ensembl databanks [11–13], and in more specific ones such as APPRIS, ISOexpresso,
and ASES [14–16].

Another important point is the existence of a single main protein isoform among
several protein variants for each gene, which is called principal isoform or canonical
protein. The canonical protein is identified by several criteria: experimental data on its
functional role; data about its expression in different tissues of an organism; existence of
the same combination of exons in orthologous proteins and in different curated databases.
Although, in the annotated databases of proteomes [11–13] many canonical proteins are
well distinguished from their isoforms, some of them are still poorly annotated.

Depending on the proteomes and quality of their annotation, the number of isoforms
usually exceeds the amount of canonical proteins 2–3 times [11,17]. At the same time, if to
compare the number of proteins with the available experimental structural information, the
situation is opposite. Almost all proteins in the Protein Data Bank [18] are canonical. Thus,
due to a large gap between abundant sequence information and meager structural data on
the isoforms, there is a growing interest in assessing the structural states and functional
roles of alternative protein isoforms. As we have already mentioned, the sequence data
on the isoforms are abundant. Therefore, if we want to get a global view of the structural-
functional difference between the canonical proteins and their isoforms, apparently, the
most appropriate approach is bioinformatics rather than the time-consuming experimental
methods. In line with this need, during the last decade, significant progress has been
achieved in the development of bioinformatics tools for large-scale structural and functional
annotations of proteins. In the early days of structural bioinformatics, the foremost efforts
of researchers were devoted to proteins with globular 3D structures. However, today, it is
becoming clear that non-globular protein regions, having either intrinsically disordered
conformations, membrane domains, elongated structures with tandem repeats or being
aggregation-prone also have important functional roles [19–21]. Thus, an accurate structural
and functional prediction of protein molecule can only be achieved when accounting for
all these structural states. Recently, in line with this need, we developed a computational
pipeline called TAPASS, which was designed to do just that [20]. The TAPASS pipeline
is using known cutting-edge predictors able to detect intrinsically disordered regions
(IDRs), transmembrane regions, signal peptides, conserved structured domains, short
linear motifs (SLiMs) and aggregation-prone regions in protein sequences. The main
novelty of this tool is a more precise prediction of aggregation-prone regions by taking into
consideration the other known or predicted structural states. Moreover, the appearance
of the AlphaFold program [22] opened up the possibility to model a large number of
high-confidence structures of the isoforms. This artificial intelligence program, in a short
time, became the gold standard computational technique for prediction of the 3D structure
of proteins based on their sequence thanks to its accuracy competitive with experimental
structures in a majority of cases.

In this study, by taking advantage of these state-of-the-art bioinformatics tools, we
systematically compared the structural states of canonical proteins and isoforms. The
analysis was performed on a large scale using 58 eukaryotic proteomes and provided a
global view of the prevalence of each of these types of structures in canonical and isoform
sets. Moreover, in some cases, our analysis proposed functional implications caused
by structural changes of the isoforms as well as the possibility of selective evolutionary
pressure, to which they can be exposed for functional roles.
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2. Materials and Methods
2.1. Construction of Datasets of Canonical Proteins and Their Isoforms
2.1.1. Main Dataset

Construction of properly divided large datasets of canonical proteins and their isoforms
represents a challenge because some proteins are still poorly annotated. To obtain large
subsets of canonical proteins and their isoforms, we retrieved corresponding sequences
from reference proteomes of 58 eukaryotic species (Supplementary Table S1) by using July
2020 release of UniProt databank [11]. Our choice was justified by the fact that UniProt
contains a large combined set of several databases. The UniProt uses the following criteria to
identify the canonical proteins: experimental data on their functional role; data about their
expression in different tissues of an organism; existence of the same combination of exons
in orthologous proteins and in different curated databases (https://www.uniprot.org/help/
canonical_and_isoforms (accessed on 25 August 2020)). First, we used option “Download all
(FASTA (canonical & isoform)” to get 1,906,397 sequences including both canonical proteins
and their isoforms. Second, we used “Download one protein sequence per gene” option to
obtain a better-defined set of 1,244,044 canonical proteins. To avoid redundancy, we clustered
the isoforms by CDhit [23] and removed the identical ones. This gave us 661,745 isoforms.
Then we selected those isoform sequences, which had the same gene IDs as proteins from the
canonical set and were highly similar BLAST (e-value < 10−35) with them [24]. As a result, we
obtained a dataset of 263,475 canonical proteins and 565 942 isoforms, which was used in our
analysis (Supplementary Table S2).

