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Abstract: Host genetics affect both the susceptibility and response to viral infection. Searching for host
genes that contribute to COVID-19, the Host Genetics Initiative (HGI) was formed to investigate the
genetic factors involved in COVID-19 via genome-wide association studies (GWAS). The GWAS suffer
from limited statistical power and in general, only a few genes can pass the conventional significance
thresholds. This statistical limitation may be overcome by boosting weak association signals through
integrating independent functional information such as molecular interactions. Additionally, the
boosted results can be evaluated by various independent data for further connections to COVID-19.
We present COVID-GWAB, a web-based tool to boost original GWAS signals from COVID-19 patients
by taking the signals of the interactome neighbors. COVID-GWAB takes summary statistics from
the COVID-19 HGI or user input data and reprioritizes candidate host genes for COVID-19 using
HumanNet, a co-functional human gene network. The current version of COVID-GWAB provides
the pre-processed data of releases 5, 6, and 7 of the HGI. Additionally, COVID-GWAB provides
web interfaces for a summary of augmented GWAS signals, prediction evaluations by appearance
frequency in COVID-19 literature, single-cell transcriptome data, and associated pathways. The web
server also enables browsing the candidate gene networks.

Keywords: COVID-19; genome-wide association study; network boosting

1. Introduction

The global outbreak of coronavirus disease 2019 (COVID-19), a disease caused by
SARS-CoV-2, became a pandemic that affected numerous people worldwide [1]. Although
patients with COVID-19 predominantly suffer from symptoms related to the respiratory
system, the degree of disease severity and progression has been heterogeneous, ranging
from asymptomatic to lethal conditions [2]. Due to its complexity in disease responses, there
have been worldwide efforts to understand the various factors that influence COVID-19
symptoms [3]. Among those COVID-19-related factors, host genetics greatly affect the
disease’s initiation and progression [4].

Host genetics affect the susceptibility and response to viral infection. Searching for
host genes contributing to COVID-19, researchers formed a global network to investigate
the host genetic factors involved in COVID-19 via genome-wide association studies (GWAS)
(https://www.covid19hg.org/ (accessed on 22 June 2022)). The initial publication was
based on 49,562 COVID-19 patients [4]. Since then, the cohort size has continued to increase,
and the latest published release of GWAS summary statistics is based on 125,584 patients [5].
GWAS suffer from limited statistical power and generally, only a few genes can pass the
conventional significance thresholds (e.g., p ≤ 5 × 10−8). Accordingly, the published study
with 49,562 patients reported only 13 human genome loci for COVID-19 [4]. This statistical
limitation may be overcome by augmenting weak association signals through integrating
independent functional information such as molecular interactions [6].
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Human gene networks are composed of numerous molecular interactions that can
be used to explain the complexity of human diseases. Because diseases are commonly
associated with dysfunctions in several pathways, identifying disease-related genes and
their co-functional genes connected within the networks can expand our knowledge of
diseases. Therefore, network-based analysis of GWAS data can lead to valuable discoveries.
For network-based GWAS analysis, the first method is the identification of subnetworks.
The candidate genes from GWAS are assigned scores based on their p values of GWAS
significance and mapped back to the networks for identifying the disease-related subnet-
works. Those subnetworks could be composed of pathways and gene interactions that are
essential for diseases [7,8]. The second method is the reprioritization of candidate genes
connected through the networks. GWAS associations of the co-functional genes are boosted
by signals from nearby neighbors, which can lead to the identification of new candidate
genes with sub-threshold disease associations with GWAS alone [6,9,10]. In addition to
using networks, the evaluation of the new candidate genes with other resources, such as a
collection of experimental evidence, transcriptome datasets, and biological pathways, can
further validate disease relevance.

