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Abstract: The worldwide access to pharmaceuticals and their continuous release into the environment
have raised a serious global concern. Pharmaceuticals remain active even at low concentrations,
therefore their occurrence in waterbodies may lead to successive deterioration of water quality with
adverse impacts on the ecosystem and human health. To address this challenge, there is currently an
evolving trend toward the search for effective methods to ensure efficient purification of both drinking
water and wastewater. Biocatalytic transformation of pharmaceuticals using oxidoreductase enzymes,
such as peroxidase and laccase, is a promising environmentally friendly solution for water treatment,
where fungal species have been used as preferred producers due to their ligninolytic enzymatic
systems. Enzyme-catalyzed degradation can transform micropollutants into more bioavailable or
even innocuous products. Enzyme immobilization on a carrier generally increases its stability and
catalytic performance, allowing its reuse, being a promising approach to ensure applicability to an
industrial scale process. Moreover, coupling biocatalytic processes to other treatment technologies
have been revealed to be an effective approach to achieve the complete removal of pharmaceuticals.
This review updates the state-of-the-art of the application of oxidoreductases enzymes, namely
laccase, to degrade pharmaceuticals from spiked water and real wastewater. Moreover, the advances
concerning the techniques used for enzyme immobilization, the operation in bioreactors, the use of
redox mediators, the application of hybrid techniques, as well as the discussion of transformation
mechanisms and ending toxicity, are addressed.

Keywords: oxidoreductases; pharmaceuticals; enzyme immobilization; biodegradation; wastewater;
hybrid techniques

1. Introduction

Water is one of the primary resources in an ecosystem and human sustenance. In-
tensive urbanization has led to increased water consumption for domestic, agricultural
and industrial uses, resulting in the generation of tremendous amounts of wastewater [1].
Water pollution is considered a global problem as it involves rivers, lakes and oceans, and
ultimately drinking water throughout the world [2]. Consequently, a lot of attention is
being devoted to the lack of quality of water bodies due to the elevated levels of organic
and inorganic chemicals and complex compounds in wastewater [3].

A particular concern about a multitude of newly identified compounds of anthro-
pogenic or natural origin in the environment has gained significant attention due to their
potentially serious threats to human health and ecosystems [3]. These compounds, termed
emerging contaminants (EC), consist of substances that are currently not controlled in
the environment, but have high toxicological potential for both ecosystems and human
health, as well as can cause ecological damage [4,5]. Among these compounds there are
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pharmaceuticals and personal care products, pesticides, steroid hormones and industrial
chemicals [6].

Hundreds of tons of pharmaceutical compounds are annually dispensed and con-
sumed worldwide [7]. Pharmaceutical active compounds (PhAC) are a group of hazardous
contaminants and their fate in water bodies is an increasing environmental concern due to
their high consumption, their persistence and activity, and their potential adverse effects
on environmental health [8].

Conventional wastewater treatment plants (WWTP) comprise conventional technolo-
gies used to remove a wide variety of pollutants. However, these processes are unable
to completely remove organic micropollutants present in urban wastewater [9]. Research
efforts have led to innovation in water treatment technologies using advanced oxida-
tion process, photodegradation, electrochemical degradation, Fenton’s process, phase-
changing technologies (e.g., adsorption using activated carbon and membrane technol-
ogy) and biological processes (e.g., activated sludge and biological filtration) [4,10–14].
Although research has established favorable outcomes, these treatments have inherent
limitations, such as the generation of a considerable amount of waste and loss of pollutants
into the environment during membrane separation and adsorption on activated carbon,
the treatment of the membrane concentrate, the formation of potentially more toxic by-
products, low effectiveness, the requirement of complex operational and expensive plant
requirements [4,15–17].

In the coming years it is essential to invest in innovative, efficient, environmentally
friendly and less expensive methods for the abatement of pollutants from water. Enzy-
matic biotransformation of organic pollutants has progressively attracted interest in the
development of alternative treatments [18,19]. The biocatalytic degradation of PhAC with
enzymes may offer enormous potential for water remediation due to high catalytic activity,
low energy input requirement and mild conditions of operation in the presence of variable
concentrations of pollutants [20]. Furthermore, the specificity of the enzymatic methods
over a wide range of pollutants leads to the minimization of undesirable products and the
by-products are generally less or non-toxic [21].

Oxidoreductase enzymes are well known for the degradation of recalcitrant pollutants [22].
However, this biocatalytic approach has not been scaled up yet due to some barriers, namely
rapid enzyme denaturation, lack of free enzyme reusability and requirement of large quantities
of catalyst, which will enhance the overall cost and limit their application [23]. Recently, im-
provement in the catalytic stability and reusability of biocatalysts, and consequently a significant
reduction in treatment cost, has been achieved by immobilization technology on several different
supporting matrices [24].

Therefore, the immobilization of biocatalysts on sustainable supports is a promising
approach to removing target PhAC in aqueous matrices, which could be used as a cost-
effective and eco-friendly alternative to conventional treatments used in WWTP. In this
context, this work aims to address the recent advances in the application of oxidoreduc-
tases, namely laccase (Lac), to remove pharmaceuticals from aqueous media. The current
review provides a discussion about the biotransformation challenges concerning enzymes
mediators and immobilization, bioreactors, hybrid techniques, as well as biocatalytic trans-
formation mechanisms and ending toxicity. To the best of our knowledge, this work may
serve as a base to close some of the existing literature gaps about enzymatic degradation
processes of PhAC, aside from benefiting future developments.

2. Occurrence and Toxicity of PhAC

PhAC are chemical substances used to diagnose, prevent, treat and change diseases,
infections, or discomforts [25]. A wide variety of human and animal medicines such as
analgesics, non-steroidal anti-inflammatory drugs (NSAID), antibiotics, lipid regulators,
beta-blockers, synthetic hormones and X-rays contrast media has become essential to
ensure the health and well-being of the population and, therefore, to increase their life
expectance [26].
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The consumption of PhAC is set to increase in future years, due to population aging
and improvements in health standards. Accordingly, several pharmaceuticals have been
found in wastewater effluents, drinking water and in rivers at low concentrations ranging
from ng/L to µg/L [3,27]. As can be seen in Figure 1, PhAC can be generated by different
sources (e.g., agricultural activities, domestic and hospitals), as well as are designed to be
biologically active and may affect non-target organisms. Although pharmaceuticals are
usually designed with a single mechanism of action and target, non-target organisms may
have receptors and, therefore, unexpected effects may result from unintended exposure [28].
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with some of the ecological side effects.

The prevalence of antibiotics in aquatic environments has become an important con-
cern worldwide with the increasing occurrences of antibiotic-resistant bacteria and re-
sistance genes in wastewater and even drinking water, due to their intensive use for
veterinary, agricultural and human medical proposes [29,30]. Another major concern is
their ability to interfere with the endocrine system to provoke undesired effects/disruption
of homeostasis [3,31]. Continuous exposure to estrogens that are able to mimic and/or an-
tagonize the effects of endogenous hormones produces adverse effects on the reproduction,
development, and metabolism of aquatic organisms [32].

Most PhAC are currently not included in routine or regulatory control programs, which
makes them candidates for future legislation. In this sense, the Commission Implementing
Decision (EU) 2020/1161 has established a watch list of potential water pollutants for Union-
wide monitoring in the field of water policy. Thus, azole pharmaceuticals, antibiotics and
antidepressants such as clotrimazole, fluconazole, miconazole, amoxicillin, ciprofloxacin,
sulfamethoxazole (SMX), trimethoprim and venlafaxine are some of the substances or
groups of pharmaceuticals comprised [33].

The environmental concern related to the presence of PhAC in surface and ground-
water is related to quantity, as well as their persistence and potential harm to human and
aquatic life. The subsistence of trace pharmaceuticals and other contaminants in drinking
water is a public health concern, since the potential chronic health effects associated with
long term ingestion are scarcely known [34]. Although some compounds do not produce
acute toxicity in the aquatic environment at low concentrations, constant release may lead
to chronic and undesired synergistic effects with other compounds [4].

3. Enzymatic Biodegradation

Enzymes are catalysts that conduct, within the mild conditions of temperature and
pH, chemical reactions at a remarkably high rate, efficiency and specificity [22]. Several
enzyme systems have been used for the efficient transformation and degradation of or-
ganic pollutants and have been shown to oxidize and degrade the pollutants into smaller
intermediates [35].