2.1.2. Dataset of Proteins from Cancer-Related Genes with Well-Documented
Expression Levels

Not all proteins from the UniProt databank have information about their expression
level. Therefore, we built a smaller set of canonical proteins and corresponding isoforms of
human cancer-related genes with well-documented expression levels in both 22 normal and
cancer tissues. For this purpose, we used ISOexpresso database [15]. Our dataset contains
82 canonical and 166 isoform proteins, which were used for evaluation of the correlation
between aggregation and expression level of proteins.

2.1.3. Datasets for Estimation of the Structural Difference in Isoforms by Using
AlphaFold Modeling

To evaluate the structural changes caused by the differences in the sequences (hereafter
referred to as difference regions) of the corresponding canonical and isoform proteins, we
used pairs of proteins with the difference regions inside well-conserved structured domains.
For this purpose, we chose human proteins annotated in SwissProt [25] and having evidence
of existence at the protein level (PE = 1). The conserved structural domains were detected
by using HMM library of the CATH databank [26]. In the next step, we selected CATH
domains that overlapped with the difference regions. A CATH domain found in a canonical
protein may be shortened in the isoform so that the remaining domain is not able to fold.
Therefore, we considered only isoforms where (1) the canonical CATH domain is shorter
than 200 aa, and at least 70% of the domain remains in the isoform, or (2) the canonical
domain is longer than 200 aa, and at least 50% of the domain remains in the isoform. For
the modeling, we subsequently selected 168 canonical proteins with 223 corresponding
isoforms where the difference regions were longer than 20 AA and located inside the
CATH domains. Finally, to select the most conserved and studied domains, we ran the
168 canonical proteins by local BLASTP against PDB sequences from 7 species (P. troglodytes,
B. taurus, M. musculus, R. norvegicus, D. rerio, D. melanogaster, C. elegans) and kept only those
having more than 10 hits with e-value < 10−6. As a result, we obtained 53 canonical human
proteins with 63 corresponding isoforms for the prediction by the AlphaFold program.

Subsequently, the 3D structures of the isoforms were predicted by AlphaFold Colab [27].
The structural models of the canonical proteins were obtained from the AlphaFold database

https://www.uniprot.org/help/canonical_and_isoforms
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(https://alphafold.com/download#proteomes-section (accessed on 10 May 2022)). The ob-
tained structural models were analyzed by using PyMol [28].

2.2. Bioinformatics Tools Used to Annotate Structural States of Proteins

To annotate the structural states of proteins, we used the TAPASS pipeline, which
includes several prediction tools. Structured domains were predicted by using HMM
libraries (e-value < 10−3) of CATH. Intrinsically disordered regions were detected by
IUPred [29] and an in-house BISMM filter, which chooses hydrophilic regions greater than
75% and proline-rich regions more than 25%. Signal peptide and transmembrane regions
were predicted with SignalP and TMHMM, respectively [30,31]. The tool also predicts
amyloidogenic regions (aggregation-prone motifs) by ArchCandy2.0 [32], TANGO [33],
and PASTA 2.0 [34] with their default parameters. We detected short linear motifs (SLiMs)
of degradation (degrons) by using motifs collected in the Eukaryotic Linear Motif (ELM)
resource [35].

2.3. Detection of Structural Changes in and around the Difference Regions

All types of difference regions (insertion, deletion, non-identical, and mixed) can cause
structural changes not only in the place of their location but also in the flanking regions
with identical sequences. Most of the methods used in the TAPASS for structural annotation
of canonical and isoform proteins detected these changes automatically. However, cases
when deletions truncated CATH domains required additional rules (see Section 2.1.3). The
application of these rules in our analysis affected the prediction of structured/unstructured
regions and exposed aggregation-prone regions (EARs).

