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Abstract: Labelling techniques such as electron paramagnetic resonance spectroscopy and single-
molecule fluorescence resonance energy transfer, allow access to distances in the range of tens of
angstroms, corresponding to the size of proteins and small to medium-sized protein complexes. Such
measurements do not require long-range ordering and are therefore applicable to systems with partial
disorder. Data from spin-label-based measurements can be processed into distance distributions
that provide information about the extent of such disorder. Using such information in modelling
presents several challenges, including a small number of restraints, the influence of the label itself on
the measured distance and distribution width, and balancing the fitting quality of the long-range
restraints with the fitting quality of other restraint subsets. Starting with general considerations about
integrative and hybrid structural modelling, this review provides an overview of recent approaches
to these problems and identifies where further progress is needed.

Keywords: EPR spectroscopy; double electron electron resonance; FRET; ensemble model; intrinsic
disorder; structural biology; site-directed spin labelling; molecular force fields

1. Introduction

In the early decades, structural biology followed Anfinsen’s thermodynamic hypothe-
sis [1] that, under normal physiological conditions, the peptide sequence encodes a single
deep minimum in the potential energy surface. This minimum corresponds to a single
protein conformation. So the goal was to determine a unique three-dimensional structure
with the best possible resolution. X-ray diffraction of protein crystals and later NMR spec-
troscopy of proteins in solution became the main approaches of structural biology. After a
“resolution revolution”, cryo-electron microscopy could also provide structures at atomic
resolution. Recently, solid-state NMR has been developed into another approach to this
problem.

At the turn of the millennium, it became clear that a substantial fraction of proteins and
protein domains are intrinsically disordered in functional states [2–5]. In 2015, Peng et al.
quipped that these exceptions are exceptionally abundant in all domains of life, with
eukaryotic proteomes being about 20% disordered [6]. Their analysis found that disordered
regions exhibit some sequence conservation, but less conservation than structured regions
and that disorder is enriched, among else, in transcription, translation, and RNA splicing.
Disorder is involved in the interaction of viruses with other organisms and especially
in their RNA binding [6]. In many cases, the disorder of proteins or their domains is
not complete in the sense that the macromolecules could be described by a random coil.
Instead, proteins populate a continuum of order and disorder, and the extent of disorder
can be heterogeneous even within the same domain [7]. Proteins featuring disorder are
underrepresented in structural databases [6]. They may be overrepresented among systems
studied using site-directed spin labelling (SDSL) and electron paramagnetic resonance
(EPR) spectroscopy, as this approach is often considered a last resort for systems that defy
full characterisation by better established approaches. By measuring distance distributions
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through the combination of SDSL with double electron resonance (DEER), many EPR
studies have thus found that a description in terms of a single conformer is inadequate [8].
This raises the question of how to build reliable ensemble models of proteins and protein
complexes.

About two decades of research have shown that, in general, no single experimental
approach is able to provide a sufficient set of restraints for building an ensemble model
that fully accounts for the residual order of a partially disordered system. This, along with
the same realisation in structure determination of large molecular machines [9,10], has
led to approaches that integrate experimental restraints from different techniques. Such
approaches are referred to as integrative in this review. In a few cases, even the data
collected by several experimental techniques may not suffice for generating a sufficiently
detailed model. One can then resort to including information from knowledge bases, such
as molecular force fields [11,12], fragment libraries [13,14], or structure predictions based on
homology and coevolution [15]. Such approaches are referred to as hybrid in this review.

An overview of all relevant developments in ensemble modelling with integrative and
hybrid approaches would probably require an entire book. Instead, we will here approach
the topic from the perspective of nanometer-scale distance measurements, such as those
that can be made between labels on a protein or nucleic acid using DEER EPR [16] or single-
molecule fluorescence resonance energy transfer (smFRET) [17]. In particular, we will focus
on the distance distribution information obtained with DEER EPR. This information is
unique in that it provides information about the width of the ensemble and thus the extent
of disorder. Our focus means that we cannot do full justice to the parallel developments in
smFRET. Nevertheless, we discuss the complementarity between smFRET and DEER EPR
as well as some methodological analogies and differences.