The literature survey shows that most enzymatic remediation studies use oxidoreduc-
tase enzymes [36,37]. These enzymes are largely produced by the white-rot fungi (WRF),
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as extracellular enzymes for the degradation of lignin. WRF and their ligninolytic enzymes,
namely lignin peroxidase (LiP), manganese peroxidase (MnP), versatile peroxidase (VP)
and Lac, have been demonstrated to be capable of transforming a wide range of compounds.
This ability is a result of the structural similarities of several micropollutants to lignin, as
well as the fact that ligninolytic enzymes are substrate-nonspecific [38]. Other enzymes are,
as well, used as biocatalysts for the remediation of toxic compounds, such as tyrosinase,
horseradish peroxidase (HRP) and phenoloxidase [36].

Peroxidases (EC 1.11.1.X) are a vast group of heme-containing oxidoreductases, which
use hydrogen peroxide as an electron-acceptor to catalyze oxidative reactions [39], whereas
Lac (EC 1.10.3.2) are glycosylated multi-copper oxidases that catalyzes one-electron oxi-
dation of various substrates associated with the reduction of molecular oxygen to water,
via a radical-catalyzed reaction mechanism [40]. In contrast to peroxidases that require the
supply of hydrogen peroxide, Lac only requests oxygen as the final electron acceptor for
the oxidation reaction to occur, offering an alternative green approach for the biodegrada-
tion of several PhAC [41]. Lac is selective towards phenolic compounds, but due to the
non-specificity, they are also able to degrade aromatic amines and related substances, thiol
groups, diamines, N-heterocycles and phenothiazines [42].

The active sites of Lac enzyme, as represented in Figure 2, contain four copper
ions: one type 1 (T1) copper ion and a trinuclear copper cluster (TNC) composed of one
type 2 (T2) copper ion coupled to binuclear type 3 (T3) copper ions [43]. The T1 copper
site is the primary electron-acceptor for electrons offered by the substrate. The electrons
are then moved to the TNC through highly conserved His-Cys-His tripeptide. After that,
oxygen reacts with the fully reduced enzyme to form a peroxy-intermediate (PI), and then
the PI is transformed back into a native intermediate, through a two-electron reduction.
Once the fully reduced state is recovered, the final products are released from the TNC
site. This results in the production of four radicals by the oxidation of four molecules of
substrate, while one molecule of oxygen is reduced to two molecules of water and four
protons (H+) are consumed from the solution [44,45].
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Figure 2. Lac from Trametes versicolor (Protein Data Bank code 1KYA) (a). Representation of the
different amino acids of the catalytic site that coordinates the T1, T2 and T3 copper sites (b), reprinted
from Ref. [46].

The Lac and their active sites with copper ions play a key role in the reduction of
oxygen. The redox potential (E◦) difference between the T1 copper site and the substrate
is one of the major factors that affect the oxidation rate. Accordingly, Lac are classified
into three groups: low- (0.4–0.5 V), medium- (0.5–0.6 V) and high- (0.7–0.8 V) redox
potential [47,48]. The variety of redox potentials is strictly related to the sources (e.g.,
bacterial, plant or fungi), due to the difference in the amino acid residues composition
around the copper of the first reaction site. Lac from WRF has the highest redox potential,
between 0.730 and 0.790 V, with phenylalanine as the non-coordinating axial ligand at the
T1 copper site [49]. Among fungal species, Lac have been comprehensively identified from
Ascomycetes and Basidiomycetes. Nonetheless, white-rot basidiomycetes such as Trametes
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versicolor, Pleurotus ostreatus or Cerrena unicolor, are noted for being efficient lignin degraders
and Lac producers [36,50].

Several studies using enzyme extracts have been conducted for biodegradation of
PhAC (Table 1). Although high efficiency rates are presented, the enzymatic wastewater
treatment process is still relatively expensive, mainly due to the cost of commercial en-
zymes. One potential solution that may get the process cheaper is the application of crude
enzymatic extracts. This might positively influence Lac catalytic activity and stability, as
well as avoid the costly process of enzyme purification [39,51]. Furthermore, the crude
extract offers efficient oxidation, since the synergistic action of the enzymes and a host of
natural mediators and co-factors secreted by the fungi can potentially enhance the general
performance [52].

Table 1. Examples of biodegradation of pharmaceutical micropollutants by enzymes.

Compound Enzyme Source PhAC (mg/L) Reaction
Conditions

Enzyme Load
(U/L)

Efficiency
(%) Ref.

Diclofenac

LiP Phanerochaete
chrysosporium 5 pH 4, 24 mg/L

H2O2, 25 ◦C, 2 h. 180 100 [53]

Lac Trametes
versicolor 1 pH 6.5, 25 ◦C, 5 h. 500 >90 [54]

Lac Pycnoporus
sanguineus 100 pH 5, 25 ◦C, 8 h. 100 50 [55]

5,7-Diiodo-8-
hydroxyquinoline Lac Pycnoporus

sanguineus 100 pH 5, 25 ◦C, 3.5 h. 100 78 [55]

Carbamazepine Lac Trametes
versicolor 1 pH 6, 35 ◦C, 24 h. 60 30 [56]

Salicylic acid Lac Trametes
pubescens 0.001 pH 6.9, 25 ◦C, 24 h. 100 >90 [57]

17-α-ethynyl
estradiol Lac Trametes

pubescens 0.001 pH 6.9, 25 ◦C, 24 h. 100 >90 [57]

Sulfamethoxazole
Lac Phanerochaete

chrysosporium 10 pH 4.5, 30 ◦C, 48 h. 6076 50 [58]

Lac Pycnoporus
sanguineus 10 30 ◦C, 72 h. 170 29 [59]

17-β-estradiol
Lac Trametes hirsuta 5 pH 5, 25 ◦C, 120

min. 5000 99 [50]

Lac Trametes
pubescens 0.001 pH 6.9, 25 ◦C, 24 h. 100 >90 [57]

Tetracycline 1

Oxytetracycline 2 MnP Phanerochaete
chrysosporium 50

pH 4.8, 0.1 mM
Mn2+, 0.1 mM

H2O2, 37 ◦C, 4 h.
40 73 1

84 2 [60]

Acetaminophen
Lac Bjerkandera

adusta TBB-03 20 pH 5–7, 25 ◦C, 2 h. 270 100 [61]

HRP Horseradish 6 pH 7.4, 400 µM
H2O2, 25 ◦C, 4 h. 12800 100 [8]

Triclosan Lac Trametes
versicolor 3 pH 6, 25 ◦C, 4 h. 2000 52 [62]

Doxorubicin Lac Trametes
Versicolor 0.25 pH 7, 30 ◦C, 2 h. 900 100 [21]

Imipramine Lac Paraconiothyrium
variabile 0.12 pH 5, 37 ◦C, 6 h. 1600 98 [20]

A huge amount of renewable biomass is generated annually due to agricultural, food
and industrial activities. Agricultural and food wastes are often disposed of indiscrimi-
nately or burnt off, thereby constituting environmental hazards and contributing to global
warming through the generation of greenhouse gases. To achieve environmental sustainabil-
ity, value-addition to wastes and promotion of advances in the circular economy, agro-food
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wastes are now being investigated for valorization through bio-enzymatic approach [63].
For fungal cultures, a wide variety of lignocellulosic biomass has been used as an alter-
native substrate in submerged fermentation, solid-state fermentation or semisolid-state
fermentation. Peanut shell, wheat straw, wheat bran, rice straw, rice bran, agave bagasse,
sugarcane vinasse, corn bran, fruit peel, tea, sunflower seeds and apple pomace are some
of the studied lignocellulosic wastes for Lac production for water remediation [64–73].

Lonappan et al. [54] present a novel insight on residue valorization and found that
apple pomace and pulp and paper solid waste were capable of inducing Lac production
by T. versicolor. The resulting crude enzyme was effective in the degradation of diclofenac
sodium (DCF) at an environmentally relevant concentration (0.5 mg/L).