2.4. Analysis of Tandem Repeats in Canonical Proteins and Isoforms

Tandem repeat regions were identified by MetaRepeatFinder (MRF) (https://bioinfo.
crbm.cnrs.fr/index.php?route=tools&tool=15 (accessed on 6 July 2022)) [36] tool in five
proteomes (H. sapiens, M. musculus, D. melanogaster, D. rerio, A. thaliana). From several
tandem repeat finders of MRF, we chose Regex, T-REKS [37], and TRUST [38], which are
specialized in the detection of TRs with units of less than 3 residues, less than 15 residues,
and more than 15 residues, respectively. As a result, the combination of these finders detects
all types of tandem repeats. The overlap between the “difference” region and the TR region
was counted if they had at least one common residue.

3. Results and Discussion
3.1. Identification, Classification, and Distribution of Difference Regions

Difference in the sequences of canonical proteins and their isoforms is quite specific in
comparison with the differences between orthologous/paralogous proteins. Frequently, the
differences between the orthologues represent point mutations and (or) short indels spread
over the proteins. While canonical proteins and their isoforms always have a region(s)
with identical sequences (corresponding to the same exons) and relatively long fragments
where sequences can be completely different (Figure 1). To detect the difference regions, we
generated pairwise alignments of canonical-isoform proteins by using Clustal Omega [39]
and treated them by our in-house script (Supplementary Data S1).

We classified the differences between the canonical-isoform pairs into four groups
choosing as a starting point canonical sequence: insertion, deletion, non-identical and mixed
(Figure 1). The “non-identical” regions have different sequences of the same length. “Mixed”
regions are those that have both amino acid substitutions and indels in the difference region.
Sometimes, these regions also include identical regions shorter than 10aa.

The analysis showed that the “mixed” difference region is the most common case,
followed by the deletions (Figure 1B). At the same time, a more detailed analysis of the
“mixed” cases showed that it also contains a significant amount of deletions (68.6% of
positions have deletions, 15.4% insertions, and 16% amino acids). Because of the frequent
deletions, on average, the isoforms are shorter in length than canonical proteins (Figure 1C).

https://alphafold.com/download#proteomes-section
https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=15
https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=15
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Figure 1. (A) Schematic representation of four groups of difference regions (dark blue and pink colors
indicate identical and non-identical regions in the sequences, respectively). (B) Occurrence of types
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3.2. Distribution of Structured and Unstructured Regions

Previous studies suggested that isoform proteins have a higher coverage of unstructured
regions in comparison to canonical proteins [40–42]. This conclusion suggested a lower level
of involvement of isoforms in functional activity than of canonical ones. We examined this
conclusion by using our datasets and the TAPASS pipeline [20] (see Section 2.1.3). Our analysis
showed that the proportion of proteins containing unstructured regions is slightly higher in
the isoform set (Figure 2). The same tendency was observed when we compared the coverage
of unstructured regions in proteins. At the same time, both of these differences were not
statistically significant. Thus, our results do not confirm the previous conclusions about the
higher number of unstructured residues in isoforms, rather suggesting that the canonical
proteins and their isoforms have the same ratio of residues in structured/unstructured states.
This also suggests that during evolution, isoforms preserve their structural domains, which
play functional roles (Supplementary Table S3).

3.3. Changes in Subcellular Localization

To understand the functional role of a protein, it is important to know where it resides
in the cell. There are a number of bioinformatics tools that can accurately predict the
outcome of protein targeting in four major subcellular localizations: secreted proteins can
be identified by SignalP [30], transmembrane regions (more exactly transmembrane helices)
by TMHMM [31], nuclear proteins with nuclear localization signals can be found by regular
expressions [35], and the remaining proteins as a rough approximation can be considered
as cytosolic.

