
Citation: Liu, J.; Yu, Z.; Maimaiti, B.;

Meng, Q.; Meng, H. The Potential

Role of Polyamines in Epilepsy and

Epilepsy-Related Pathophysiological

Changes. Biomolecules 2022, 12, 1596.

https://doi.org/10.3390/

biom12111596

Academic Editor:

Vladimir N. Uversky

Received: 16 September 2022

Accepted: 26 October 2022

Published: 29 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

The Potential Role of Polyamines in Epilepsy and Epilepsy-Related
Pathophysiological Changes
Jiayu Liu, Zhi Yu, Buajieerguli Maimaiti, Qian Meng and Hongmei Meng *

Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, NO. 1 Xinmin Street,
Changchun 130021, China
* Correspondence: menghm@jlu.edu.cn

Abstract: Epilepsy is one of the most common neurological disorders and severely impacts the life
quality of patients. Polyamines are ubiquitous, positively charged aliphatic amines that are present at
a relatively high level and help regulate the maintenance of cell membrane excitability and neuronal
physiological functions in the central nervous system. Studies have shown abnormalities in the
synthesis and catabolism of polyamines in patients with epilepsy and in animal models of epilepsy.
The polyamine system seems to involve in the pathophysiological processes of epilepsy via several
mechanisms such as the regulation of ion permeability via interaction with ion channels, involvement
in antioxidation as hydroperoxide scavengers, and the induction of cell damage via the production of
toxic metabolites. In this review, we try to describe the possible associations between polyamines and
epilepsy and speculate that the polyamine system is a potential target for the development of novel
strategies for epilepsy treatment.

Keywords: polyamine metabolism; epilepsy; seizure; pathological change; neuroprotection;
neurotoxicity

1. Introduction

Polyamines (PAs) are ubiquitous biogenic amines with low molecular weights, and
classically refer to three molecules: putrescine (PUT), spermidine (SPD), and spermine
(SPM). Polyamines are completely protonated under physiological conditions (Figure 1).
As polycations, polyamines can interact with various negatively charged cellular macro-
molecules such as nucleic acids, ATP, proteins, and phospholipids, and thus play a critical
role in multiple biological processes, including the stabilization of nucleic acids, gene
regulation, protein synthesis, cell cycle progression, cell proliferation, cell growth and
apoptosis in both eukaryotic and prokaryotic cells [1,2]. In the CNS, polyamines are es-
sential for maintaining neurophysiological functions. The regulation of disease processes
by polyamines has been described in cerebrovascular diseases (e.g., cerebral ischemia
and stroke), neurodegenerative diseases (e.g., Alzheimer’s disease, Parkinson’s disease,
and Huntington’s disease), epilepsy and brain tumors [3–8]. Moreover, polyamine levels
dramatically increase in the brain under pathological conditions, including the traumatic
injury, ischemia, neurodegeneration, and excitotoxicity [9–13].

The characteristic symptom of epilepsy is recurrent and unpredictable seizures, which
result from abnormal, excessive, and hypersynchronous discharges in a population of
neurons. Seizures essentially result from an imbalance between excitement and inhibition
of brain function: overexcitement or weakening of inhibition, and the mechanism is com-
plex. Abnormal discharges of neurons during seizures are closely related to ion channels,
neurotransmitters, glial cells, heredity, immunity, and inflammation [14–16]. As one of
the most common serious encephalopathies, epilepsy can induce cognitive impairment,
mental health problems, employment restriction, and life inconveniences [17]. Sudden un-
expected death in epilepsy (SUDEP) is a major cause of death, and generalized tonic-clonic
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seizures are the major risk factors for SUPED [18,19]. Although most patients with epilepsy
can be effectively treated with drugs, approximately 30% of epileptic cases are refractory
to antiepileptic medications. Therefore, more effective treatment options are urgently
required [20]. Over the past few decades, the involvement of polyamines in epilepsy has
been revealed, but the complex mechanisms remain unclear. In this review, the potential
association between polyamines and epilepsy is discussed.
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physiological pH.

2. Polyamines
2.1. Biosynthesis of Polyamines

Studies have shown that polyamines are predominantly biosynthesized through the
polyamine pathway and the methionine salvage pathway [1,21], and the agmatine pathway
was subsequently confirmed in mammals [22]. In mammalian cells, the three polyamines
are mainly synthesized from ornithine and methionine in the canonical biosynthesis path-
way, which begins with the production of ornithine via conversion from arginine by
arginase. Ornithine decarboxylase (ODC) is the first rate-limiting enzyme in polyamine
biosynthesis and catalyzes the conversion of ornithine to putrescine. Putrescine is the pre-
cursor of spermidine and spermine. An aminopropyl group donated from decarboxylated
S-adenosylmethionine (dcSAM) is added to putrescine and spermidine to form spermidine
and spermine via spermidine synthase and spermine synthase respectively [23]. As an
aminopropyl group donor critical for the synthesis of spermidine and spermine, dcSAM
is produced by S-adenosylmethionine decarboxylase (SAMDC) using SAM as a substrate.
Methionine adenosyltransferase (MAT) catalyzes methionine to produce SAM in an ATP-
dependent process [24,25]. As a potential source of polyamines, agmatine generated from
the decarboxylation of arginine by arginine decarboxylase (ADC) can be hydrolyzed by ag-
matinase (AGM) into putrescine [22,26,27]. In another degradation route, diamine oxidase
(DAO) catalyzes the conversion of agmatine to γ-guanidinobutyraldehyde, which is the
precursor for the inhibitory neurotransmitter GABA (Figure 2) [28,29].