Here, we present COVID-GWAB (https://inetbio.org/covidgwab/ (accessed on
2 September 2022)), a web-based tool for boosting the original GWAS signals of individual
genes for COVID-19 by integrating those of their interactome neighbors and comparing the
results with various other datasets and literature sources. COVID-GWAB provides simple
step-by-step web interfaces that can initiate network-based boosting of the GWAS data,
understand the boosted results and provide a summary, and further validate and discover
additional resources. With COVID-GWAB, researchers can find new COVID-19-related
candidate genes with GWAS data.

2. Materials and Methods
2.1. GWAS Data Sources and the Human Gene Network

The COVID-GWAB server takes summary statistics data from the COVID-19 Host
Genetics Initiative (HGI) or user input GWAS data. The current version of COVID-GWAB
provides the pre-processed data of Releases 5, 6, and 7 of the COVID-19 HGI GWAS data
(https://www.covid19hg.org/ (accessed on 22 June 2022)). We will continue to update
the server with any future releases of the COVID-19 HGI GWAS data. The COVID-19
HGI GWAS data are composed of four different phenotype comparison results: A2 (very
severe respiratory confirmed COVID-19 vs. population), B1 (hospitalized COVID-19 vs. not
hospitalized COVID-19), B2 (hospitalized COVID-19 vs. population), and C2 (COVID-19
vs. population). COVID-GWAB uses a human gene network, HumanNet (version 3) [11].
Of the three-tier models of the network, the most conservative model, HumanNet-PI,
composed of only protein–protein interactions, is used for the network-based boosting of
GWAS data.

2.2. COVID-19 Host Gene Predictions by Network-Based Boosting

COVID-GWAB conducts the network-based boosting of GWAS data proposed in
our previous works [6,12]. To augment the GWAS signals using a gene network, we first
assign the p values of SNPs to genes within a designated chromosomal distance by user
input (Figure 1A). If multiple p values are assigned to a given gene, the best p-value is
considered for the downstream analysis. For the network-based boosting of GWAS data,
we implemented the scoring scheme described in our previous works [6,12]. To acquire
information from the genes close to being statistically significant, we used a ‘soft’ guilt-by-
association (GBA) by

(
pj −

(
1− pj

))
, in which pj is a probability of disease involvement

of a gene j. With the soft GBA, genes with strong disease associations would be given full
weight. For the network neighboring gene j of gene i, the total contributions of the GWAS
association scores are calculated using the following equation:

https://inetbio.org/covidgwab/
https://www.covid19hg.org/
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Si = ∑
j

(
2pj − 1

)
lij

in which lij is the likelihood score of the link between gene i and gene j in the co-functional
network. We calculated the likelihood score of the links based on a Bayesian statistics
framework in which the ability to capture known links is evaluated for the given stan-
dards [13]. We then integrated the GWAS data into the co-functional network in a naïve
Bayes framework, given that the data from each of them were conditionally independent.
We calculated the GWAB scores, the posterior log odds that gene i is involved in the disease,
using the following equation:

log O(i ∈ D|DNetDGWAS) = Si + log O(i ∈ D|DGWAS)

in which log O(i ∈ D|DNetDGWAS) is the log odds of the association calculated from the
GWAS data, which is equal to the log Bayes factor for the disease association added by
the prior log odds for the association. The p values from the GWAS data were used for
the calculation of the odds of the association. We excluded genes encoding the major
histocompatibility complex (MHC) molecules from the final candidates because their
inflated associations with COVID-19 driven by the unusual genomic structures of MHC
regions have been reported [14–16].
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Figure 1. Overview of COVID-GWAB. (A) Graphical summary of the method for the network
boosting of GWAS data, (B–D) Representative web interfaces for summary reports of the network
boosting (B), prediction evaluation (C), and visualizing a candidate gene network (D). A red × in
(C) indicates no significant overlap for the corresponding categories (p > 0.05, Fisher’s exact test).
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2.3. Web Interfaces for Facilitating the Interpretation of the Boosting Results