Our analysis of the proportion of proteins with signal peptide showed that it is signif-
icantly lower in isoforms than in canonical proteins (Figure 3A). It suggests that in some
cases, the isoforms may maintain their globular functional domains but change their cellular
localization from extracellular to cytosolic. A similar tendency was observed with the canon-
ical proteins containing transmembrane helices (Figure 3B). Moreover, we found that the
proportion of the nuclear localization signals in isoforms is significantly higher in comparison
with canonical proteins. It indicates that isoforms are more often localized in the nucleus than
canonical proteins (Figure 3C). The proportion of canonical proteins with transmembrane
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helices is higher than in isoforms, suggesting that a noticeable part of the isoforms loses their
transmembrane localization. Parts of the difference regions that gain and lose signal peptides
represent 2% and 4%, respectively. For the transmembrane helices, it is 2% and 7%. These
changes may have important functional implications (Supplementary Table S3).
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Figure 3. Difference in subcellular localization between canonical proteins and isoforms. (A) Propor-
tion of proteins containing signal peptides. This value is significantly higher in canonical proteins
than in isoforms. (B) Proportion of proteins containing transmembrane regions. The plot demon-
strates a significant decrease in transmembrane proteins in the isoform set. (C) Proportion of proteins
with nuclear localization signal. Isoforms have a remarkably high proportion of nuclear localization
signals in comparison with canonical proteins. Signes *, **, **** mean significant differences with
p-value < 0.05, p-value < 0.01, and p-value < 0.0001, respectively.

3.4. Proportion of Aggregation-Prone Regions

Proteins are usually soluble and easily degraded by proteases after having performed
their functions. However, some of them, depending on the amino acid sequence and at
certain conditions, can assemble into stable, protease-resistant aggregates. These aggregates
are linked to serious diseases, which include, but are not limited to, Alzheimer’s disease,
Parkinson’s disease, type II diabetes, and rheumatoid arthritis [43]. Moreover, protein
aggregation can be “functional” and play a central role in liquid–liquid phase separation
(LLPS), a process that leads to the formation of membrane-less organelles [44,45]. Several
computational programs for the prediction of protein aggregation have been developed [46].
The most realistic evaluation of the aggregation potential requires the prediction of motifs
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located within unstructured regions and being aggregation-prone, which we call “Exposed
Aggregation-prone Regions” (EARs) [20]. Here, we analyzed the EARs in canonical proteins
and isoforms. Our interest in this analysis was also because, in general, canonical proteins
have a higher level of cellular expression in comparison with their isoforms. It is reasonable
to assume that to avoid aggregation, canonical proteins with a higher expression level may
have a lower aggregation potential. The other reason for the higher aggregation potential
of the isoforms may be the truncation of native globular domains and the unfolding of
their remaining parts. For example, it was shown that the p53 isoform ∆133p53β, which
is critical in promoting cancer activity, is regulated through an aggregation-dependent
mechanism [41]. The analyses of the truncated DNA-binding domain of ∆133p53β suggest
that its remaining part is most probably unfolded and contains the EARs.

We estimated an average aggregation potential of canonical proteins and isoforms by
the proportion of EAR-containing proteins predicted by one of the predictors (ArchCandy,
Pasta, Tango) in these two datasets. Our analysis revealed that the median value of
proportion for isoforms with EARs is almost the same as for canonical proteins (Figure 4
and Supplementary Table S3).
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Figure 4. Proportion of EAR-containing proteins in canonical and isoform proteomes predicted
by three tools (ArchCandy, Pasta, Tango). Differences between canonical proteins and isoforms
are non-significant.

Although it is accepted that canonical proteins have higher expression levels than
the isoforms [7,47], most proteins from our main dataset do not have reliable information
about their expression level. Therefore, we also analyzed smaller sets with 82 canonical
and 166 isoform proteins of human cancer genes with well-documented expression levels
in normal and cancer tissues (Supplementary Tables S4 and S5). These sets were used for
evaluation of the correlation between aggregation and expression level of the proteins. The
results confirm that the average expression level of canonical proteins is significantly higher
than that of their isoforms. We also compared the relationship between the expression level
and aggregation potential of proteins in normal and cancer cells. The results of the analysis
are shown in Figure 5. The expression of canonical proteins is higher in both normal and
cancer cells. At the same time, the expression level of all proteins slightly decreases in
cancer cells. We also found that the proteins with EARs are expressed less in both normal
and cancer cells than the ones without EARs. These results are in agreement with the
assumption that to avoid aggregation, proteins with a higher expression level may have a
lower aggregation potential.
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Figure 5. Violin plots of expression of canonical proteins and their isoforms in normal and cancer
cells. (A) EAR-containing proteins and (B) non-EAR-containing proteins. EARs were predicted by
using the ArchCandy program. Mean levels of expression for EAR-containing canonical proteins
and isoforms in normal cells were 1.565 and 0.386, respectively, and in cancer cells, 1.490 and 0.306.
For non-EAR-containing proteins, these values were 5.784, 1.773, and 4.984, 1.499, respectively. In
accordance with t-test, all results were significant, with p-values of less than 10−13. **** means
significant difference with p-value < 0.0001.