Kang et al. [61] stimulated the production of Bjerkandera adusta TBB-03 Lac using
lignocellulosic substrates as the sole enzyme inducer (e.g., ash wood chips). The formed
Lac consistently showed a high capability to degrade acetaminophen (APAP) under various
conditions. The authors also defended a 22% of improvement in SMX removal in the
presence of APAP, that could act as mediator for oxidation. Enzyme suspension with lower
purification levels may contain phenolic compounds that act as natural mediators and
consequently increase removal efficiency. For instance, Lac from a mushroom substrate,
based on sawdust and wheat bran, colonized by P. ostreatus, demonstrates significant
removal of DCF (90%), bicalutamide (43%) lamotrigine (73%) and metformin (49%), when
compared with the control with an uncolonized mushroom substrate [74].

Most Lac used to degrade pharmaceuticals to date are mainly sourced from fungi.
However, heterologous expression of Lac genes has attracted increasing attention due to
the requirement to find more specific enzymes tailored to the complexity of wastewater
matrices [75]. Protein engineering may provide higher enzyme yields and may allow the
production of Lac with improved properties such as operational stability, pH stability,
solvent stability and thermostability [76,77]. For example, a novel Lac derived from Bacillus
tequilensis SN4 was demonstrated to be thermo-alkali-stable [77]. Lac Lcc9 from Coprinopsis
cinerea expressed in Pichia pastoris also presented improved activity and stability at neu-
tral and alkaline pH conditions [75]. Moreover, heterologous expressed bacterial Lac in
Escherichia coli successfully degraded sulfanilamide antibiotics [78].

3.1. Laccase-Mediator Catalyzed System

Lac possess a relatively low redox potential (≤0.8 V) compared to peroxidase (>1 V).
The redox potential difference between the substrate and the enzyme T1 copper affects the
oxidative capacity of Lac. For example, Lac efficiently promotes single-electron oxidation of
phenols. Accordingly, non-phenolic compounds, with redox potential above 1.3 V, are not
directly prone to oxidation by Lac [79]. This lack of affinity of Lac is generally influenced by
the distribution of functional groups in the chemical structure of the substrates. Compounds
with electron withdrawing groups (EWG) such as carboxylic (-COOH), amide (-CONR2),
halogen (-X) and nitro (-NO2) have lower enzyme affinity due to the less susceptible to
oxidative catabolism [80].

The degradation efficiency of pollutants using Lac can be enhanced by the addition
of redox mediators that are easily oxidized by the enzyme to free radicals. The presence
of these small molecular weight compounds allows Lac to overcome a kinetic barrier
and increase the spectrum of pollutants potentially degraded, as the mediator species
have higher redox potentials. These compounds act as an “electron shuttle”, enabling
the oxidation of complex substrates by highly reactive radicals that result from mediator
oxidation by Lac. These radicals may return to their parent compound through reduction
during the oxidation of the target pollutant [52,81].

Table 2 presents a list of redox mediators and their related information. The hydro-
gen atom transfer (HAT), electron transfer (ET) and ionic mechanisms are the primary
mechanisms for mediator oxidation of a compound. The oxidation mechanism of the
2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2, 2, 6,
6-tetramethyl-1-piperidinyloxy (TEMPO) radicals follows ET and ionic mechanisms, respec-
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tively. As well as p-coumaric acid, hydroxybenzotriazole (HBT), N-hydroxyphthalimide
(HPI) and syringaldehyde (SA) follow HAT oxidation mechanism [18].

Table 2. Characteristics of redox mediators used in treatment of micropollutants by Lac-mediator systems.

Oxidation Mechanism Redox Mediator Origin Type of Mediator Free Radical
Generated

Electron transfer

2,2′-azino-bis
(3-ethylbenzothiazoline-6-

sulfonic acid)
diammonium salt

Synthetic ABTS ABTS•+

ABTS2+

Hydrogen atom
transfer

Hydroxybenzotriazole Synthetic N–OH =N–O•

Aminoxyl

N-hydroxyphthalimide Synthetic N–OH =N–O•

Aminoxyl

Violuric acid Natural N–OH =N–O•

Aminoxyl

Vanillin Natural C6H4(OH)(OCH3) C6H5O•

Phenoxyl

Syringaldehyde Natural C6H4(OH)(OCH3) C6H5O•

Phenoxyl

Acetosyringone Natural C6H4(OH)(OCH3) C6H5O•

Phenoxyl

p-coumaric acid Natural C6H4(OH)(OCH3) C6H5O•

Phenoxyl

Ionic oxidation 2,2,6,6-
tetramethylpiperidinyloxyl Synthetic N-O N=O•

Oxo-ammonium

The mediator type and concentration have a major impact on the practicality and
feasibility of using Lac in PhAC degradation. Some literature studies that used media-
tors coupled with enzymes for pharmaceutical transformation are presented in Table 3.
Naproxen (NPX) is an example of a recalcitrant drug able to resist enzymatic oxidation
due to the presence of the EWG carboxyl and the absence of any strong electron-donating
groups (EDG). Lac mediated with HBT achieved the greatest removal of NPX (80%) at the
highest mediator concentration of 1 mM, while the performance of violuric acid (VLA),
another N-OH type mediator, was weaker (~60%). At an inferior dose (0.5 mM), HBT and
ABTS mediators still presented very efficient removal rates of NPX [82].

Table 3. Examples of biodegradation of pharmaceutical micropollutants by Lac coupled with
reaction mediators.

Compound Lac Source Mediator Reaction Conditions Enzyme Load
(U/L)

Efficiency
(%) Ref.

Diclofenac Trametes versicolor 1 mM of HBT 1 and SA 2 0.1 mg/L PhAC.
25 ◦C, 24 h. 1440 >95 1

80 2 [52]

Carbamazepine Trametes versicolor 0.018 mM of ABTS 1 mg/L PhAC. pH 6,
35 ◦C, 24 h. 60 95 [56]

Sulfamethoxazole Trametes versicolor 0.5 mM ABTS, SA and
AS

20-25 mg/L PhAC.
pH 6–7, 25 ◦C, 2–6 h. 560 100 [81]

Tetracycline
Oxytetracycline

Pycnoporus sp.
SYBC-L10 1 mM of ABTS 50 mg/L PhAC. pH 6,

5 min, 0 ◦C. 10,000 100 [41]
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Table 3. Cont.

Compound Lac Source Mediator Reaction Conditions Enzyme Load
(U/L)

Efficiency
(%) Ref.

Chloramphenicol Trametes hirsuta 0.5 mM of SA, vanillin,
ABTS and α-naphthol

10 mg/L PhAC. pH 5,
25 ◦C, 48 h. 50,220 100 [51]

Ketoconazole Trametes versicolor 1 mM of HBT 300 mg/L PhAC.
pH 4.5, 45 ◦C, 6 h. 1000 98 [83]

Naproxen Pleurotus ostreatus 1 mM of ABTS 0.5 mg/L PhAC.
25 ◦C, 8 h. 0.26 80 [82]

Olsalazine Aspergillus
aculeatus

2 mM of ABTS 1,
p-Coumaric acid 2

and HBT 3

100 mg/L PhAC. pH 5,
29 ◦C, 48 h. -

99 1

98 2

94 3
[84]

Atenolol Trametes versicolor 0.5 mM of TEMPO 2.7 mg/L PhAC. pH 7,
25 ◦C, 4 h. 5000 80 [85]

Low molecular weight mediators allow complex compounds to access the active
site of the enzyme. The oxidation of HBT by Lac generates small aminoxyl radicals that
can remove the H atom from the O-H bond of phenolic substrates and consequently can
create the phenoxyl radicals. The aforementioned mechanism may be responsible for the
significant improvement in the degradation of salicylic acid [86].

In contrast to the low efficiency of the Lac degradation process without mediators, Lac
coupled with ABTS revealed complete degradation of tetracycline (TC) and oxytetracycline
(OTC) after only 4 min and 5 min, respectively [41]. Naghdi and co-authors [56] observed
that 95% removal of carbamazepine (CBZ) was possible due to the combination of ABTS
with crude Lac from T. versicolor. Furthermore, they reported that the enzyme concentration
had a quadratic effect on biotransformation since an optimum level of Lac activity led
to a rapid generation of ABTS radicals and caused an efficient transformation of CBZ,
but further addition of enzyme to the solution increased the collisions and interactions
and could block enzymes active sites. In the case of Lac-catalyzed degradation of the
antibiotic chloramphenicol (CAP), Navada and co-authors [51] concluded that natural
mediators (SA and vanillin) exhibited lower Km values than the reactions mediated by the
synthetic mediators (ABTS and α-naphthol), showing that the natural mediators have a
higher affinity to Lac than CAP and, therefore, increased the rate of oxidation reactions.