2.2. Catabolism and Interconversion of Polyamines

The higher polyamines, spermine and spermidine, can be converted into lower
polyamines through two consecutive enzymatic reactions (Figure 2). The rate-limiting en-
zyme of polyamine catabolism is spermidine/spermine N1-acetyltransferase (SAT1) which
acetylates spermidine and spermine into N1-acetylspermidine and N1-acetylspermine,
respectively [30,31]. Then, N1-acetylpolyamine oxidase (PAOX) oxidizes acetylated sper-
midine and acetylated spermine back to spermidine and putrescine, yielding the byprod-
ucts 3-acetylaminopropanal (3-AAP) and H2O2. Another enzyme involved in polyamine
catabolism is spermine oxidase (SMOX), which directly converts spermine into spermi-
dine, and produces 3-aminopropanal (3-AP) and H2O2 during oxidation [32,33]. DAO
belongs to the family of copper containing amine oxidases (CuAOs) [34]. In mammalian
cells, DAO oxidizes putrescine into 4-aminobutanal (4-AB), which is accompanied by the
production of NH3 and H2O2. Then, 4-AB is metabolized to GABA under the action of
aldehyde dehydrogenase (ALDH) [35,36]. A putative self-sustaining cell death cycle re-
lated to polyamines metabolism has been proposed. Both SAT1 and PAOX catalyze the
metabolism of polyamines and produce H2O2. In addition to causing cytotoxicity, the
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generation of H2O2 elevates SAT1 activity and thus positively regulates the process of
polyamine metabolism and forms the cycle (Figure 3) [37,38].
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2.3. Toxic Products of Polyamine Oxidation

Notably, some products of polyamine oxidation are highly toxic to cellular components.
These oxidation products, including aldehydes and ROS, are related to cell apoptosis and
inhibit the synthesis of DNA and proteins. As mentioned above, the aldehydes generated by
oxidases mainly include 3-AP, 3-AAP, and 4-AB. Wood et al. [39] studied and described the
toxicities of these aldehydes, first confirming the cytotoxicity of 4-AB and the lack of toxicity
of 3-AAP. Both the amino and aldehyde groups of 3-AP determine toxicity, and the amino
group confers lysosomotropism. Moreover, 3-AP concentrates in lysosomes and exerts its
toxicity by causing lysosomal rupture, which subsequently induces caspase activation and
cell death [40,41]. Due to instability, 3-AP and 3-AAP spontaneously convert into acrolein
after deamination. As an unsaturated reactive aldehyde, acrolein is predominantly formed
from 3-AP produced by SMOX and is less often formed from 3-AAP generated by PAOX
(Figure 2) [42].

The toxicity of acrolein has been suggested to be more potent than that of H2O2 and
nearly equal to that of OH [43–45]. As a strong electrophile, acrolein shows great reac-
tivity with the sulfhydryl groups of cysteine, histidine and lysine [46]. Acrolein induces
protein dysfunction by reacting with lysine residues of proteins to form Nε-(3-formyl-3,4-
dehydropiperidino)lysine (FDP-lysine) and Nε-(3-methylpyridium)lysine (MP-lysine) [47,48].
A mitochondrial pathway has been described in a study of acrolein-induced cell death.
Acrolein induces depolarization of mitochondrial membrane potential and the liberation of
cytochrome c, which cause DNA fragmentation through activation of the caspase cascade
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reaction [49]. Glutathione (GSH) has been confirmed to have a protective effect on acrolein
neurotoxicity [50,51]. Liu et al. [52] found that overproduction of acrolein in a middle
cerebral artery occlusion (MCAO) animal model depleted the intracellular GSH and elicited
a vicious cycle of oxidative stress, resulting in neurotoxicity through SAT1 activation. As
abnormal generation of acrolein usually appears under pathological conditions, it has the
potential to be a diagnostic marker in some diseases [53,54].

3. Alteration of the Polyamine System in Epilepsy
3.1. Alteration of Polyamine Metabolism

The endogenous polyamine system is sensitive to various pathological states, and its
homeostasis can be disrupted after brain injuries. In rat brains exposed to different stimuli,
the concentration of putrescine increases rapidly, then reduces stepwise and ultimately
remains at relatively high levels for days compared to the blank control [13,55–57]. The
extent of such an increase is positively correlated with the severity of the damage induced.
Meanwhile, the levels of spermine and spermidine rapidly decline at first and then recover,
even gradually becoming higher during the acute convulsant phase than they were initially
in some brain regions [8,13,58]. However, the levels of both spermidine and spermine in
the hippocampus are significantly reduced in the chronic phase of pilocarpine-induced
epilepsy [59]. Alterations in polyamine levels are mainly affected by changes in the activity
and expression of related enzymes [9,60,61]. Therefore, abnormal polyamine synthesis and
catabolism play crucial roles in this process.

The increase in putrescine synthesis has been shown to be affected by the upregulation
of ODC in response to a variety of brain injuries. In addition to the significantly increased
expression and activity of ODC, alterations in other related proteins (such as ODC-AZ,
mitochondrial ornithine transporter II) have been found to promote the biosynthesis of
putrescine in epilepsy models. A marked reduction in the increase in putrescine levels
occurred after pretreatment with difluoromethylornithine (DFMO, an irreversible inhibitor
of ODC) in epilepsy models, suggesting that upregulation of ODC occupies a significant
position in the overproduction of brain putrescine [7,62–66]. However, study results have
shown that ODC activity increases markedly within hours of brain injury but falls nearly to
control levels within days, while putrescine is maintained at high and relatively stable levels
during this period [63]. The transient increase in ODC activity does not seem to be sufficient
to entirely explain the long-lasting increase in putrescine levels. In fact, it has been shown
that the polyamine interconversion pathway (SAT1/PAOX pathway) is rapidly activated
after induced seizures [59,67,68]. Changes in SAT1 show a transient activity elevation and
an increase in mRNA expression persisting for days. In these epilepsy models, pretreatment
with MDL72527 (an irreversible inhibitor of PAOX) inhibited the SAT1/PAOX pathway and
markedly reduced the putrescine content, showing that an enhancement in polyamine inter-
conversion has an important role in the increase in putrescine [59,67,68]. These results are
supported by the upregulation of SMOX observed in cerebral ischemic and traumatic brain
injury (TBI) models [9,69,70]. As the activity of PAOX is high in nearly all cells and organs
in mammals, the interconversion rates seem to not be susceptible to changes in PAOX [71].
In addition, upregulation of SAT1 in some epileptic brain areas is often followed by an in-
creased spermidine/spermine (SPD/SPM) ratio, which is widely used as a metabolic index
for polyamine interconversion. Thus, overexpression of SAT1, the rate-limiting enzyme
in the SAT1/PAOX pathway, can enhance the catabolism of higher-order polyamines to
putrescine. In addition to the involvement of ODC and the SAT1/PAOX pathway in the
alteration of polyamine contents during different epileptic periods, studies have also found
that a change in SAMDC takes part in this process. SAMDC activity markedly decreases for
a short period after ischemia–reperfusion, induced seizures and traumatic brain injury and
then gradually recovers and even increases at later stages. The decline in SAMDC activity
appears almost coincident with the surge in putrescine [58,61,72–74]. In the cortices of
patients with refractory epilepsy, Morrison et al. [75] confirmed the significantly increased
activity of SAMDC during the chronic phase of epilepsy in humans. Researchers explored
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the expression of SAMDC by performing real-time RT-PCR and found no significant dif-
ferences between pilocarpine-treated groups and sham-control groups [59,76]. Overall,
changes in SAMDC seem to be mainly manifested by alterations in activity during different
epileptic periods. However, there is still a lack of research investigating the activities and
expression of enzymes in parallel under the abovementioned pathological conditions.