3.5. Canonical Proteins Have More Degradation Motifs Than Their Isoforms

The abundance of proteins in the cell mostly depends on the balance of two opposite
processes: expression and degradation. In general, canonical proteins have a higher level of
cellular expression in comparison with their isoforms. It was interesting to understand if there
is any difference between these proteins in terms of their degradation. The experimental data
on protein degradation is limited and controversial. We compared canonical and isoform
proteins in silico by analyzing the occurrence of degron motifs by TAPASS [20]. The degrons
are short linear motifs that increase the targeting of proteins for degradation [48,49]. We found
that canonical proteins have a higher proportion of degrons in comparison to the isoforms
and this difference is statistically significant (Figure 6 and Supplementary Table S6).

If the more frequent occurrence of degrons in the canonical proteins causes their
higher degradation rate in comparison with the isoforms, this may decrease the difference
in the abundance between canonical proteins and isoforms. In its turn, a similar level of
abundance may explain almost the same proportion of the aggregation-prone proteins
predicted (Figure 4) for the canonical and isoform sets.
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Figure 6. Proportion of canonical proteins and isoforms with degrons predicted by using SLiMs
(t-test p-value = 0.00071). The distributions contain 58 points corresponding to each proteome. The
proportion of degron-containing proteins is significantly higher in the canonical set than in the
isoform one. Here, *** means significant difference with p-value < 0.001.

3.6. Occurrence of Tandem Repeats in Canonical Proteins and Isoforms

Many protein sequences contain arrays of repeats that are adjacent to each other [50,51]
tandem repeats (TRs). Several authors have proposed that TRs might have evolved by exon
duplication and rearrangement [52,53]. Therefore, it was interesting to get insight into
the difference between canonical proteins and isoforms in these particular regions. We
detected TRs in five well-annotated proteomes (H. sapiens, M. musculus, D. melanogaster,
D. rerio, A. thaliana) by using MetaRepeatFinder (MRF) (https://bioinfo.crbm.cnrs.fr/index.
php?route=tools&tool=15 (accessed on 6 July 2022)). These proteomes contain a total of
44,357 canonical proteins. We found that a large part (43%) of them contains at least one
TR region, and each TR-containing protein has, on average, about two TR regions. A
comparison of the occurrence of the TR regions in canonical proteins and isoforms revealed
that isoforms have fewer TR regions than canonical proteins (0.5 vs. 0.81 TR region per
protein) (Figure 7A). It is especially noticeable for TRs with a repeat length of 4–10 residues
(Figure 7B). Partially, the decrease in TRs in the isoforms can be explained by the fact
that among the differences between canonical proteins and isoforms, we predominantly
observed deletions (see Section 3.1). It was interesting to study the relationship between
the location of the TRs and the difference regions. Our analysis showed that among the
difference regions detected in the aligned pairs, a significant part (35%) overlaps with TRs.
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3.7. Differences within the 3D Structures of Canonical Proteins and Isoforms Predicted
by AlphaFold

Our proteome-wide analysis provides a global view of the canonical-isoform protein
difference. At the same time, it is also interesting to investigate these changes from within
the 3D structures down to the atomic details. In orthologous and paralogous proteins, the
difference in the amino acid sequences of more than 30% of identity may guarantee the
same structural fold [54]. However, the character of the differences between canonical and
isoform sequences is quite specific. They are identical at the location of the same exons;
however, in the places of alternative splicing, they can have completely different sequences.
This “mosaic” arrangement may trigger significant structural and functional changes.