This review is organised as follows. First, we explain the goal of ensemble modelling
and discuss on a few examples how such models can help in understanding protein function.
Second, we consider the general flow of information in ensemble modelling through
integrative or hybrid approaches. Then, we approach the problem from the perspective
of statistical thermodynamics to provide a solid foundation for the discussion of the
continuum of order and disorder. In doing so, we point out that the energy hypersurfaces
underlying protein function, experimental measurements, and molecular force fields are
subtly different. We critically discuss different approaches to generating a raw ensemble
and reweighting the ensemble. Then we consider the specifics of label-based restraints. In
particular, we address the need to represent labels in the model and discuss the available
approaches for that. We then turn to distribution restraints and discuss the best ways to
implement them in raw ensemble generation and ensemble reweighting. We conclude with
thoughts on necessary future developments, in particular the separation of ensemble width
and ensemble uncertainty.

2. Ensemble Models and Biological Function

Ensemble modelling aims at a three-dimensional representation of the structure of
partially disordered systems. Individual conformers can be represented at atomic resolution
or by coarse-grained models. In the following, atomic resolution is implicitly assumed, but
coarse-grained modelling is done by close analogy. While such ensemble models can be
used to study the polymer physics aspects of proteins and protein complexes [18], their
greatest utility is in visually and intuitively understanding the functional aspects of the
systems. In this context, distance distribution information can reveal how distribution of
structure is related to function. In an early example, bimodal distance distributions between
spin-labelled sites of the non-coding RNA RsmZ upon binding to the protein RsmE showed
that RsmZ can form two major conformers of a complex with three copies of RsmE [19].
RsmE in turn represses translation initiation. The distributed three-dimensional structure
explains how the small RNA RsmZ sequesters RsmE and thus de-represses translation
initiation. In this case, distance distributions between spin-labelled sites were essential
to obtain a structural model at all. However, the approach used in this study modelled
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narrowly distributed ensembles for the two major conformers separately and was thus not
easily extensible to continuous distribution of structure.

In another early example, a small ensemble of six major conformations of the endoso-
mal complex required for sorting and transport ESCRT-I was obtained by integrating FRET,
DEER, and SAXS data [20]. The protein is involved in the formation of membrane buds
on several processes in yeast cells. In this study, distance distributions provided direct
evidence that the N-terminal predicted helix, the ubiquitin E2 variant domain, and the
C-terminal domain were all conformationally heterogeneous relative to the core. Unex-
pectedly, about 50% of the protein was found in a closed form. Clearly, the presence of,
both, closed and open conformations of ESCRT-I in solution must be considered when
elucidating how ESCRT-I induces membrane buds. The authors pointed out that structure
of ESCRT-I should not be understood in terms of only six discrete conformers, but rather as
a continuum of conformers. This in turn indicated a need for methodological advances in
ensemble modelling based on labelling techniques.

In a recent example, ensemble modelling based on distance distribution restraints
and a small-angle x-ray scattering (SAXS) curve revealed the location of the glycine-rich
C-terminal intrinsically disordered domain of heterogeneous nuclear ribonucleoprotein
A1 (hnRNP A1) that is involved in alternative splicing regulation, mRNA export from the
nucleus to the cytoplasm, and segregation of RNA into stress granules [21]. The ensemble
model of the free, dispersed form of hnRNP A1 revealed that the intrinsically disordered
domain is rather compact and contacts and shields the RNA-binding interface of the
structured domains. This offers an explanation for how RNA binding induces liquid–liquid
phase separation of the full-length protein. When RNA binds, the intrinsically disordered
domain must be replaced, so that sections are exposed to an aqueous environment that
have a preference for intra-protein interaction.