COVID-GWAB provides web interfaces for summarizing the boosting results, predic-
tion evaluations, and a candidate gene network (Figure 1B–D). To evaluate the effectiveness
of the network boosting, we compared the predictions of COVID-GWAB with those of
GWAS alone. The relevance of the candidate genes with COVID-19 was estimated by
the frequencies of appearances of each gene in all COVID-19-related studies that were
summarized by The COVID-19 Drug and Gene Set Library [17]. For the validation of
the predictions, we collected COVID-19 single-cell transcriptomics datasets from five in-
dependent studies [18–22] (Table S1). All cell types were based on annotations from the
original articles, and differentially expressed genes (DEGs) were calculated by compar-
ing COVID-19 patient samples to healthy controls with Seurat’s FindMarkers functions
(ln(FoldChange) > 0.25 & adjusted p value < 0.01) [23]. We calculated the overlaps between
the GWAB results and DEGs from the single-cell datasets using Fisher’s exact test. We
conducted the pathway analysis using enrichR [24]. All the plots for the Boosting Summary
and Prediction Evaluation sections were drawn using ggplot2 [25]. We constructed the
gene network using the GWAB results by extracting the subnetworks from HumanNet [11]
of the GWAB result genes and adjacent nodes to the GWAB result genes. The centrality
scores were measured with igraph’s betweenness and degree functions [26]. The web
server can also visualize the network of candidate genes with centrality scores, COVID-19
gene set library frequencies, and rank changes from the GWAS summary statistics p values
to GWAB scores after the network boosting. Users can easily browse the pre-calculated
COVID-GWAB results using the COVID-19 HGI GWAS data or run their datasets with
various parameters, such as SNP distances to genes and GWAS p value thresholds, for the
network boosting.

3. Results
3.1. Comparison of GWAB and GWAS-Only Results Using COVID-19 Geneset Library

We used Release 6 of the COVID-19 HGI GWAS data to compare the predictions
from COVID-GWAB to the top predictions by GWAS alone. The top results for GWAS
alone were defined by the p values from the GWAS summary statistics and the top re-
sults for COVID-GWAB were defined by the GWAB scores. As with publications from
the COVID-19 HGI, we used phenotypes A2, B2, and C2, and excluded phenotype B1
(hospitalized COVID-19 vs. not hospitalized COVID-19). In order to survey the biolog-
ical significance and relevance of the genes from each category, we used the COVID-19
geneset library [17], which collected COVID-19-related studies to generate the appear-
ance frequency count for each gene from those studies. We compared the top 100 results
from GWAS alone (GWAS Original), the top 100 results from COVID-GWAB (All Top
Genes), and the new candidate genes (GWAB Only) from the top 100 COVID-GWAB
results without GWAS significance (p < 5 × 10−8) and GWAS-significant genes in the
top 100 COVID-GWAB results. Across all three COVID-19 GWAS phenotypes, “GWAB
Only” showed the highest frequency followed by “All Top Genes”, “GWAS Sig.”, and
“GWAS Original” (Figure 2A). Furthermore, we randomly selected 100 genes from the
COVID-GWAB results and calculated their mean frequency. We repeated this process
10,000 times to generate a random gene frequency distribution. All four gene categories
showed higher mean frequencies than the random distribution, indicating their significant
connections to various COVID-19 experimental results. As with the previous results, the
“GWAB only” category showed the highest mean frequency (Figure 2B). The overall trend
in the mean frequencies for the top 25 to 1000 genes with “All Top Genes”, “GWAS Only”,
and “GWAS Original” results showed consistently larger frequencies after the network-
based boosting (Figure 2C). Therefore, these results show that although GWAS results
alone still have a biological connection to COVID-19-related experiments and literature,
COVID-GWAB better captures these relationships by incorporating human functional gene
networks for more interpretable candidate genes.
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Figure 2. Frequency of appearance in COVID-19 gene set library. Release 6 of COVID-19 HGI GWAS
data; A2, B2, and C2 are used. GWAS Originals are top GWAS results based on GWAS statistics
p values without boosting. GWAB Onlys are genes in GWAB Top N results (ranked with GWAB
scores) that have GWAS statistics p values bigger (not significant) than 5 × 10−8. GWAS Sigs are
genes in GWAB Top N results with GWAS statistics p values smaller (significant) than 5 × 10−8. All
Top Genes are genes in GWAB Top N results. (A) Comparison of frequencies of GWAB top 100 genes
for each gene group. The Wilcoxon signed-rank test is used for the p values. Statistical significance:
ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), *** (p ≤ 0.001), **** (p ≤ 0.0001) (B) Histogram with mean
COVID-19 geneset library frequencies of 100 random genes from all genes, repeated 10,000 times.
Each dashed line indicates the mean frequency of each gene group. (C) Mean frequencies of top-
ranked genes from each gene group ranked from 25 to 1000 (increased by 5).