3.2. Heterogeneity of Polyamine Distribution and Changes in Polyamine Homeostasis

Polyamines are abundant in brain tissues, and their distribution and concentrations
vary with age and brain regions in both rodents and humans [77,78]. These variations in
polyamines maintain the normal function of the brain under physiological conditions. In
epileptic brains, heterogeneity of polyamine distributions as well as differences in the extent
of polyamine alterations have been reported and are hypothesized to contribute to differen-
tial regulations of local brain activities. A relationship between polyamine contents and
histological damage has been observed. In kainic acid (KA)-induced epilepsy models, dif-
ferent degrees of increase in putrescine levels were observed in nearly all brain regions. This
overproduction of putrescine as a response to KA injection exhibited a positive correlation
with the severity of behavioral changes and histological abnormalities and damage [8,13].
In human temporal lobe epilepsy, changes in polyamine metabolism appear to be selective
in the hippocampus: spermidine and spermine contents present distinct regional distribu-
tions while putrescine contents vary less. The SPD/SPM index increased markedly in the
seizure onset areas, and spermine content increased significantly in propagated neocortical
areas. Some areas of the hippocampus with increased spermidine levels were characterized
by severe gliosis and neuronal loss [7,79]. According to these findings, it is proposed that
heterogeneous distributions of polyamines may differentially regulate the local control of
excitability through their involvement in cell plasticity and neurotransmitters in epilepsy.
A study by Bondy et al. [80] showed a significant increase in ODC activity in brain areas
vulnerable to seizure-induced damage, and ODC activity varied more with increasing
intensity of electroconvulsive shock within a certain range, partially explaining the regional
heterogeneity of polyamine contents in the impaired brain. Regional expression of some
enzymes or transporters may also induce such heterogeneity. In healthy rats and epilepsy
models induced by pilocarpine intraperitoneal injection, Sadeghi et al. [62] demonstrated
differences in the expression of proteins related to putrescine biosynthesis (ODC, ODC-AZ
and mitochondrial ornithine transporter II) between the hemispheres within groups and
between groups. In addition, a sharper increase in the concentration of putrescine has
been found to come with the most hyperexcitable site. The elevation of putrescine seems
to be related to increased neuronal excitability [56]. Of course, distinct distributions of
convulsant agents in epilepsy models may also influence the heterogeneity of polyamine
contents in the brain. We speculate that heterogeneities in polyamine alteration may play a
role in the generation and development of epilepsy; however, more evidence is needed to
confirm this.

4. Effects of Polyamines on Epileptic Activity: Inhibiting or Promoting?
4.1. The Influence of the Polyamine System on Seizure Susceptibility

Endogenous polyamines are significantly altered and play important roles in the
pathogenesis and development of epilepsy. To further explore whether altered polyamine
metabolism in response to CNS insults provides neuroprotective effects or is a cause of
neurological impairment, transgenic mouse models overexpressing ODC, SAT1 and SMOX
have been used for investigation.

Transgenic mice with upregulation of ODC have been found to be protected from
both physically and chemically induced seizures and exhibit an elevated seizure threshold.
Meanwhile, the mice showed impaired performance in spatial learning and memory tests.
These findings are suggested to result from the regulation of N-methyl-D-aspartate recep-
tors (NMDARs) by polyamines [81]. ODC activation is also considered a neuroprotective
approach in transgenic cerebral ischemia [82]. Treatment with DFMO induced audiogenic
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seizures unrelated to changes in whole-brain GABA levels in mice [83]. In electrically
kindled rats, DFMO lowered the required stimulation intensity for the first fully kindled
state, while putrescine pretreatment at the same injection site showed an inhibitory ef-
fect on the development of electrical kindling by regulating synaptic transmission in the
brain [55]. In addition to ODC, overexpression of SAT1 also provided neuroprotection
against both pentylenetetrazole (PTZ)- and KA-induced seizures, as the neurons showed a
damage reduction and elevated seizure threshold in transgenic mice [84,85]. As mentioned
previously, the enhanced action of ODC and SSAT contributes to the high accumulation of
putrescine in the brain. On the one hand, increased putrescine inhibits NMDARs to exert
antiepileptic effects, but on the other hand it impairs learning and memory. Therefore, it is
reasonable that related enzymes are involved in changes in susceptibility to epileptogenic
stimuli via modulation of the polyamine contents.

SMOX overexpression has also been found to increase susceptibility to seizures [86–89].
A transgenic mouse model overexpressing SMOX in the cerebral cortex was shown to
have a high susceptibility to seizures and damage induced by KA or PTZ. Compared to
control mice, SMOX overexpression led to reactive astrocyte activation, which contributed
to the release of glutamate (Glu) via the activation of Ca2+-permeable α-amino-3-hydroxy-
5-methylisoxazole-4-propionic acid receptors (CP-AMPARs) together with increased ROS
production, resulting in susceptibility to KA toxicity [89]. As SMOX can oxidize spermine
to generate H2O2, higher ROS production caused by overexpression of SMOX led to an
increase in seizure susceptibility in transgenic mice [87]. Pietropaoli et al. [88] further
attempted to explain the higher excitotoxic sensitivity. In astrocytes, they found that the
increased H2O2 production induced a reduction in the excitatory amino acid transporter
(EAAT) level and upregulation of system xc

−. These changes induced a decrease in EAAT-
mediated glutamate uptake and an increase in system xc

−-dependent- glutamate release,
leading to substantial glutamate accumulation in the synaptic cleft [88]. Thus, SMOX
overexpression can indirectly induce excitotoxic stress and contribute to epileptogenesis by
the involvement in excessive glutamate accumulation.