3. Information Flow in Ensemble Modelling

Integrative modelling of biomolecular structures is often performed as ensemble
modelling, where the width of the ensemble is related to both the uncertainty of the model
and the disorder of the modelled system. Information flow and key modules (Figure 1) are
common to different approaches to the problem. The experimental phase of the project
provides primary data, the interpretation of which depends on further information about
the sample and the modalities of the measurements. The first stage of the modelling pipeline
analyses this data and converts it into structural restraints. In many cases, this includes
conversion to spatial restraints, such as distances, angles, and torsion angles. In some cases,
however, it is preferable to restrain the model with standardised, experiment-specific data,
such as phase- and zero-time-corrected primary DEER data (see Section 7.1).

The second stage of the pipeline generates a raw ensemble of conformers of the system,
where we use the term conformer for both the conformation of individual macromolecules
and their mutual arrangement (docking). The critical aspect of this stage is sufficient
sampling of the conformer space to avoid missing valid solutions. Such sampling is based
on statistics about possible conformations and is more efficient the better these statistics
are known. Sampling cannot be improved by restraints that can only be simulated with a
complete ensemble. However, it can be improved by distribution restraints that provide
information about the probability of occurrence of individual conformers. In hybrid
modelling, sampling is improved by relying on a molecular force field, often by performing
a molecular dynamics (MD) simulation.

The raw ensemble of conformers output from the second stage of the modelling
pipeline is not expected to provide the best fit of all restraints. Therefore, the third stage
of the pipeline fits the ensemble to the restraints by selecting a subset of conformers from
the raw ensemble or by assigning weights to the conformers. These two approaches can
be combined by interpreting the weights as populations of representative conformers and
discarding conformers whose populations are below a threshold. This stage yields a repre-
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sentative ensemble whose optimal size is discussed in Section 4.1 based on thermodynamics
and resolution arguments.
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Figure 1. General pipeline for integrative and hybrid ensemble modelling. Thick black arrows denote
required inputs, thin grey arrows denote optional inputs. The pipeline is preceded by the design and
execution of experiments and is complemented by ensemble analysis. Numbers 1 to 5 denote the
main modules that can be implemented using different approaches.

It is important to note that the third stage always yields an ensemble model, even if the
experimental data are insufficient or inconsistent. The model must therefore be validated
in the fourth stage of the pipeline, for example by systematically omitting restraints in
bootstrapping or jacknife resampling [18] approaches. Alternatively, the model can be used
to predict previously unused restraints or the outcome of new biophysical or biochemical
experiments. Validation may also include visual inspection of the conformers and their
interpretation in terms of the biological function of the system.

Finally, the validated representative ensemble model is deposited together with meta-
data in a repository from which it can be freely downloaded. The most popular repository
for biomolecular structures, the Protein Data Bank (PDB), does not yet accept models
obtained by integrative or hybrid modeling. However, there is a development version
PDB-Dev that will be integrated into the PDB once the modalities for structure submis-
sion and curation are established [22,23]. Ensembles of intrinsically disordered proteins
(IDPs) that do not meet PDB-Dev requirements can be deposited in the Protein Ensemble
Database [24].
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4. Thermodynamic Description of Biomolecular Structure

All approaches to biomolecular ensemble modeling are based on concepts of statistical
thermodynamics. Although these concepts provide a convenient common framework for
discussing the various approaches, they are rarely explained explicitly. Here we provide
such a discussion because the special role of long-range and distribution restraints follows
from it.