3.2. Comparison of GWAB and GWAS Alone Results Using COVID-19 Single-Cell RNA-seq Datasets

To further compare biological relevance and validate the COVID-GWAB results, we
utilized various single-cell RNA sequencing datasets comparing COVID-19 patients and
healthy controls. The datasets covered various regional cohorts and tissue types such as
peripheral blood mononuclear cells (PBMCs), whole blood, bronchoalveolar lavage fluid
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(BALF), and lung (Table S1). We calculated the differentially expressed genes (DEGs) for
COVID-19 patients and healthy controls for each dataset. Using the same gene categories as
above, we compared the fold changes of the genes from all cell types and datasets combined.
The results showed that the “GWAB Only” results had higher fold change values toward
COVID-19 patients compared to “GWAS Original” (Figure 3A). We used Fisher’s exact
test and overlap percentages to analyze cell-type and disease-specific overlaps between
the top results from COVID-GWAB and the DEGs from the single-cell datasets. Figure 3B
shows overall more significant overlap counts for the DEGs from COVID-19 patients for
most datasets without cell-type specific enrichment. Next, we counted the actual overlap
counts for genes in the top 100 COVID-GWAB results. The top genes showed more overlap
counts for the COVID-19 DEGs and more than half of the genes with overlap counts were
categorized as “GWAB Only” genes (Figure 3C). Overall, newly found candidate genes
with COVID-GWAB showed significantly higher log fold changes and overlap counts with
the COVID-19-related genes calculated from actual patient datasets. Furthermore, those top
genes were more enriched for COVID-19 patients than healthy controls, which indicates
COVID-GWAB’s ability to boost GWAS statistics in a disease-relevant manner.