Ideally, during the oxidation of the pollutant, only oxygen is consumed in the catalytic
cycle. However, the consumption of the mediator during the reaction is also possible
(Figure 3a). In this case, “Lac enhancer” is a more accurate term. Margot and co-authors [81]
investigated and showed the potential of the Lac-mediator system for the degradation of
the antibiotic SMX with ABTS, SA and acetosyringone (AS). From their results, neither
ABTS, SA nor AS acted as catalysts, since these three mediators were consumed during the
reaction, with a mediator/pollutant molar ratio between 1.1 and 16. The authors proposed
an alternative model of oxidation in which Lac oxidize mediators to reactive radicals,
that can transform into more stable products and react with each other or with pollutants
(Figure 3b).
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Bankole and co-authors [84] demonstrated the effectiveness of ABTS, HBT and p-
coumaric acid as redox mediators in the degradation of olsalazine by Lac from Aspergillus
aculeatus. Furthermore, they observed that the increase in degradation efficiency was
proportional to an increase in the concentration of mediators till a threshold value is
reached, and at this point, no significant enhanced degradation of the pharmaceuticals
occurs. This result is in line with the general trend observed in the literature that such
threshold concentrations depend on the source of Lac, the target compound and the
mediator used [52].

On the other hand, Lac catalyzed reaction with TEMPO, which produces the oxoam-
monium cation, was able to greatly promote atenolol (ATL) transformation in an aqueous
solution, with complete removal after 12 h [85]. However, Wang et al. [85] also found that
Lac would be deactivated more rapidly in the reactions with higher mediator concentration
as a result of distortion or blockage of enzyme active sites by radicals. Other findings show
that free radicals produced by the oxidation of a mediator can destabilize the enzyme by
reacting with the aromatic amino residues on its outer surfaces [82].

Catalytic degradation using ligninolytic enzymes such as Lac with redox mediators
may represent an alternative clean strategy for PhAC removal from the water matrix.
However, the viability of this solution in real treatment systems is limited due to the
necessity for high concentrations of mediator and the formation of several remediation
products in concentrations eventually higher than the original pollutant [81].

3.2. Transformation Mechanisms and Toxicity Evaluation

Enzymes transform complex compounds into simpler substances and it is unknown
whether pharmaceuticals are metabolized by remediating enzymes to less or more toxic
products. There is also a lack of knowledge on the structure of the metabolites resulting
from pharmaceuticals degradation process. Therefore, some authors have studied the
transformation pathways, as well as metabolites toxicity or estrogenic activity.

Considering molecular weight and chemical structure, Kózka et al. [87] observed three
main types of transformations of a series of antidepressants and immunosuppressants car-
ried out by fungal ligninolytic enzymes. The first one is chemical oxidation and occurred for
clomipramine, mianserin, sertraline, fluoxetine and citalopram. The second transformation
is straight demethylation or demethylation coupled with other reactions such as oxidation
or deamination, and was observed for clomipramine, mianserin, sertraline and venlafaxine
transformation. The third type of transformation is the oxidative cleavage of the molecule
into two parts of comparable size and was observed for fluoxetine and paroxetine.

Kasonga et al. [88] proposed the metabolic pathways for ibuprofen (IBP) and CBZ
based on detected intermediates by a fungal consortium of Lac, LiP and MnP. The IBP
transformation pathway appeared to result from hydroxylation with addition of hydroxyl
group to 1,2-dihydroxy-IBP or carboxylation reaction leading to the substitution of the
methyl group by carboxylic group to form IBP carboxylic acid. Furthermore, the CBZ
metabolic pathway was presented in four routes. The first route proposed was oxidation
or hydrolysis to iminostilbene. The second route consisted of oxidation reactions of the
carbons on the aromatic benzene group to CBZ-2,3-quinone. The third route combined
hydroxylation, hydrolysis and then oxidization to iminoquinone. The fourth and principal
metabolic route started with oxidation or epoxidation and the end products were acridone,
10,11-dihydro-10-hydroxy-CBZ and 9-hydroxymethyl-10-carbamoyl acridan. Likewise,
according to Naghdi et al. [56], 10,11-dihydro-10,11-dihydroxy-CBZ and 10,11-dihydro-
10,11-epoxy-CBZ are considered to be the primary metabolites from CBZ oxidation by
Lac-ABTS. Moreover, toxicity tests revealed that these products had no estrogenic effect.

In another study related to the degradation of DCF by Lac, the authors identified
3′-hydroxydiclofenac, 4′-hydroxydiclofenac, and 5-hydroxydiclofenac as the major trans-
formation products [54].

Yang et al. [89] demonstrated that immobilized C. unicolor Lac was effective in detoxi-
fication of TC antibiotics and identified three transformation products with LC-TOF-MS.
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According to the authors, TC is first oxidized by Lac to the corresponding ketone and then
the amino group is bi-demethylated to form the second transformation product. The final
product results from oxidation, followed by water elimination and dehydrogenation.

Lac oxidation of SMX in presence of ABTS possibly results in two products from
pharmaceutical degradation and a third one from ABTS oxidation by Lac, designated 3-ethyl-
6-sulfonate benzothiazolinone imine [81]. In another study, Tian et al. [41] demonstrated
that TC was first oxidized by Lac-ABTS to OTC as the major transformation product and
proposed a degradation pathway including deamination, demethylation and dehydration.

The assessment of the overall toxicity of the treated effluents is essential to provide
a more complete outlook of the environmental relevance of the enzymatic treatments in
real practical applications. Several metabolites result from enzymatic water treatment and
additional toxicological information by means of bioassays is imperative. These studies are
able to describe the ecotoxicity and the estrogenic activity of the resulting metabolites.

Presently, there are examples of pharmaceutical enzymatic degradation that pro-
duce fewer toxic compounds and lack of estrogenicity effect. A micro-toxicity study
with Pseudokirchneriella subcapitata, Candida albicans, Cryptococcus neoformans and Saccha-
romyces cerevisiae revealed that Lac-HBT treated ketoconazole and its isolated metabolites,
such as 1-(4-{4-[2-(2,4-dichloro-phenyl)-2-imidazol-1-ylmethyl-[1,3]dioxolan-4-ylmethoxy]-
phenyl}-4-oxy-piperazin-1-yl)-ethanone, suffered a decrease in the toxicity levels. The
presence of the oxygen atom in the structure of metabolites reduces their lipophilicity and
decreases their toxicity [83]. Furthermore, Lac-SA mediated system led to the transforma-
tion of CAP in chloramphenicol aldehyde and had less toxicity for microbial growth than
mediators vanillin, ABTS and α-naphthol [51].

Spina et al. [90] showed that crude Lac from Trametes pubescens MUT 2400 was very
active against all target micropollutants as ketoprofen, present in real municipal wastewater.
Estrogenic analysis and toxicological tests with Raphidocelis subcapitata and Lepidium sativum
showed a clear ecotoxicity reduction of treated wastewater. Similarly, Sun et al. [50]
reported that a concentrated Lac isolated from Trametes hirsuta was capable of effectively
metabolize 17b-estradiol (E2) more than 99% and potentially lead to a reduction of the
estrogenic activity of E2. Through the combination of 13C-isotope labelling with high-
resolution mass spectrometry, the dimers, trimers and tetramers were recognized as the
primary by-products of E2 metabolism.

Contrarily, Becker et al. [91] verified that Lac mediated with SA effectively removes
(>50%) a broad range of antibiotics after 24 h. However, this enhanced degradation induces
unspecific toxicity. Furthermore, Feng et al. [85] verified that the transformation of ATL
via Lac/TEMPO-catalyzed reaction greatly reduced the mortalities of zebrafish (Danio
rerio) eggs, but the degradation products and the residual TEMPO still possess toxicity
(approximately 40%). This transformation mainly involved hydroxylation, carbonylation,
C–O bond cleavage and coupling reactions.