4.1. Relation between Energy Hypersurface and Ensemble Representation

We make the usual assumption that the structure of a biomolecular system can be
described within the framework of equilibrium thermodynamics. For simplicity, we discuss
concepts for a system consisting of a single peptide chain whose bond lengths and angles
are fixed within the uncertainty of the structure. The structure of a single chain is thus
completely characterized by a vector ~χ of backbone and side-chain torsion angles. The
concepts can be extended by analogy to nucleic acids and complexes of biomolecules. At
any given time, the microstate of a large number of copies of this system is described by
the set of vectors ~χm of all M molecules with indices m. This microstate is dynamic on a
sub-nanosecond time scale. The full information on the microstate is not experimentally
accessible. Instead, we must settle for a description in terms of a macrostate that is consistent
with all experimental observations and allows prediction of all observables. The macrostate
corresponds to an ensemble average over all molecules observed in an experiment and
an average over the observation time. We assume the equivalence of ensemble and time
average, i.e., an ergodic system.

Under these assumptions, the distribution of ~χ is a Boltzmann distribution that can
be calculated from the energy hypersurface E(~χ) and the temperature T. Even with a
discretisation of the torsion angles, the number of potential conformers is far too large to
represent the structure by the totality of conformers and associated populations. Instead,
we opt for a set of representative conformers and their populations. Conceptually, this
description corresponds to a clustering of the ensemble of all conformers that appear in
the sample and during the observation period. Each cluster is represented by its central
conformer, which is structurally the least different from all other conformers in the cluster.
In such clustering we do not want to lose resolution. The smallest number of clusters
that satisfies this condition is related to the experimental resolution. We require that the
structure of conformers in each cluster does not differ by more than the spatial resolution
of our experimental observations. For a given spatial resolution, the smallest number of
representative conformers (clusters) is determined by the shape of the energy hypersurface.
For simplicity, we discuss this relation for a projection of the hypersurface onto a dimension
with coordinate ξ (Figure 2).

The simplest case (Figure 2a) corresponds to the thermodynamic hypothesis of Anfin-
sen [1], which assumes a single minimum of the hypersurface lower than the rest of the
hypersurface by a large multiple of the thermal energy kBT. In this limit, only the single
conformer corresponding to this minimum is substantially populated. Such a complete
enthalpic control of the structure is always only an approximation to the native state. For
example, surface-exposed side chains typically populate multiple rotameric states, and in
almost all proteins, short terminal segments exhibit some disorder. However, for small
globular proteins or globular domains of proteins, this approximation is often sufficient to
understand most of the structure-function relationship. In this limiting case, the system
can be represented and interpreted in atomistic detail by a single conformer.

In general, the function of biomolecules depends on binding events or changes of
state that are accompanied by structural changes. Insofar as the energy hypersurface
depends on the concentrations of all components of a cell or organelle, such restructuring
can be explained by a change in the energy hypersurface. Often, however, the minima
corresponding to all functional structures of a system exist on all relevant hypersurfaces,
only their relative energies change when a state changes. When the energy difference
between such minima is only a small multiple of kBT, more than one state is substantially
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populated, as shown in Figure 2b for a system with two states. Representing the macrostate
of such a system only by the lowest energy conformer leads to erroneous predictions of
observables and loss of information about the structure-function relationship.

0 0.2 0.4 0.6 0.8 1

-10

-8

-6

-4

-2

0

E
/(

k
B
T

) native state

experiment 1

experiment 2

force field

0 0.2 0.4 0.6 0.8 1

-10

-8

-6

-4

-2

0

0 0.2 0.4 0.6 0.8 1

-10

-8

-6

-4

-2

0

E
/(

k
B
T

)

0 0.2 0.4 0.6 0.8 1

-10

-8

-6

-4

-2

0

a

c

b

d

Figure 2. Classification of energy landscapes of biomolecular systems. Energy landscapes are
associated with uncertainties (semitransparent bands), as explained in the text. (a) Anfinsen limit
with a single minimum several times the thermal energy kBT lower than the rest of the hypersurface.
Shown are the slightly different energy landscapes corresponding to the system in the living cell
(black), two different experimental series 1 (red) and 2 (orange-red), and a molecular force field (blue).
(b) System with two separate minima differing by only a small multiple of kBT. (c) Energy landscape,
with ruggedness on the order of kBT. (d) Energy landscape that is nearly flat on the order of kBT.