4.2. Effects of Polyamines on Epilepsy Progression

Whether the alteration of polyamine levels and the expression and activation of related
enzymes after seizures are adaptive neuroprotective responses or the cause of excitotoxicity
remains controversial. Both exogenous and endogenous polyamines have been studied
in cells and animals to explore their roles in epilepsy pathology. Of course, the effects of
polyamines may vary under different experimental conditions.

Elevated levels of cerebral putrescine can be induced by the upregulation of either
ODC or SAT1. Increases in ODC activation and putrescine accumulation usually occur
after brain stimulation, and some researchers consider them to be a neuroprotective self-
regulatory response to stress. Although putrescine failed to exhibit an anticonvulsive effect
in previous studies, it slowed the progression of epilepsy. Intra-amygdaloid injection of
putrescine before kindling in rats had an inhibitory effect on the development of seizures,
whereas pretreatment with DFMO lowered the seizure threshold [55,56]. Grossly elevating
putrescine via overexpression of ODC not only significantly enhanced the seizure threshold
in response to both chemical and electrical stimuli but also restricted the spread of the
elicited seizure [81]. Moreover, cell injury and visible abnormalities were not observed in
transgenic mice with high endogenous putrescine levels in the brain [90]. Four hours after
the initial PTZ exposure, the application of putrescine delayed the seizure onset time at the
second exposure in a Xenopus tadpole PTZ-induced epilepsy model. An atypical pathway
mediating the effect was proposed; in this pathway, GABA is converted from putrescine
and then activates presynaptic GABAB receptors after PTZ stimulation [91]. Polyamines
were suggested to be protective in a mouse model of tuberous sclerosis complex (TSC),
as reduced levels of ODC and putrescine worsened neurodevelopmental phenotypes and
increased oxidative stress [92].
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Exogenous polyamines were demonstrated to be potent convulsants by enhancing
CNS excitability in early studies. de Vera et al. [93] found that the intraperitoneal injection
of putrescine induced behavioural patterns, including wet dog shakes and motor incoordi-
nation, and histological alterations, such as perivascular edema and moderate spongiosis. A
positive correlation was identified between the severity of clinical symptoms and the level
of putrescine in the brain [93]. In addition to inducing seizures, administration of putrescine
into the deep prepiriform cortex also potentiated the convulsant effects of NMDA at a
subconvulsant dose [94]. The effects of polyamines vary with the administration dosage.
Intraventricular polyamine injections induced sedation and hypothermia at low doses
and caused convulsions at higher doses in animals. Spermine showed higher potency
and induced extreme hyperexcitation [95]. Exogenous spermine slowed glutamatergic
excitatory postsynaptic potential (EPSP) decay, promoted firing on EPSPs and increased
membrane rectification during depolarization in thalamic slices of juvenile gerbils. As a
result, spermine reduced the seizure threshold and increased the susceptibility to electrical
stimulation [96].

5. Polyamines and Pathological Changes in Epilepsy
5.1. The Role of Polyamines in Regulating Neuronal Excitability

Epilepsy results from an imbalance between the excitability and inhibition of neu-
ronal networks [17]. Epileptic seizures are the direct result of abnormal, excessive and
hypersynchronous neuronal discharge. Polyamines are abundant in developing and pro-
liferating tissues and are essential for physiological functions [2]. Polyamine contents
are relatively high in the brain tissues of adults. The majority of brain polyamines are
stored in synaptic vesicles and astrocytes, allowing for their roles in neuromodulation and
neuronal communication.

5.1.1. Polyamines and Ion Channels

Alterations in ion channel expression and function have a large impact on epileptic
activity. Many antiepileptic drugs (AEDs) use ion channels as the targets to exert anti-
convulsant effects. Disturbances in ion homeostasis are considered to induce excessive
neuronal discharges during seizures. Alterations in ion channels during epileptogenesis
and epilepsy progression have been well summarized [97,98]. Endogenous polyamines
are present at high concentrations in the intracellular compartment and can be released
into the extracellular medium. They perform various functions in the brain via the direct
regulation of ion channels and receptors, most of which can be regulated by polyamines at
nanomolar or micromolar concentrations, with putrescine exhibiting the lowest potency.
The complex and diverse effects of polyamines on ion channels and ionotropic glutamate
receptors (iGluRs) (Figure 4) have been described in detail [99–101] and are therefore not
discussed further here.