3.3. Immobilized Biocatalytic System

The practical application of freely suspended enzymes exhibits high activity in the
biotransformation processes. Nevertheless, the free form is limited by the low stability
and high cost of production for large scale implementation due to the impossibility of
recovery [92,93]. To overcome such limitations, several studies have already demonstrated
that enzyme activity and stability can be improved by immobilization on solid supports [36].

The stabilization of the peptide structure of the biocatalyst, creating interactions be-
tween the enzyme and an immobilization matrix, leads to enzyme stability and resistance
improvement towards extreme operational conditions, including strong pH, high temper-
ature or the presence of organic solvents [94]. Furthermore, immobilization allows the
easy recovery of the enzyme and offers high reusability in several catalytic cycles without
significant loss of its unique properties, which reduces operating costs [95].
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The immobilization strategies are divided into methods based on physical or chemical
interactions between enzymes and supports [96]. Physical immobilization involves the
creation of non-specific interactions via hydrogen bonds, ionic and hydrophobic inter-
actions. The physical methods include entrapment, encapsulation and adsorption, and
there is no requirement for the functionalization of the support [36]. On the other hand,
chemical immobilization includes enzyme attachment to the matrix by covalent binding
or cross-linking [97]. An example of a covalent binding agent is glutaraldehyde that is
capable to react with the amine groups at the surface of both enzymes and support through
the formation of Schiff’s bases and Michael’s adducts [98]. Moreover, enzymes can be
cross-linked to each other or create a cross-linked enzyme aggregate (CLEA) [99].

Physical adsorption is simpler and leads to higher final enzyme activity. However,
desorption or leakage of the immobilized enzyme is common with cycles of use due to the
relatively weak binding forces. Oppositely, chemical immobilization leads to partial defor-
mations in the enzyme molecular shape but offers a robust attachment of enzymes to the
support [94,100]. The characteristics of the support are essential to define the success of the
final biocatalyst, therefore the ideal support for usage of industrial applications should be
inert, rigid, inexpensive, eco-friendly and present thermal and mechanical resistances [24].
The support matrices can be classified according to their chemical composition as inorganic
materials, organic materials, hybrids and composite materials. A large diversity of support
has been developed due to the search for better stability and scale-up performance. Several
recent methods of enzyme immobilization are summarized in Table 4.

Table 4. Examples of the removal of pharmaceutical compounds by immobilized enzyme.

Support Material Enzyme Immobilization
Method PhAC Reaction Conditions Efficiency

(%) Ref.

Poly(l-lactic acid)-co-poly
(ε-caprolactone) nanofibers

Lac from Trametes
versicolor Encapsulation Naproxen

1 mg/L PhAC.
pH 5, 25 ◦C, 24 h,

100 rpm.
90 [93]

Poly(l-lactic acid)-co-poly
(ε-caprolactone) nanofibers

Lac from Trametes
versicolor Encapsulation

Diclofenac

1 mg/L PhAC.
pH 3, 25 ◦C, 24 h,

100 rpm.
90 [93]

Polyvinylidene fluoride
membrane with

multi-walled
carbon nanotubes

Lac from Trametes
hirsuta Covalent bonding 5 mg/L PhAC.

pH 5, 25 ◦C, 4 h. 95 [94]

Titania nanoparticles
Lac from

Pycnoporus
sanguineus CS43

Covalent bonding 10 mg/L PhAC.
pH 4, 25 ◦C, 4 h. 50 [101]

Micro-biochar from pine
wood (PW) and pig

manure (PM)

Lac from Trametes
versicolor Covalent bonding

0.5 mg/L PhAC.
pH 6.5, 25 ◦C, 5 h (PW)

or 2 h (PM).
99 [98]

Chitosan macro-beads Lac from Trametes
versicolor Covalent bonding

50 mg/L PhAC.
pH 3, 25 ◦C, 4 h, 1:1 M
ratio for ABTS:drug.

90 [49]

CLEA Lac from Trametes
versicolor Cross-linking 0.001 mg/L PhAC.

pH 5, 24 h, 22 ◦C. 90 [99]

Polyacrylonitrile−biochar
composite nanofibrous

membrane

Lac from Trametes
versicolor Covalent bonding 0.2 mg/L PhAC,

pH 4, 8 h, 35 ◦C. 73 [102]

Polyacrylonitrile−biochar
composite nanofibrous

membrane

Lac from Trametes
versicolor Covalent bonding Chlortetracycline 0.2 mg/L PhAC,

pH 4, 8 h, 35 ◦C.
63 [102]
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Table 4. Cont.

Support Material Enzyme Immobilization
Method PhAC Reaction Conditions Efficiency

(%) Ref.

Polyvinylidene fluoride
membrane with

multi-walled
carbon nanotubes

Lac from Trametes
hirsuta Covalent bonding

Carbamazepine

5 mg/L PhAC.
pH 5, 25 ◦C, 48 h. 27 [94]

Magnetite
nanoparticles

HRP
LiP Adsorption 0.35 mg/L PhAC.

pH 3, 55 ◦C, 3 days. 100 [103]

Polyimide aerogels Lac from Trametes
versicolor Covalent bonding

0.02 mg/L PhAC.
pH 3, 25 ◦C, 24 h,

200 rpm.
74 [104]

Pinewood nanobiochar Lac from Trametes
versicolor Adsorption

0.02 mg/L PhAC.
pH 3.5, 25 ◦C, 24 h,

200 rpm.
80 [92]

Polyamide/polyethylenimine
nanofibers

Lac from Trametes
versicolor Covalent bonding Triclosan

10 mg/L PhAC.
pH 7, 25 ◦C, 20 h,

80 rpm.
74 [105]

Titania nanoparticles
Lac from

Pycnoporus
sanguineus CS43

Covalent bonding Acetaminophen 10 mg/L PhAC.
pH 4, 25 ◦C, 4 h. 90 [101]

Commercial silica
gel particles

Lac from Trametes
versicolor Covalent bonding Sulfamethoxazole

20 mg/L PhAC. pH 7,
25 ◦C, 0.5 h. 520 µM of

ABTS.
53 [106]

Commercial silica
gel particles

Lac from Trametes
versicolor Covalent bonding Amoxicillin

20 mg/L PhAC. pH 7,
25 ◦C, 4 h. 520 µM of

ABTS.
80 [106]

M-CLEA Lac from Cerrena
unicolor Cross-linking

Tetracycline

100 mg/L PhAC.
pH 6, 25 ◦C, 48 h. 100 [89]

Mesostructured cellular
foam

Lac from Trametes
versicolor Adsorption 1 mg/L PhAC.

pH 5, 25 ◦C, 1 h. 100 [107]

Bentonite-derived
mesoporous materials

Lac from Trametes
versicolor Adsorption 10 mg/L PhAC. 30 ◦C,

3 h. 60 [100]

Cellulose
beads

Lac from Trametes
versicolor Covalent bonding Indole 15 mg/L PhAC.

pH 5, 30 ◦C, 18 h. 100 [108]

Polypropylene beads
Lac from

Myceliophthora
thermophila

Adsorption Morphine 1 mg/L PhAC.
pH 6, 25 ◦C, 0.5 h. 100 [109]

Graphene oxide and
alginate matrix

Lac from
Aspergillus niger Adsorption/entrapment Cetirizine dihy-

drochloride
20 mg/L PhAC.

pH 4.5, 25 ◦C, 1 h. 100 [23]

Pristine few layers graphene Lac from Trametes
versicolor Adsorption Labetalol

hydrochloride

1 mg/L PhAC pH 7,
25 ◦C, 1.5 h. 5 µM of

ABTS.
100 [110]

A wide range of materials are used for enzyme immobilization. Zdarta and co-
authors [93] studied Lac immobilization by adsorption and encapsulation using poly(l-lactic
acid)-co-poly(ε-caprolactone) (PLCL) electrospun nanofibers. After 24 h, encapsulated Lac
biodegraded over 90% of NPX and DFC, contrasting with an adsorbed enzyme which
presented lower removal efficiency, 60% for NPX and 80% for DFC. This is mainly justified
by the deactivation and elution of enzymes from the support. Dong and co-authors [110]
described a mediating system in which Lac was assembled, over π-π interactions, onto
pristine few-layer graphene (FLG) surface. The composite effectively transformed beta-
blocker labetalol for more than 10 cycles, as the FLG increases the exposure extent of the
catalytic center with the enhancement of the catalytic activity.