The situation is most complicated when the energy landscape is rugged on the order
of kBT (Figure 2c). Such systems combine structural preferences with high flexibility. The
ensemble of conformers is broad, and preferences for subsets of conformers shift with
small changes in external conditions. Presumably, this class of systems is well suited
for regulation and promiscuous binding. For a correct description of the macrostate, an
extensive ensemble of representative conformers is required.

The situation simplifies again when flexibility, and hence disorder, increases further.
The ensemble encoded by an energy hypersurface that is virtually flat on the order of kBT
approaches a random polymer coil. This limit of complete entropic control is found in dena-
tured proteins [25] and in some intrinsically disordered proteins and protein domains [26].
When the state of a system is experimentally indistinguishable from such complete disorder,
two parameters of a self-avoiding random walk chain model are sufficient to describe the
macrostate.

4.2. Integrative and Hybrid Structural Biology

How can we derive the best description of the macrostate from experimental data?
In the Anfinsen limit (Figure 2a), it is often sufficient to collect data using a single experi-
mental technique such as X-ray diffraction, cryo-electron microscopy (cryo-EM) or NMR
spectroscopy and interpret them in terms of atomic coordinates for a single conformer. In
favourable cases, NMR [27,28] or cryo-EM data [29] also suffice for inferring the macrostate
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of systems that populate a small number of states (Figure 2b). However, many systems of
interest either cannot be captured by one of these techniques or require an ensemble de-
scription. In this situation, the set of experimental structural restraints that can be obtained
with a single technique is often too sparse. Sparsity means that the number of restraints is
not sufficient to specify the macrostate at a resolution close to the experimental resolution
of the technique. In such a situation, it is necessary to integrate restraints from different
experimental techniques. In this sense, structure determination by NMR can be considered
as an integrative approach [30], because it usually combines diverse information from
multiple experiments.

In the thermodynamic framework, the experimental restraints are implicitly used
to reconstruct the energy hypersurface that determines the macrostate. In general, the
experimental data specify spatial restraints, each related to the distribution P(ξ) of a
particular spatial variable ξ. The distribution P(ξ) can be calculated from the energy
hypersurface via the Boltzmann distribution and corresponds to a projection onto the ξ
axis. Vice versa, the distribution P(ξ) defines a potential of mean force along ξ (Figure 3).
If the number of available projections is sufficiently large, the implicit reconstruction of
the energy hypersurface can succeed with sufficient detail. If the number of projections is
too small, the macrostate can still be characterized in sufficient detail by augmenting the
experimental information with a molecular force field or other information derived from a
knowledge base. A force field defines its own complete energy hypersurface and thus its
own macrostate. Experimental restraints are used to correct for inadequacies of the force
field (see below).
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Figure 3. Equivalence between distance distributions (a,c) and potentials of mean force (b,d) for
protein site pairs 71/475 (a,b) and 235/475 (c,d) in the complex of polypyrimidine tract binding
protein 1 with encephalomyocarditis virus internal ribosome entry site. Data from [31].

The concept of implicit reconstruction of the energy hypersurface leads to a classifi-
cation of experimental restraints. Most methods provide a list of single-valued restraints,
where each restraint corresponds to a mean value of P(ξi) for a given spatial parameter
ξi. Such mean-value restraints do not contain direct information about the width of the
conformer ensemble. Scattering curves from small-angle X-ray or neutron scattering exper-
iments (SAXS and SANS) provide global distribution restraints, where ξ corresponds to
molecular shape rather than a geometric parameter defined between sites in the molecule.
SDSL combined with DEER EPR measurements provides distribution restraints P(rij) for
pairs of sites (i, j) corresponding to a potential of mean force between these sites. The
agreement of mean-value restraints and global distributional restraints with experiments
can only be evaluated at the ensemble level. In contrast, individual conformers can be
tested for their consistency with site-to-site distribution restraints.