Given the fact that almost all proteins with experimentally determined 3D struc-
tures are canonical, the comparison requires molecular modeling of isoform structures.
Previously, this type of modeling of the isoform structures and their comparison with
the structures of the corresponding canonical proteins was described for some particular
proteins [10]. Today, with the development of an artificial intelligence program called Al-
phaFold [22], the scientific community got an opportunity to build high-quality structural
models on a large scale. Here, we applied the AlphaFold program to obtain structural
models of the isoform proteins. It was especially interesting to examine cases when the
difference regions between the isoform and canonical proteins are conserved in several
organisms and located within well-conserved structured domains. For the modeling, we
used human proteins. To evaluate the cross-species conservation, we used seven species
from the Animal Kingdom (P. troglodytes, B. taurus, M. musculus, R. norvegicus, D. rerio,
D. melanogaster, C. elegans). We considered that AlphaFold structural models are reliable
when their level of confidence (pLDDT) was higher than 70%, they did not have disallowed
backbone conformations, and the inside residues of the structure were predominantly
apolar and did not have charged residues, which were not involved in the ionic bonds.
The detection of unstructured regions was based on criteria used in TAPASS [20]. Several
isoforms had difference regions outside of the well-conserved structured domains, while
inside these domains, they were identical to each other. Each group of these isoforms
was reduced to one representative case. As a result, we compared the 3D structures of
50 canonical human proteins with 51 structural models of the corresponding isoforms
predicted by AlphaFold. This allowed us to classify the 3D structure transformations into
four subgroups.

3.7.1. Exon Deletions with the Preservation of the Overall Structure

Proteins with tandem repeats

Though most of the selected proteins have globular structures, non-globular structures
built of tandem repeats were found in 26% (13 of 51) of the cases. In the analyzed proteins
with the difference regions inside of the complete structure, the most frequent situation is
the deletion of one repetitive unit. As a rule, these changes (also with any integer number
of the repeats) do not cause serious structural perturbations (Figure 8A). These cases are
observed in proteins with tandem repeats from Class III, IV, and V [51,54,55]. In a few
cases, the difference regions do not have an integer number of repeats. This could lead
to structural changes if this difference is located in the middle of the repetitive structure.
However, the isoform models showed that the change in the loop size between the repeats
preserves the integrity of the whole structure (Supplementary Data S2 and Figure S1). In
other such cases, these difference regions are located at the terminal parts of the repetitive
domains with no effect on the overall structure (Supplementary Data S2 and Figure S1).
The described structural changes preserve the overall structure by creating patches of new
surfaces that can lead to the modification of protein functions.
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Figure 8. Ribbon representation of AlphaFold models of canonical proteins (left) and their isoforms
(right). Fragments of canonical proteins deleted in the isoforms are in orange. Fragments of isoforms
that substitute deleted fragments of the canonical proteins are in magenta. Representative structures
of each subgroup from top to bottom are: (A). Deletions preserving the overall structure. Q7RTR2,
LRR-protein of NLR family CARD domain-containing protein 3; P16520, 7-bladed beta-propeller of
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3. AlphaFold model of isoform
represents 6-bladed structure with an open beta-propeller, SwissModel structure made based on the
known 6-bladed structure (PDB code 1E1A) has closed beta-propeller; O94856, neurofascin; O95259,
potassium voltage-gated channel subfamily H member 1; (B). Substitutions preserving the structure.
P11362, fibroblast growth factor receptor 1; (C). Deletions replaced by another part of the protein.
O00762, ubiquitin-conjugating enzyme E2 C, on the right, in yellow, the known crystal structure of
ubiquitylation module similar to the truncated structure of the isoform in the center; (D). Deletions
destabilizing structured domains. P13569, cystic fibrosis transmembrane conductance regulator.
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Globular proteins

Among 51 analyzed pairs, there are 20 globular structures, representing 38% of the
cases, with the deletions of exons in the middle of the structure. In most of these cases,
the deletion does not lead to critical structural transformations (Figure 8A). In some cases,
it makes shorter loops preserving α-helices or β-strands; sometimes, it removes one or
several transmembrane helices. At the same time, these deletions can lead to changes in
the binding properties of the isoforms and (or) changes in the oligomerization states of the
protein [56].