Immobilization of enzymes provides protection against denaturation and confor-
mational changes. For example, Sharifi-Bonab and co-authors [23] immobilized Lac on
graphene oxide (GO) nanosheets, followed by entrapment in alginate biopolymer. The
immobilized Lac retained more than 70% of its initial activity after 10 days, contrarily to
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free Lac that became inactive. Furthermore, according to Zdarta and co-authors [107], Lac
immobilized in mesostructured cellular foam (MCF) silica retained higher activity (80%)
over a wider range of temperature and pH. The enzyme immobilized onto MCF + Cu
preserved almost 90% of its initial activity after 10 cycles since the MCF has a protective
effect towards Lac molecules immobilized onto the surface and into its pores. Similarly, Lac
can enter into the narrow mesopores of meso-MIL-53(Al) by undergoing conformational
changes and becoming immobilized in the mesopore-MIL-53(Al), thus the entrapment
force is significantly higher compared to conventional physical adsorption [111]. In another
example, Nguyen and co-authors [96] immobilized Lac on acid-washed granular activated
carbon (GAC) via physical adsorption and observed that GAC-bound Lac maintained full
activity for up to 8 cycles of continuous application.

Covalent binding of enzymes on solid materials for pollutant removal has been inten-
sively investigated and yields efficient results. Masjoudi and co-authors [94] described a
covalent immobilization of Lac on polyvinylidene fluoride (PVDF) membrane modified
with multi-walled carbon nanotubes (MWCNT) and observed successfully removal of
DCF (95% in 4 h) in a mini-membrane reactor. Likewise, Maryšková and co-authors [105]
immobilized the Lac onto polyamide/polyethylenimine (PA/PEI) nanofibers, via covalent
attachment, with the Lac retaining more than 52% of initial activity after 30 days and suc-
cessfully degrading triclosan (~70%) and 17α-ethynylestradiol (~50%) in real wastewater
effluent. In another work, Lac immobilization on titania nanoparticles (TiO2), with the func-
tionalizing agent 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde cross-linker,
showed remarkable stability at 50 ◦C and 60 ◦C and low pH values of 2 and 3 [101].

Compared with literature data, Apriceno and co-authors [49] reported that a quite
low value of enzymatic activity (0.02 U of enzyme) was required for 90% of degradation of
DCF (50 mg/mL) in 3 h, when the Lac was covalently immobilized on chitosan beads and
coupled with ABTS. Yaohua and co-authors [108] also reported an efficient degradation of
índole, even after 5 and 10 cycles, using a co-immobilization method, which consisted on
the encapsulation of ABTS molecules into the dual-functionalized cellulose beads, followed
by covalent binding of Lac.

Magnetic cross-linked enzyme aggregates (M-CLEA) are another example of the
enzyme immobilization method, in which amino-functionalized magnetic nanoparticles
are used. Yang and co-authors reported that Lac immobilized as M-CLEA eliminated over
80 µg/mL of TC in 12 h [89]. Similarly, CLEA and M-CLEA Lac showed high DCF removal
capacity (~80%) at 1 and 5 µg/L pollutant concentrations [99].

The use of immobilized biocatalysts for PhAC transformation leads to sustainable
industrial process performance. Despite the promising results, there are still issues to be
further investigated such as the production costs of the immobilized enzymes, the possibility
of scaling biocatalytic systems, as well as storage stability and the treatment potential of
numerous PhAC in real wastewater effluents using enzyme immobilized systems.

4. Factors Affecting the Enzymatic Degradation

Enzymatic treatment of recalcitrant PhAC may be affected by several reaction condi-
tions, e.g., temperature, pH and natural organic matter. The enzymes are mainly stabilized
by weak interactions such as Van der Waals and hydrogen bonds, and the latter is largely
influenced by the medium pH [112]. The relationship between the optimal pH and Lac
activity is also dependent on the substrate and the redox potential difference between the
substrate and the enzyme T1 copper site. Enzyme activity of Lac may decrease at higher pH
because of the formation of hydroxide anion, which disturbs/blocks the internal electron
transfer from T1 to T2/T3 copper in Lac, due to the attachment of hydroxide anion in the
T2/T3 coppers [21,113]. Lac from T. versicolor is not able to degrade doxorubicin (DOX)
at pH 3, but by increasing the pH to 4 the compound starts to be degraded. Therefore,
increasing the pH the degradation also increases until the neutrality [21].

Temperature plays an important role in the rate of biological reactions, therefore the
lower degradation efficiency at inferior temperature (e.g., 25 ◦C) is related to a reduced
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activation energy of the reaction, whereas above a certain temperature the enzyme can
be inactivated due to denaturation [56,113]. An almost complete removal of CBZ by the
Lac-ABTS system is observed at pH 6 and 35 ◦C, while the degradation efficiency varies
from 69% to 73% at 25 ◦C and 45 ◦C, respectively [56]. Lonappan and co-authors [54] found
that the maximum degradation of DCF by Lac from T. versicolor occurred at pH ranging
from 4 to 5 and a temperature of 50 ◦C. However, the optimum removal of ketoconazole
with Lac is achieved at pH 4.5 and 45 ◦C in 6 h [83].

As mentioned, the reactivity of Lac is influenced by the presence of EDG and EWG.
According to Yang and co-authors [80], EDG such as hydroxyl (-OH), amine (-NH2), alkoxy
(-OR), alkyl (-R) and acyl (-COR) groups were susceptible to electrophilic attack by oxidase
enzymes. Conversely, the presence of EWG reduced the affinity of enzymes. Rodríguez-
Delgado and co-authors [55] described higher biotransformation (78%) of the antibiotic
5,7-diiodo-8-hydroxyquinoline (DHQ), which despite having an electron withdrawing
iodine halogens group in its structure, also contains a strong electron-donor hydroxyl
group that enables Lac oxidation.

The presence of ions in aqueous media may result in different effects on the catalytic
performance of the enzyme. For example, halide anions (F, Cl and Br) and hydroxide anion
(OH) possibly bind to the T2 copper of Lac and interrupt the internal electron transfer
between T1 and T2/T3, as well as they can bind near the T1 active site and block substrate
access. Lac from T. versicolor exhibited 20% of activity inhibition to 5 mM sodium chloride,
a usual concentration of this compound in municipal wastewater [114]. Cu2+-assisted Lac
enhanced the transformation of triclosan as well, possibly due to the production of more
phenoxy radicals. Conversely, Mn2+ revealed a thorough inhibition on the transformation
of triclosan, since it can be associated with the formation of the Mn3+-citrate complex
which results in oxygen consumption and interruption of electron transport in reaction
systems [62]. Tian et al. [41] revealed that the presence of the Mn2+ ion inhibited the
removal rate of TC and OTC by the Lac-Q–ABTS system (Pycnoporus sp. SYBC-L10), while
the presence of Al3+, Cu2+, and Fe3+ accelerated the removal rate.

Humic acids (HA), as common substances derived from the organic matter decom-
position, often appear in aquatic environment, and influence the Lac-catalyzed reaction.
The presence of HA (0–20 mg/L) inhibited ATL transformation by TEMPO-mediated Lac,
through competition reaction with the enzyme. The same effect holds for inorganic anions,
HCO3

− and CO3
2−, that can react with the reactive radicals (e.g., SO4

•− and HO•) and
affect the transformation of target pollutants by changing solution pH [85].

5. Bioreactors

Bio-catalysis is a reliable tool for developing green and strengthened processes, as long
as the proper reactor configurations are combined. The selection of the reactor configuration
and the operation strategy is directly related to the kinetic behavior and characteristics of
the enzyme and/or support in immobilized systems [115]. Different reactor configurations
have been studied for the catalytic treatment of PhAC, such as stirred tank reactor, fluidized
bed bioreactor, packed-bed reactor and enzymatic membrane reactor (EMR) [96,99,116,117].
The typical configuration of an enzymatic reactor is a batch system, which is flexible, simple
and provides easy control of both temperature and pH of biodegradation. However, the
implementation of continuous flow reactors is essential to attain a stable quality of the
effluent, high productivity and low operational costs [118].