Characterisation of the distribution of conformers by label-based methods combined
with distance distribution measurements is illustrated in Figure 4 for the RNA-binding
protein hnRNP A1 that contains both an ordered and a largely disordered domain. When a
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label is attached to a site in the ordered domain, its spatial position (green) is still somewhat
distributed due to conformational ambiguity of the linker by which it is attached. However,
this distribution is much narrower than the spatial distribution that results for attachment
at a site in the disordered domain (orangered). The distance distribution for such a label
pair contains information on the distribution of conformers that would be largely lost when
considering only the distance between the mean label positions.

Figure 4. Characterisation of conformer distribution by labelling approaches. Shown is an ensemble
model for the RNA-binding protein hnRNP A1 in its free, dispersed form (model determined with
DEER and SAXS restraints from [21]). The ensemble was reduced to 46 conformers for clarity of
display. Conformers are superimposed on the two RNA-binding domains (residues 1–186). The
glycine-rich N-terminal domain (residues 187–320) is largely, but not completely disordered. A spin
label at site 144 in the ordered domain (green) is narrowly distributed in space. A spin label at site
252 in the disordered domain (orangered) is broadly distributed in space. Computation of spin label
positions by a rotamer library and visualization were performed by MMM.

4.3. Uncertainty and Bias of Energy Hypersurfaces

The aim is to obtain a macrostate description of the native state of the biomolecular
system in a particular cell state. This cell state is characterised by the expression level of the
protein under consideration and its potential binding partners or a certain concentration
range of low molecular weight ligands, as well as by a physiological temperature range. It
corresponds to the native energy hypersurface indicated by the black line in Figure 2a. The
energy hypersurface is subject to some uncertainty, indicated by the semitransparent band.
The uncertainty arises, for example, from the concentration ranges of other constituents
in the same cell state. For consistency, we must also specify a reference temperature. The
temperature variation then corresponds to a variation of the energy hypersurface with
respect to a reference hypersurface. Conceptually, this variation results from the calculation
of the Boltzmann distribution of conformers at the current temperature and the subsequent
Boltzmann inversion at the reference temperature. The uncertainty of the native energy
hypersurface leads to some uncertainty of the macrostate.
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Note that the energy hypersurface underlying an experimental measurement generally
differs from the native energy hypersurface (red and orange-red lines in Figure 2a). This
difference or bias results from the different composition of the sample compared to the
cellular environment of the system and, in many cases, from the difference between the
physiological temperature and the temperature of the measurement. The hypersurface
underlying an experiment is subject to some uncertainty arising from the uncertainty in the
compositional parameters and temperature. In labelling techniques, additional uncertainty
is introduced by the label, the presence of which can affect the conformational preference
of the macromolecular backbone. Although it appears that this introduces bias rather than
uncertainty, it is better to think of it as the latter, since different restraints in the same
set are obtained with labels at different locations. Biases and uncertainties in the energy
hypersurfaces are different for different techniques because each technique has different
sample and temperature requirements. An integrative approach determines a macrostate
corresponding to an average of the hypersurfaces underlying each experiment.