Intracellular spermine suppressed inward Na+ currents and shifted the voltage depen-
dence of voltage-gated Na+ channel (VGSC) gating [102]. Fleidervish and colleagues [103]
hypothesize that intracellular polyamines are essential for suppressing Na+ channel late
openings, as DFMO-induced polyamine depletion led to a high magnitude of persistent
Na+ current (INaP) and generation of spontaneous action potentials in neurons. INaP plays
a significant role in the normal physiological functions of neurons with a slow inactiva-
tion property, although its magnitude is less than 1% of the peak transient Na+ current
(INaT) [104,105]. INaP participates in action potential bursting, spike threshold determina-
tion and modulation of subthreshold and suprathreshold membrane excitability [106–110].
As a result, INaP amplifies both excitability and inhibition in neurons [111,112]. Basic neuro-
physiology studies have indicated that abnormally elevated INaP contributes to neuronal
hyperexcitability [113]. Increased INaP has been found in neurons of different epilepsy
models [59,114,115]. The elevation of INaP after status epilepticus (SE) is thought to be a cru-
cial cause of the subsequent genesis of spontaneous seizures [116,117]. Most antiepileptic
drugs acting on VGSCs voltage-dependently inhibit INaT to suppress neuronal excitability
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but have no effects on INaP. As an abnormal INaP has been considered a key pathogenic
factor, inhibition of INaP may be a potential therapeutic target for epilepsy [113,118–120].
Du et al. [121] found that reduced INaP suppressed the seizures caused by mutations
affecting axonal K(v)1 channels, confirming an antiepileptic effect of INaP blockade.
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Changes in INaP rely on regulation of Na+ channel subunits at the mRNA or protein
levels. Study results have indicated that an upregulation of Na+ channel subtypes is a
possible explanation for the increase in INaP, while other studies were unable to identify
any significant changes in the expression of pore-forming VGSC submits [59,114,115,122].
A polyamine-dependent mechanism has been proposed: the elevation of INaP in the chronic
epilepsy model is attributed to relief from cytoplasmic polyamine blockade, because seizure-
induced elevation of INaP can be completely reversed by saturation with intracellular sper-
mine without significantly modifying Na+ channel expression [59,116]. Drug resistance is
an important difficulty in the treatment of epilepsy and possible underlying mechanisms
have been proposed [20]. Interestingly, recent studies indicate that endogenous polyamines
play a key role in resistance generation by regulating INaP. Endogenous polyamines mod-
ulate Na+ channels in a use-dependent manner. Depletion of intracellular spermine is
considered a major factor that induces carbamazepine (CBZ) resistance by increasing INaP
in chronic epilepsy [123]. Blocking INaP induced anticonvulsant activity and exhibited
neuroprotective effects, including prevention of neuron loss and inhibition of hippocam-
pal mossy fiber sprouting [119,120]. These findings suggest that regulation of INaP by
endogenous polyamines is implicated in epileptic activity.

5.1.2. Polyamines and Astrocytic Transmission

Neural networks rely on various neurotransmitter systems. An imbalance between
excitatory and inhibitory neurotransmitters, especially the glutamate and GABA systems,
can lead to epileptiform activity [124]. Endogenous polyamines are produced in neurons,
predominantly accumulated and released by glial cells [125–128]. Since the functions
of astrocytes play key roles in epilepsy, regulation of polyamines may be a mechanism
involved in this process.

Loss of GABAergic inhibition is a major mechanism of epileptogenesis. GABA is the
major inhibitory neurotransmitter and is mainly synthesized and released from GABAergic
neurons. However, it has been found that a considerable amount of GABA can be pro-
duced and released from glial cells [129,130]. Endogenous putrescine has been considered
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the source of astrocytic GABA synthesis [131,132], which is suggested to be the domi-
nant source of gliotransmitter GABA [133]. Thus, metabolism and transport of astrocytic
polyamines may influence the levels of GABA and subsequently affect epileptiform activity.
Through comparison with the normal group, Laschet et al. [131] found a large amount of pu-
trescine accumulation and a significant acceleration of putrescine catabolism into GABA in
astrocytes from epileptic mouse cortices. As a nonneuronal source of GABA in the brain, as-
trocytes in various regions have been suggested to use diverse amine oxidases to synthesize
GABA, including monoamine oxidase (MAO-B) and DAO [129,134–136]. Under the action
of these enzymes, increased GABA formed by putrescine boosts the Glu/GABA exchange
that mediates the release of GABA through astroglial GABA transporters GAT-2/3 and
exerts tonic inhibition under epileptic conditions [137]. As the exchange mechanism can be
prevented by blocking MAO-B and DAO, putrescine is thought to play a key role in this
process [132,137]. It has also been found that glial GABA is released via the bestrophin1
(Best1) channel in the cerebellum and striatum [129]. Notably, both MAO-B and DAO are
copper amino oxidases. Copper homeostasis has been explored and confirmed to partici-
pate in astrocytic control of neuronal excitability by regulating putrescine catabolism [138].

Gap junction channels (GJCs) mediate direct intracellular communication between
astrocytes and/or neurons and are composed of two hemichannels (HCs) or connexons,
which consist of six connexins (Cx). Cx43 is expressed abundantly in astrocytes and has
been shown to play a predominant role in gap junctional intracellular communication [139].
Research shows that polyamines have a coupling-promoting effect on Cx43 GJCs and that
spermine, with four positively charged amino groups, exerts the strongest effect. In astro-
cytes, cytoplasmic spermine facilitates intracellular communication by preventing Ca2+-
and H+-induced uncoupling of Cx43 GJCs in a concentration-dependent manner [140–142].
Therefore, under pathological conditions with H+ and Ca2+ overload, intracellular spermine
has the ability to preserve Cx43-mediated gap junctional communication and maintain
astrocyte function. However, Cx43 has been demonstrated to differentially regulate epilep-
tiform activity in different epilepsy models [143]. In a low-Mg2+ in vitro epilepsy model,
astroglial synchronization mediated by Cx43 gap junctions significantly contributed to
the propagation of synchronized neuronal and epileptiform activity [144]. Meanwhile, in
the hippocampus of patients and animal models with temporal lobe epilepsy (TLE) with
sclerosis, a complete lack of glial gap junction coupling was discovered and was suggested
to be a prime cause of TLE [145]. Thus, polyamines may affect epileptiform activity through
alterations in astrocytic synchronization and communication by modulating GJCs. This
effect may rely on the role of astrocytes in different types of epilepsy. Since polyamines
can be interconverted in neurons and are stored in glial cells, it is possible that polyamine
conversion influences astrocyte functions.

5.2. The Potential Role of Polyamines in Damage and Pathological Changes after Seizures

Epilepsy triggers a cascade of pathological changes, some of which contribute to an
enhanced propensity for seizure genesis. Pathological changes in epilepsy refer to neurode-
generation, neuron loss, gliosis, axonal sprouting, acquired channelopathies, microvascular
proliferation and others (Figure 5) [146,147]. According to previous studies, endogenous
polyamines may be significantly associated with certain pathological processes in epilepsy.