3.3. Validation of GWAB Candidates by Literature Survey

To demonstrate the feasibility of the identification of novel host genes for COVID-19
by the network boosting of GWAS data, we submitted the GWAS summary statistics data
from phenotype B2 from Release 6 of the COVID-19 HGI. We examined the candidate
genes that could not have been suggested by GWAS alone via manual literature surveys
(Table S2). Furthermore, those top genes are visualized as connected networks and colored
accordingly to their betweenness centrality, appearance frequency in the COVID-19 geneset
library, and rank change after COVID-GWAB boosting (Figure 4). Chemokine receptors,
such as CCR9, CXCR6, CCR1, CCR3, CCR5, and CCR2, are all located on chromosome 3 and
already showed significant associations with COVID-19 without network boosting. Other
chemokines and chemokine receptors became significant candidates only after boosting
(GWAB Only). For example, the priority ranks substantially increased from GWAS alone
to GWAB (denoted as GWAS rank→ GWAB rank in the following) for CXCR4 (2337th
→ 42nd), CCL5 (5142nd→ 43rd), and CXCL9 (3981st→96th), and they were found to be
involved in various stages of SARS-CoV-2 infection [27]. Several GWAB-only candidates
such as EGFR (17,798th→134th), ANXA1 (12,269th→ 302nd), HNRNPL (3116th→ 21st),
MOV10 (16,917th→ 41st), and STAT2 (14,012th→38th) were recently found to interact with
the SARS-CoV-2 RNA in infected human cells [28]. TRIM25 (17,506th→ 34th) is known
to be involved in antiviral innate immunity and SARS-CoV-1 [29–31]. Intriguingly, APP
(4621st→ 24th) and LRRK2 (2629th→ 25th) that are involved in Alzheimer’s disease and
Parkinson’s disease, respectively, were suggested as highly probable candidates by GWAB.
Multiple studies recently suggested the possible connection between such neurodegenera-
tive diseases and COVID-19 [32–36]. Several kinases, such as NTRK1 (10,495th→ 29th),
FYN (3902nd→ 46th), ABL1 (7261st→ 91st), and SRC (8965th→ 56th), are being studied for
repurposing several kinase inhibitors for COVID-19 treatment [37,38]. Furthermore, STAT1
(21,435th → 32nd), STAT2, EGFR, and IRF9 (2455th → 36th) are involved in interferon
signaling and have been suggested in numerous COVID-19 studies [39–43]. These results
suggest that the network boosting of original GWAS signals can predict the host genes that
are highly likely involved in COVID-19.
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Figure 3. Overlaps of differentially expressed genes (DEGs) between COVID patients and healthy
controls for each cell type from single-cell RNA-seq datasets. (A) Comparison of fold changes of
GWAB top 100 genes for each gene group. The Wilcoxon signed-rank test is used for the p values.
Statistical significance: ns (p > 0.05), * (p ≤ 0.05), ** (p ≤ 0.01), **** (p ≤ 0.0001). (B) Overlaps between
DEGs and GWAB top 100 genes. The color scale indicates the overlap percentage, a red × indicates
no significant overlap for the corresponding categories (p > 0.05, Fisher’s exact test), and NA indicates
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no available DEGs for the corresponding categories. (C) Overlap counts for COVID DEGs and control
DEGs. The genes in blue are the ‘GWAB Only’ genes.
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Figure 4. Network visualization of top 100 GWAB-COVID results with B2 of HGI GWAS Release 6.
Only genes included in HumanNet are included in this network. Adjacent genes that are visualized
in the web server are excluded here for simplification. For the “Default” network graph, the blue
nodes are the newly discovered genes that are not GWAS-significant. The red nodes are the GWAS
significant genes. For the rest of the network graphs, the nodes have more transparency with lower
ranks based on their betweenness centrality, COVID-19 geneset library frequency, and rank changes
from GWAS alone to COVID-GWAB.

4. Discussion

In this paper, we presented COVID-GWAB, a web server-based tool that enables the
discovery of new candidate genes related to COVID-19 from GWAS summary statistics.
COVID-GWAB utilizes the human functional gene network, HumanNet [11], to boost
GWAS data based on their connections to co-functional genes on the network. Although
GWAS provides useful information related to many diseases within the population, there
can be a loss of connection between the genotypes and the disease phenotypes due to
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limited sample sizes, stringent thresholds, and difficulties in interpretation. Network-
based boosting can provide more biologically relevant results with its highly confident and
large-scale edges connecting the functional genes.

To validate the boosting results, we compared the results of COVID-GWAB and
GWAS without boosting using the COVID-19 geneset library and single-cell transcriptome
datasets. With these datasets, we interpreted the biological relevance and interpretability
of the COVID-GWAB results. The COVID-GWAB results, especially those genes that were
newly discovered through boosting, showed higher appearance frequencies throughout
numerous COVID-19 experiments as well as better overlaps with the DEGs from the single-
cell datasets. Furthermore, the results reflected both known COVID-19-related genes and
new gene candidates that are currently being studied throughout the various literature. In
conclusion, COVID-GWAB provides an easy-to-use web server for exploring COVID-19
GWAS data, with various summary and validation tools.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12101446/s1, Table S1: Single-cell RNA-seq datasets used
for COVID-GWAB validation; Table S2: Top GWAB predictions with Release 6 of COVID-19 HGI
GWAS data (B2).
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