Under continuous operating conditions, Lonappan et al. [119] assessed the degradation
of DCF at environmental concentrations by Lac bound to pine wood and pig manure
biochar, in a fixed-bed column. The combination of adsorption and catalytic effect resulted
in more than 70% removal of DCF. Similarly, Nguyen and co-authors [96] showed that
GAC-bound Lac in a packed-bed column efficiently removed SMX, CBZ, DCF, due to
adsorption on the carrier and degradation by the enzyme, during continuous operation
over two months with a throughput of 12,000-bed volumes.
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Some adverse effects in strategies that directly use the enzyme-producing fungus
such as bacterial contamination, are felt during the continuous process and may further
present a negative impact on enzymatic degradation. For example, Li et al. [120] reported
that in a fixed-bed bioreactor packed with a mixture of WRF mycelia pellets, the removal
efficiencies for CBZ and NPX dropped from 60% and 95%, respectively, to less than 20%
after 14 days, possibly due to the contamination by other microorganisms in the reactor.
Thus, a treatment with sodium hypochlorite was forwarded as solution, which led to an
increase in the removal of NPX by more than 90%.

Torán and co-authors [121] studied a treatment that guarantees fungal stability under
continuous treatment conditions. High removals in real hospital wastewater spiked with
PhAC were obtained in a trickling packed bed reactor using T. versicolor immobilized on
pallet wood, during 49 days. Comparing with fluidized bed reactor, excessive bacterial
contamination was avoided by limiting the nutrient supply and controlling the pH. In
another study, Li and co-authors [122] employed a rotating suspension cartridge reactor
immobilized with Phanerochaete chrysosporium to treat synthetic wastewater for 160 days
under non-sterile conditions. The strategies of immobilization of fungi on foam cubes, the
pattern of liquid/airflow inside the cartridge created by intermittent operational mode and
the gradual cut of the external carbon source, allowed feeding the cartridge repeatedly and
also caused the timely washed off of aging microorganisms.

Only a few studies have dealt with the removal of pharmaceuticals from real wastewa-
ter. For example, Tormo-Budowski and co-authors [123] reported that a fungal recirculating
trickle-bed bioreactor was able to remove pharmaceutical compounds to a great extent
from synthetic (89%) and real wastewater (90%), mostly due to adsorption to the bed’s
biomass. Acute toxicity tests showed an additional decrease in wastewater toxicity when
compared to an identical study with a semi-batch stirred tank bioreactor.

Most of the work for treating wastewater matrices has been done on a small scale,
which subsequently should be scaled up gradually to determine the system performance in
large WWTP.

6. Enzymatic Membrane Reactor (EMR)

Enzymatic degradation of pollutants is mainly investigated in batch bioreactors due
to the concern of enzyme washout along with the treated effluent as in a continuous flow
bioreactor [124]. To overcome this drawback, biocatalysts can be immobilized onto a large
variety of carriers, as well as in membranes of suitable molecular weight cut-off coupling with
an enzymatic bioreactor. The EMR consists of coupling a membrane separation process with
an enzymatic reaction, in which a semi-permeable membrane promotes the separation of the
enzyme from products and/or substrates and creates a selective physical/chemical barrier.

EMR enables the retention and reuse of the enzyme once the end products have
been recovered in the permeate. For example, De Cazes and co-authors [125] used a
ceramic membrane to retain Lac and their EMR was able to reach in batch mode a degra-
dation rate of 0.34 mg of TC per hour during 10 days. Therefore, this approach offers
several advantages over other alternatives, namely: (i) more effective retention of enzyme,
(ii) enzyme operation that avoids limiting mass transfer associated with immobilization on
carriers and (iii) easy enzyme replenish during long term operation [117].

The EMR system is constituted by a membrane that acts as a selective barrier and the
enzymatic degradation reaction takes place during the mass transfer process [18]. Recent
studies have explored ultrafiltration enzymatic membrane reactors (UF-EMR) due to their
potential to retain the enzyme and the continuous removal of micropollutants. In this
regard, Nguyen and co-authors [126] presented a methodology based on the concentration
of crude Lac using an ultrafiltration (UF) membrane before its application in EMR. During
the filtration process, an enzymatic layer is retained and can later adsorb and oxidize
the substrates. Overall, the authors described that pharmaceutical compounds such as
amitriptyline, salicylic acid, triclosan and gemfibrozil were effectively removed. Asif and
co-authors [124] compared the performance of UF and nanofiltration (NF) combined with
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EMBR for the degradation of atrazine, CBZ, SMX, DCF and oxybenzone. Mass balance
analysis revealed that micropollutants degradation was improved by 15–30% in NF-EMBR
as compared to UF-EMBR, which can be attributed to the prolonged contact time between
Lac and substrates following their effective retention.

UF and NF membranes, with their minuscule pore sizes, are effective in removing
micropollutants. However, during a continuous process, membranes present a drop in
permeate flux due to membrane fouling under high organic matter content. This re-
quires periodic membrane flushing and constitutes a potential challenge for large scales
applicability [127]. In this sense, Ba and co-authors [128] proposed a cost-effective hybrid
bioreactor (HBR) by combining microfiltration membrane (MF) with CLEA-Lac to remove
PhAC (Figure 4). This system proved to limit high concentrations of natural organic matter
within the membrane and prevent its rapid fouling, while the biocatalyst was confined
within the MF membrane and recycled back into continuous operation. In another study
with HBR, which combined the synergistic action of crosslinked tyrosinase and Lac aggre-
gates with hollow fiber MF, the authors reported 90% efficiency for the elimination of 14
selected PhAC from municipal wastewater at an environmentally relevant concentration of
10 mg/L [129].
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7. Real Wastewater and Scale-Up

Chemical and biological complexity of wastewater may strongly interfere with en-
zymatic activity. Spina et al. [90] evaluated the stability and the activity of T. pubescens
Lac during the transformation of micropollutants present in primary sedimentation (W1)
and at the end of the process (W2) of municipal wastewater. During the 24 h experiment,
enzymatic activity was strongly inhibited by the complex matrix and W1 showed consid-
erable destabilizing potential, due to a more developed microbial community and higher
load of suspended solids. However, these enzymes were very active against all the target
micropollutants and caused a significant abatement of the potential ecological impact. In
another study, the authors used Lac as a treatment on municipal wastewater from WWTP,
comprising PhAC, pesticides, plasticizers. Although enzyme stability was impaired by
the composition of the effluent matrix, transformation above 70% was achieved for most
micropollutants during 24 h with a decrease estrogenic activity [57].

The application of biocatalysts in industrial and continuous bioremediation processes
is limited. The free enzymes are susceptible to inactivation over time due to unfavorable
conditions, weak retention and reusability of the biocatalyst. Furthermore, most studies
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with real wastewater have investigated the removal of PhAC by immobilized enzymes.
For example, immobilized Lac from T. versicolor and Myceliophthora thermophila can effec-
tively remove endocrine activity of mixtures of EDC in wastewater, with high removal
rates for estrogenic (82% removal after 24 h) and androgenic activities (99% removal after
6 h) [130]. Additionally, Arca-Ramos et al. [131] studied the stability of free Lac and mag-
netically separable M-CLEA in secondary effluent collected from the municipal WWTP
(Magog, Canada). The M-CLEA showed higher stability against inhibitors, acidic pH and
wastewater matrix, as well as showed the ability to transform the phenolic compound
APAP and certain non-phenolic PhAC, as mefenamic acid, fenofibrate and indomethacin,
with similar or even higher efficiency than free Lac. Le et al. [132] established that Lac
encapsulated in an alginate matrix exhibited satisfactory performance under extreme envi-
ronmental conditions in the presence of metal ions or other components. The encapsulation
method protected enzymes from environmental factors that inhibit enzymatic activity
during practical applications, particularly for wastewater treatment.

For the abatement of PhAC from the effluents of WWTP, several approaches using
ligninolytic fungi have been tested. P. ostreatus and its spent mushroom substrate were
combined to produce a biofilter for the removal of sulfonamides from real water matrices.
The fungi activity coupled with the adsorption capacity of the biofilter showed an effective
removal rate around 100% in 24 h [133]. Likewise, Křesinov et al. [134] employed P. ostreatus
as a tertiary treatment in a WWTP to remove endocrine disruptors and achieved removal
rates of 76% in a pilot-scale trickle-bed reactor within 24 h.