5.2.1. Hypoperfusion/Hypoxia Following Seizures

Seizures can induce severe ischemic/hypoxic attacks [147,148]. A focal decrease in
tissue oxygenation occurs following interictal and ictal events [149]. In a study of both
animal models and patients with epilepsy, Farrell and colleagues [150] indicated that
postictal hypoxia is mediated by vasoconstriction-induced hypoperfusion, which is local-
ized to the brain areas involved in seizures. Cyclooxygenase 2 (COX-2) and L-type Ca2+

channels have been confirmed to play important mechanistic roles in vasoconstriction
during seizures, and antagonists of the two targets exert inhibitory effects on postictal
hypoxia [148,150,151]. A significant increase in the intracellular Ca2+ concentration in
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vascular smooth muscle cells is the root cause of postictal vasoconstriction. According to
research, COX-2 is induced during seizure activity and transmits Ca2+ signals to down-
stream L-type Ca2+ channels, facilitating inward Ca2+ current and mediating enduring
pathological vasoconstriction [148,151]. Postictal hypoperfusion/hypoxia has been identi-
fied as an important component of seizure-induced brain damage and a cause of various
pathological changes, such as neuronal loss, gliosis neuroinflammation, axonal sprouting
and blood brain barrier (BBB) dysfunction [147,151]. Therefore, preventing injury from
vasoconstriction is necessary for epilepsy treatment.
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Polyamines have been suggested to negatively regulate the expression of COX-2 via
a post-transcriptional mechanism mediated by eIF-5A, although there is a lack of studies
related to the regulation of COX-2 by polyamines in epilepsy [152]. The 3′-untranslated
region (3′-UTR) of COX-2 contains three eIF-5A response elements (EREs) that can be
bound by the eIF-5A protein. According to study results, DFMO treatment not only
induced steady state levels of COX-2 mRNA but also stabilized the COX-2 3′-UTR. This
polyamine-dependent suppression of COX-2 RNA seems to be associated with COX-2 3′-
UTR destabilization. Thus, polyamines may prevent vasoconstriction via downregulation
of COX-2 translation.

Regulation of contractility by polyamines has been found in intestinal and vascular
smooth muscle cells [153]. Both intra- and extracellular polyamines have a relaxing effect on
contraction via inhibition of inward current through L-type Ca2+ channels and a subsequent
decrease in intracellular Ca2+. Study results have shown that inhibition of spermidine and
spermine synthesis enhances Ca2+ channel activity [154–156]. The effect of polyamines on
L-type Ca2+ channels is reversible and is determined by the number of positive charges
on polyamine molecules. Consequently, spermine is more potent than spermidine, while
putrescine has no effect. Moreover, the relaxation appears to occur only in the contraction
induced by repetitive action potentials rather than sustained depolarization [157]. These
studies demonstrate that polyamines may mediate inhibition of cerebrovascular vasocon-
striction by inhibiting L-type Ca2+ channels. In addition, polyamines have been found
to increase the rapid contraction of smooth muscle through inhibition of myosin phos-
phatase activity, with the potency correlating with the number of positive charges [158,159].
However, external application of putrescine increased L-type Ca2+ currents in mouse neu-
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roblastoma cells [160]. Therefore, the effects of polyamines on L-type Ca2+ channels are
likely related to cell type.

5.2.2. Gliosis

TLE is the most common form of focal epilepsy in humans and is characterized
by hippocampal sclerosis (HS). Reactive gliosis; especially astrocytosis and microgliosis;
involves dramatic changes in glial gene expression and cell morphology in epileptic foci. As
a typical pathological feature of HS; gliosis has been thought to contribute to the reduction
of seizure threshold and the development of epilepsy via a variety of mechanisms; such
as induction of neuroinflammation; reduction of K+ buffering capacity; impaired gap
junction coupling; aberrant neurotransmission and many others [161–163]. Indeed; gliosis
is present in all forms of epilepsy and has been identified as an integral part of pathological
changes [164,165]. Therefore; the regulation of gliosis may have an important influence
on epilepsy.

As a histopathological characteristic of epilepsy, astrocytosis has been found to be
closely related to polyamine synthesis and metabolism [79,131]. In Dach-SMOX mice, a
model overexpressing SMOX in the cerebral cortex, astrocytosis exhibited an increase in
cell number and morphological cellular changes consisting of hypertrophy and wide rami-
fication [166]. The effects of chronic activation of neuronal SMOX in the astrocyte process
alterations have been revealed, including reduction of spermine levels, increase in Ca2+

influx through CP-AMPARs and induction of catalase activity [167]. Meanwhile, enhanced
polyamine oxidation induced by SMOX overexpression leads to the production of H2O2
and acrolein, promoting oxidative stress and neuroinflammation, which are considered key
factors in astrocytosis generation. As polyamine accumulation cells, astrocytes respond to
neuronal SMOX overexpression and try to regulate polyamine contents, ultimately leading
to reactive astrocytosis [166]. Increased synthesis of putrescine by activated ODC was found
to induce the expression of glial fibrillary acidic protein (GFAP) in kindling [66]. In a remote
astrocytosis model induced by lateral fimbria transection, treatment with DFMO markedly
suppressed hippocampal gliosis [168]. Epilepsy is a common phenotypic hallmark of
TSC, a quintessential disorder of mechanistic target of rapamycin complex 1 (mTORC1)
dysregulation. In Tsc2-RG mice (a transgenic mouse model of TSC), markedly increased
ODC activity is attributed to activation of mTORC1 and induces astrogliosis which can
be attenuated by DFMO in a dose-dependent manner [169]. However, a decrease in ODC
activity and putrescine levels in Tsc2-RG mice is observed to worsen neurodevelopmental
phenotypes, indicating protective effects of polyamines in this model [92]. Notably, the
promoting effects of ODC on astrocytosis do not hold for each TSC phenotype or lesion
condition [169,170].