3.7.2. Exon Substitutions That Preserve the 3D Structure

The other subgroup of four analyzed proteins (8% of the cases) is characterized by
substitutions of exons. The size of the substituted exons is the same or almost the same, and
the sequences of canonical and isoform variants are not identical but similar. AlphaFold
suggests that the new exons of the isoforms fit the native structure. This does not change
the overall structure but leads to local changes on the molecular surface. This can be a basis
for the modification of protein functions [57] (Figure 8B).

3.7.3. Deletion That Is Substituted in the Structure by Another Part of the Molecule

We observed 6 of 51 cases (12%) where an exon deletion in the isoform removes a
region that is critical for the structural integrity of the globular domain. In the AlphaFold
model of the isoform, this part of the structure is filled by a new fragment, which, in
the canonical protein, belongs to an unstructured region. This suggests that to provide
structural diversity, proteins may have two or more neighboring regions. One is in the
structure, and another is unstructured. If the first region is deleted in the isoform, the
second one can dock into the structure, preserve it, and modify the function. (Figure 8C)

3.7.4. Deletions That Destabilize Structured Domains

We found eight cases (representing 16%) where exon deletions may destabilize the 3D
structure of the isoforms. It mostly happened in large multi-domain proteins. We assigned
these examples to a separate subgroup. In these structures, the domain, which may be
destabilized by the deletion of a critical part, can be transformed into an unfolded linker
connecting the other globular domains. Instead, in the canonical structure, these domains
are connected by the structured domain (Figure 8D). In the case of canonical proteins with
a single structured domain, the isoforms may represent intrinsically disordered proteins.

3.7.5. Limitations of AlphaFold in the Interpretation of the Conformational Changes

Our analysis revealed some limitations of AlphaFold modeling of the isoforms. For
example, it is the case when we try to distinguish between isoforms with exon deletions,
which preserve the overall structure, from the ones that destabilize it. In most of the cases,
we could not base our decisions on the confidence score pLDDT for the reason that even
structures, which missed a large part of the domain, frequently had pLDDT scores higher
than 70%. These borderline cases were classified based on our visual analysis. In general,
AlphaFold had a tendency to build isoform models that are very close to the canonical
structures but with missing parts corresponding to the deleted exons. One of these examples
is shown in Figure 8A, where an isoform of the canonical 7-bladed beta-propeller of guanine
nucleotide-binding protein subunit beta-3 has six repetitive units. AlphaFold model of the
isoform is almost identical to the canonical structure but misses one blade leading to the
structure with an open beta-propeller. However, the SwissModel structure made based on
the known 6-bladed structure (PDB code 1E1A) represents a closed 6-bladed beta-propeller.
Such ambiguous cases cannot be resolved without experimental studies.
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4. Conclusions

We took advantage of the progress achieved in the development of bioinformatics
tools for large-scale structural annotations of proteins and examined the structural dif-
ferences between canonical proteins and their isoforms. It became possible thanks to
the TAPASS pipeline, which uses several state-of-the-art programs for the prediction of
structured domains, unstructured regions, transmembrane regions, and aggregation-prone
motifs [20]. Moreover, the availability of the AlphaFold program [22] opened up the
possibility of modeling a large number of isoform structures. Altogether, our in silico
analysis of 58 eukaryotic proteomes supported the concept that the majority of isoforms,
similarly to the canonical proteins, are under selective pressure for functional roles. We also
found that the proportions of proteins with a signal peptide and transmembrane helices
are lower in isoforms than in canonical proteins. This suggested that some isoforms lose
their transmembrane or extracellular localization and, eventually, their functional roles. At
the same time, we did not observe significant differences between canonical proteins and
their isoforms in the occurrence of unstructured regions or aggregation-prone motifs. Our
modeling of the isoform structures demonstrated that the AlphaFold program is perfectly
suitable for investigations of the structural differences of splicing variants at atomic details.
It was shown that frequently the isoform sequences being different from the canonical ones
still can fold in similar structures. At the same time, the isoforms may have significant
structural rearrangements, which can lead to changes in their functions. We suggested
the classification of the structural differences in the isoforms, which preserves the overall
structure of the canonical proteins.
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