One of the main sources of PhAC is hospital wastewater (HWW). Fungal consortium
treatments can remove these pollutants from real wastewater, but fungal survival can
be affected by bacterial competition. Mir-Tutusaus et al. [135] reported that T. versicolor
was able to treat real non-sterile HWW in a continuous fungal fluidized bed bioreactor
for 56 days after a coagulation-flocculation pretreatment. The fungal operation removed
90% of the initial concentration of antibiotics (5000 ng/L), but gradually lost the removal
capacity to values around 50%. In the case of psychiatric drugs, removals of about 50%
of the initial load was reached. In another study, Ferrando-Climent et al. [136] evaluated
the oxidative enzymatic system of T. versicolor to eliminate anticancer drugs from HWW.
Ciprofloxacin was eliminated more efficiently at non-sterile conditions, which can be
attributed to a synergistic degradation contribution of fungi and common fecal bacteria. In
the case of tamoxifen, higher removal was obtained under sterile conditions by combined
sorption-biodegradation processes.

Biocatalytic efficiency can be increased by adding McIlvaine’s buffer to real wastewater
effluents, by providing beneficial anions that stabilize enzymes and thus enabling their
activity [137]. Despite the promising results already presented in the literature, enzymatic
treatment needs to be established for micropollutants in real wastewater, as the study in
aqueous matrices, such as pure buffer or deionized water, can be a source of misleading or
impractical data.

8. Hybrid Methods

The study of combined processes for the removal of organic micropollutants is of
great importance. The partially transformed intermediates of a pollutant may have high
reactivity in some other processes and the interaction between degradation processes may
significantly improve the overall degradation rate and the final reaction products toxicity.
Therefore, the cooperation of enzyme technology with other treatment technologies can be
a valuable strategy for wastewater treatment.

A novel sono-hybrid technique for the degradation of recalcitrant organic pollutants
involves a sono-enzymatic treatment, in which sonolysis is combined with enzymatic
treatment with peroxidase enzymes such as LiP, MnP and HRP. Chakma et al. [138] reported
the usage of sono-enzymatic degradation of IBP using the HRP enzyme. At low ultrasound
frequency and static pressure, sono-enzymatic treatment was revealed to be more effective
than the individual techniques. A positive synergy was observed due to the formation of
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hydrophilic intermediates induced by radicals from transient cavitation that were rapidly
degraded by the enzyme (Figure 5a). In another study, authors demonstrated that Lac from
T. Versicolor (0.5 U/L) combined with ultrasonication removed over 60% of chlortetracycline
(2 mg) spiked in wastewater in 2 h, whereas Lac treatment alone took 2 days to degrade 87%
of it [64]. Similarly, Sutar et al. [139] reported a higher degradation in reduced time using
ultrasound-assisted enzymatic degradation for ciprofloxacin hydrochloride, as compared
to the conventional method.

In the study conducted by Vasiliadou et al. [140] advanced bio-oxidation systems
based on WRF (T. versicolor and G. lucidum) in the presence of quinone-type mediators
were able to induce the production of highly oxidizing hydroxyl radicals to degrade
recalcitrant pollutants from wastewater such as pharmaceuticals. The application of 2,6-
dimethoxy-1,4-benzoquinone (DMBQ) in the redox cycling process of fungi resulted in
60–100% removal of 13 pharmaceuticals due to the high affinity of Lac enzyme for DMBQH2.
Another publication presented by Shi et al. [141] demonstrated that the combination of
photolysis and Lac-catalysis in an aqueous solution under simulated sunlight irradiation
could synergistically promote the dichlorophen (DDM) removal. Results demonstrated that
photolysis could efficiently remove the harmful coupling products generated in the Lac-
catalysis of DDM (Figure 5b). In another application, Zhu et al. [142] reported that activated
sludge treatment coupled with chloroperoxidase improved the removal of lincomycin.
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9. Concluding Remarks and Prospects

The presence of pharmaceutical micropollutants in wastewater and the consequent
unknown risks of their concentration as well as synergistic or antagonistic interactions
between them increases the demand for environmentally friendly and economically viable
processes to reduce their environmental impact. As previously summarized, enzyme-based
degradation of contaminants in wastewater is emerging and several studies have been
conducted using oxidoreductases, predominantly Lac, as these enzymes have an enormous
potential for pharmaceutical degradation and wastewater remediation.

Enzymatic wastewater treatment has shown its feasibility in pharmaceuticals removal.
However, this degradation approach still has some limitations that prevent its use in
large-scale set-ups. Briefly, the current challenges of enzymatic treatment focus on yields,
efficiency and the high costs of enzymes. Although the studies presented are quite promis-
ing, it is possible that in some cases certain remediating enzymes might eventually produce
intermediates eventually more toxic than the initial pollutant. Therefore, the transformation
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metabolites, as well as their toxicity or estrogenic activity, should always be assessed. In
addition, this technology may need to be combined with other methods to achieve complete
remediation, since enzymes only transform complex compounds into simpler substances
but further steps may be needed to tackle these last ones.

The enzyme free form systems can achieve good treatment performance, but present
low stability and high loss of enzyme during the treatment. The immobilization strategy
increases the catalyst stability and enables its reusability, which constitutes a more cost-
effective and eco-friendly process. Thus, enzyme immobilization systems also grant the
applicability of enzymatic bioremediation to an industrial scale process. However, most
immobilization methods have significant drawbacks due to the still short enzyme lifetime
that makes the process highly expensive, loss of enzyme activity and regeneration problems.
Consequently, further research should be focused on the development of highly effective and
safe treatment pathways with increased metabolic properties, enhanced recovery of enzyme
activity, reusability during the immobilization process and inexpensive support options.

The application of the enzymatic approach to the treatment of real wastewater samples
further comprises a potential limitation, since enzymes may suffer inhibition or denatura-
tion in consequence of harsh conditions or the presence of natural organic matter and/or
ions. Many studies were conducted under laboratory conditions using synthetic or spiked
wastewater and mainly focused on the removal of limited compounds, usually in high
concentrations, that do not represent realistic environmental situations. Thus, operational
parameters should be tested under real-life conditions in order to move to pilot-scale and
larger-scale systems.
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Abbreviations

ABTS 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
HWW Hospital wastewater
APAP Acetaminophen
IBP Ibuprofen
APTES 3-aminopropyltriethoxysilane
Lac Laccase
AS Acetosyringone
LiP Lignin peroxidase
ATL Atenolol
M-CLEA Magnetic cross-linked enzyme aggregates
CAP Chloramphenicol
MCF Mesostructured cellular foam
CBZ Carbamazepine
MF Microfiltration membrane
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CLEA Cross-linked enzyme aggregate
MnP Manganese peroxidase
DCF Diclofenac sodium
MWCNT Multi-walled carbon nanotubes
DDM Dichlorophen
NF Nanofiltration
DHQ 5,7-diiodo-8-hydroxyquinoline
NPX Naproxen
DMBQ 2,6-dimethoxy-1,4-benzoquinone
NSAID Non-steroidal anti-inflammatory drugs
DOX Doxorubicin
OTC Oxytetracycline
EC Emerging contaminants EC
PhAC Pharmaceutical active compounds
EDG Electron-donating groups
PLCL Poly(l-lactic acid)-co-poly(ε-caprolactone)
EMR Enzymatic membrane reactor
PVDF Polyvinylidene fluoride
ET Electron transfer
SA Syringaldehyde
EWG Electron withdrawing groups
SMX Sulfamethoxazole
FLG Few-layer graphene
TC Tetracycline
GAC Granular activated carbon
TEMPO 2, 2, 6, 6-tetramethyl-1-piperidinyloxy
GO Graphene oxide (GO)
TNC Trinuclear copper cluster
HA Humic acids
UF Ultrafiltration
HAT Hydrogen atom transfer
VLA Violuric acid
HBR Hybrid bioreactor
VP Versatile peroxidase
HBT Hydroxybenzotriazole
WRF White-rot fungi
HPI N-hydroxyphthalimide
WWTP Conventional wastewater treatment plants
HRP Horseradish peroxidase
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