5.2.3. Neuroinflammation

Evidence is emerging that neuroinflammation may not only be a cause but also a
consequence of epilepsy, and complex links between inflammation and seizures have been
described [171–173]. Increased inflammatory factors have been reported in patients and
animal models with epilepsy [174–176]. Glial cells, especially astrocytes and microglia,
are quickly activated in response to insults to maintain brain homeostasis. However,
excessive activation of glia by repeated and long-term seizures can in turn aggravate the
severity of seizures [165]. The molecular mechanisms by which inflammation contributes
to seizures involve the activation of NMDARs, transcriptional changes related to a low
epileptogenic threshold, an increase in glutamatergic neurotransmission and a reduction in
astrocyte buffering capacity [173]. Astrocytes, especially microglia, constitute major cellular
sources of inflammatory mediators, which play important roles in the crosstalk between
the immune and nervous systems in the CNS [177–179]. Glial cells can also respond to
proinflammatory signals released from immune cells. In this case, mast cells (MCs) have
been thought to be key players in these processes [177–179].
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The effect of MCs in seizures has been explored. A study by Kilinc et al. [180] showed
that MCs may exert therapeutic effects in epilepsy because compound 48/80 produced
an antiepileptic effect by activating MCs in a dose-dependent manner. Serotonin, one of
the mediators released from granules of activated MCs, is suggested to partially or totally
mediate the protective effect [180]. Interestingly, the release of serotonin is polyamine-
dependent [181]. Antizymes (AZs) are small proteins regulated by polyamines and have
inhibitory effects on polyamine synthesis and uptake in mammals [182]. Antizyme in-
hibitors (AZINs), which are observed to be expressed in MCs, antagonize the action of
AZs on polyamines and serve as inducers of ODC activity [181,183]. Kanerva et al. [181]
found that activated MCs promoted AZIN2 expression and subsequently contributed to
polyamine synthesis. Moreover, polyamine depletion induced by DFMO delayed sero-
tonin release from MCs, indicating that serotonin secretion from MCs can be affected by
polyamine synthesis. Meanwhile, potential mechanisms by which polyamines may be
involved in the regulation of exocytosis of serotonin-containing MC granules by regulating
Ca2+ influx or RhoA activity have been proposed [181].

SMOX regulates polyamine catabolism and plays important roles in neuroinflamma-
tion. Postischemic neuroinflammation is considered an important mechanism in ischemic
brain injury. In rat MCAO models, a significant increase in SMOX expression occurred
in neurons and downregulation of SMOX significantly reduced cerebral ischemia injuries.
According to the data, the neuroprotective effects of SMOX inhibition are attributed to
the inhibition of microglial activation [184]. Alfarhan et al. [185] found that MDL72527
treatment reversed the increase in activated microglial and inflammatory cytokines in
excitotoxic retinas, indicating an effect of SMOX inhibition on inflammation reduction. A
potential mechanism of neuroinflammation regulation by SMOX can be proposed: activated
SMOX induces the generation of acrolein and H2O2, which have been confirmed to activate
microglia, induce proinflammatory signals and elevate oxidative stress [33,186,187].

Oxidative stress plays an important role in seizure-induced damage [188]. ROS
levels increase in epilepsy models, and ROS have been suggested to contribute to mi-
croglial activation and the production of proinflammatory cytokines. Therefore, scav-
enging ROS via antioxidant treatment may be a novel approach for neuroinflamma-
tion control in epilepsy [189]. Polyamines are considered antioxidants and free radical
scavengers [190–193]. They exert protective effects via direct scavenging of ROS and pre-
vent DNA damage via the induction of DNA conformational changes and blockade of the
interaction between DNA and harmful agents [190,193–196]. Reduced polyamine levels
can increase the susceptibility of cells to oxidative stress. From these findings, it can be
hypothesized that polyamine synthesis contributes to a reduction in ROS-induced inflam-
mation. ROS production and hypoperfusion/hypoxia conditions in epilepsy also lead to
COX-2 activation, which is derived from neurons and results in microglial activation and
cytokine production [197,198]. In addition to their inherent antioxidant activity, negative
regulation of COX-2 by polyamines has been reported [152]. Thus, inhibition of COX-2 by
polyamines may be another pathway to inhibit neuroinflammation.

5.2.4. Synaptic Plasticity

Seizures can induce pathological synaptic plasticity by generating long-lasting changes
in synaptic efficacy, which tend to facilitate future epileptogenesis. In the early phases of
epileptogenesis, severe pathophysiological alterations appear in the expression of some
genes and proteins, GABAergic transmission, the synthesis of neuropeptides, the properties
of iGluRs and the availability of some ion channels. Even brief epileptic seizures can gen-
erate long-term potentiation (LTP) and increase synaptic efficacy [98,199–202]. iGluRs are
affected by neuronal activity and are involved in regulating synaptic plasticity [203–207].
Continuing neurodegeneration and axonal outgrowth are the prominent features of plas-
ticity changes in the chronic phase of epilepsy, and one typical example is mossy fiber
sprouting, which contributes to aberrant excitation of the network [201,202]. A cascade
related to alterations in synapsis following epilepsy seizures has been demonstrated. This
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cascade begins with an increase in the intracellular Ca2+ concentration induced by epilep-
tiform activity, and the key steps are the activation of immediate-early genes and genes
coding for growth factors, alterations in glutamate receptors and glia, and changes in
cytoskeletal proteins [202]. Polyamines may influence the synaptic change related to
the cascade through their regulation of neuronal Ca2+ channels [160,208]. In addition, a
promotive effect of polyamines on axon regeneration has been demonstrated [209–215].
According to these studies, polyamine biosynthesis is necessary for nerve regeneration, and
the possible mechanism involves DNA, RNA, and protein synthesis or posttranslational
modifications. Moreover, effects of glial cells on neuroplasticity have been reported due to
their roles in neurotransmission and neuroinflammation [216]. As mentioned previously,
regulation of polyamines on glial cells may be another pathway affecting neuroplasticity in
epilepsy. Even though neuroplastic changes appear to be a mechanism to compensate for
seizure-induced damage, they can also facilitate seizure propagation.

5.2.5. Cell Damage and Apoptosis

The mechanism of seizure-induced neuronal death has been identified. Intracellular
Ca2+ and Na+ overload induced by overactivated glutamate receptors leads to swelling
and rupture of cells and organelles, activation of proteolytic enzymes and production of
free radicals, ultimately leading to neuronal death. Meanwhile, seizures also induce cell
death by activating signaling pathways associated with apoptosis [217,218].

Both protective and toxic effects of polyamines on neurons have been demonstrated.
Protection by polyamines has been observed in ischemia-induced neuron death. Treat-
ment with polyamines attenuates cell damage and delays neurodegeneration [219,220].
The contribution of ODC activity to ischemia-reperfusion damage has been assessed in
rodent models. The results showed that overexpression of ODC delayed the formation and
maturation but did not reduce the volume of the infarct induced by permanent occlusion.
Increased activity of ODC in the reperfusion phase apparently slowed the development of
ischemic damage and reduced infarct volume, while DFMO-treatment and ODC knock-
down had the opposite effect, suggesting a neuroprotective role of ODC upregulation in
transient cerebral ischemia [82,221–223]. Spermine facilitated retention of almost all the
activity of the mitochondrial respiratory chain complex and partially protected mitochon-
dria from oxidative stress damage by inhibiting lipid peroxidation. Administration of
spermine led to an increase in ecNOS activity and to the preservation of mitochondrial
function, which protected against infarctions [219,224]. Within a certain concentration
range, Harada et al. [225] found that polyamines prevented cell death in a concentration-
dependent manner, with the order of potency being spermine > spermidine > putrescine
in cell models of neuronal apoptosis death. Polyamines have also been shown to play
a neuroprotective role by suppressing the activation of NMDARs and caspase-3 [225].
Additionally, spermidine protects neurons against neurotoxicity by attenuating oxidative
stress, neuroinflammation, and the levels of neurotransmitters [5,6].

Both spermine and spermidine can protect against ROS attack at normal physiological
concentrations, but spermine is more effective at lower concentrations. Distinct from GSH
in cellular protection against H2O2, polyamines, as a group of ubiquitous polycations, may
prevent oxidative attack by binding to negatively charged molecules (such as DNA, RNA
and phospholipids) to form complexes [191,195]. Apart from these findings, endogenous
spermine protected antioxidant enzymes in transiently reperfused rat brains, as it reversed
the decreases in enzyme activity [226,227].

Polyamines themselves have been confirmed to be cytotoxic. Spermine injection dose-
dependently induced neuronal damage in the striatum, and the lesions were reduced by
treatment with NMDA and non-NMDA glutamate receptor antagonists [228]. The types
of spermine-induced cell death vary with the doses of spermine [229]. Involvement of
polyamines in excitatory amino acid-induced neuronal death has also been found [230].
NMDARs antagonists with different mechanisms of action prevented the toxicity of the
co-application of spermine and glutamate but not completely, suggesting activation of the
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non-NMDA receptor pathway [231]. Polyamines also exhibit cytotoxicity by regulating Ca2+

influx [232]. In addition, polyamines indirectly mediate toxicity through the toxic products
of polyamine oxidation, a process for which amine oxidase is necessary [71,230,231,233,234].
As mentioned previously, acrolein is a toxic aldehyde produced from polyamine oxidation
and has been shown to activate microglia and increase oxidative stress in the CNS [187].
The application of antioxidants or amine oxidase inhibitors exerted a protective effect
against spermine toxicity in microglia, indicating the involvement of acrolein and H2O2
in polyamine-induced cell death [235]. Polyamine metabolism is strictly regulated be-
cause both a lack and excess of polyamine can be harmful to cells. Polyamine depletion
may induce apoptosis via the mitochondrial intrinsic pathway. In polyamine-depleted
cells induced by overexpression of SSAT, the application of polyamine analogues belong-
ing to non-SSAT substrates partially restored cell growth and viability, while polyamine
oxidase inhibitors showed nonsignificant effects, excluding the effects of ROS and alde-
hydes and confirming the role of polyamine depletion in apoptosis [236]. In a study by
Nitta et al. [237], depletion of polyamines was found to trigger mitochondria-mediated
apoptosis and induce not only mitochondrial membrane potential disruption but also
activation of caspase-3. In addition, acid-sensing ion channels (ASICs) may be another
contributor to ischemic neuronal damage, as extracellular spermine exacerbated ischemic
neuronal injury through the sensitization of ASICs to extracellular acidosis [238]. Aber-
rant regulation of the polyamine system refers to almost all apoptotic pathways, and the
complex mechanisms are summarized in Figure 6 [239].
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6. Conclusions and Future Perspectives

Polyamine homeostasis is essential for maintaining the physiological functions of the
CNS. Here, we describe the potential roles of the polyamine system in the regulation of
epileptic activity and pathological changes. Although epilepsy is an electrical disorder, it
is also a vascular disorder. Blocking postictal hypoxia is necessary for the prevention of
brain injury and suppression of epilepsy progression because it plays key roles in neuroin-
flammation, cell apoptosis and neurodegeneration [240]. As mentioned before, polyamines
may be involved in the regulation of vasoconstriction. They also exert protective effects in
ischemia and neurotoxic models by scavenging ROS and reducing inflammatory mediators.
These results suggest that the use of polyamines may be a preventive strategy to provide
neuroprotection against seizure-induced damage. In addition, due to the regulation of
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ion channels and receptors in the CNS by polyamines, alteration of polyamine levels may
affect epileptic activity. Although polyamines themselves, some polyamine analogues and
antagonists, and inhibitors of polyamine synthesis and catabolism have been reported
to have neuroprotective effects, it is still too soon to identify them as novel therapeutic
agents for neuroprotection [68,241–247]. Notably, both polyamine deficiency and excess are
dangerous for cells, suggesting a risk associated with alteration of the polyamine system
in treating epilepsy. The roles of polyamines are complex because they involve multiple
mechanisms and differ under various brain conditions. An alteration of components of
the polyamine system may not necessarily have therapeutic implications in epilepsy, or
even elicit unexpected side effects. Nonetheless, human studies have shown a protective
effect of spermidine on memory performance and cognitive decline in older adults, and
have demonstrated that spermidine is safe and well tolerated in humans [248,249].

Maintenance of endogenous polyamine homeostasis is important for physiological
functions in the CNS. Abundant evidence indicates that significant changes occur in the
polyamine system in epilepsy. We prefer a condition similar to compensation and de-
compensation in which proper alteration of the polyamine system may exhibit protective
effects against seizure-induced damage, while overregulation may be harmful and con-
tribute to disease progression through various mechanisms. However, what moderate
alteration can be made is not clear and still needs to be explored. Further investigations
of polyamines in relation to their epilepsy-related pathology, pharmacology, and molec-
ular mechanisms and exploration of analogues/antagonists are also required. Here, we
reviewed the potential roles of polyamines in epilepsy, which perhaps provides some new
ideas for epilepsy therapy.
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