A molecular force field determines an energy hypersurface without any uncertainty
(blue line in Figure 2a) and with three sources of bias. Description bias results from simpli-
fying the molecular physics in the form of the force field, e.g., by using harmonic potentials
or neglecting polarisability. Parameterisation bias results from imperfect determination of
force field parameters. Compositional bias results from differences between the simulated
and native systems, e.g., a much higher effective protein concentration in the simulations.
The bias of the molecular force field is often tolerable in the Anfinsen limit, where it causes
a distortion of the macrostate smaller than or comparable to the experimental spatial res-
olution. The bias has particularly severe consequences for energy hypersurfaces that are
rugged on the scale of thermal energy kBT, since in this region even a small bias leads to
large shifts in the conformer distribution. Molecular force fields may also fail in predicting
the radius of gyration in the limit of complete disorder [32,33]. The latter problem can be
addressed by reparameterization (see [33,34]). However, the effectiveness of such repa-
rameterization in reducing biases in other regimes is unknown. Improving force fields for
intrinsically disordered proteins is an active area of research where it has been observed that
such improvement can degrade accuracy in describing ordered domains [35]. Although a
force field adequate for both folded and disordered protein states has been developed [36],
description of systems corresponding to rugged energy hypersurfaces remains a chal-
lenge [37]. In general, molecular force fields are expected to provide an accurate description
of local structure, especially in ordered regions. Some of the associated approximations
reduce their predictive power for long-range interactions. Distance restraints in the range
of 20 Å upwards are expected to compensate for this limitation and could therefore be a
particularly suitable complement to force fields.

5. Integrative and Hybrid Ensemble Modelling

The construction of a representative ensemble from experimental restraints, possibly
augmented by a molecular force field, can be done in different ways implemented fully or
in part in a number of software packages (Table 1). In all approaches, the conformational
space is sampled and a large ensemble of conformational candidates is reduced to a smaller
representative ensemble. The information to be integrated can be very diverse, as is
illustrated in Figure 5. Because of bias of the individual pieces of information, the total
body of information in general is not fully consistent. Deviations between the consensus
integrative ensemble model and individual pieces of information must be balanced, which
is complicated by the fact that uncertainty of the information is often not fully known.
Further difficulties arise in estimating uncertainty of the representative ensemble from
uncertainty of the input information and in separating natural distribution of 3D structure
from uncertainty of the model.
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· rela�ve dynamics of atoms

Figure 5. Integration of experimental information and information from knowledge bases into a
hybrid ensemble model. The lists of information types for specifying ensembles are examples rather
than being exhaustive. The balancing of potentially inconsistent information in the integration
step is complicated by partially unknown uncertainty of pieces of information. Construction of a
representative ensemble model is complicated by the requirement of separation of uncertainty from
natural distribution of 3D structure.

5.1. Monte Carlo Sampling and Scoring

In principle, we would prefer to sample the conformational space exhaustively. A
simple consideration shows that this is not feasible. Already without considering side-
chain rotamers, the number of conformers for a peptide chain with N residues is ∏N

n=1 bn,
where the bn is the number of backbone rotamers per residue. Even if bn is reduced to the
number of local minima in residue-specific Ramachandran diagrams [38] (bn = 2 . . . 6), the
total number of conformers far exceeds the capabilities of computers already at a chain
length of N = 30. The problem is solved by Monte Carlo generation of a large ensemble of
conformers, assuming that this ensemble covers the conformational space sufficiently well
to derive a valid representation of the macrostate. Site-to-site distance distribution restraints
can be evaluated at the conformer level and can thus improve sampling efficiency [39]. In
any case, sampling efficiency is improved by using residue-specific Ramachandran angle
statistics, such as those implemented in Flexible Meccano [40] or MMMx [41].

The representative ensemble is then generated by selecting conformers from the raw
ensemble and assigning populations. It is possible to assign uniform populations. However,
non-uniform populations provide a macrostate description with the same predictive quality
at a smaller ensemble size. The selection of representative ensembles can be based on a
genetic algorithm, as implemented in ASTEROIDS [42], or on fitting the population vector
to experimental restraints, as implemented in MMMx [41]. Provided that the sampling
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of the conformational space is sufficient, equivalent ensemble descriptions are expected
regardless of the approach used for generating the raw ensemble. The Integrative Modeling
Platform (IMP) provides a number of different optimizers for selecting a representative
ensemble [43].

Table 1. Selected software packages for integrative modelling and ensemble modelling with label-
based restraints.

Package Purpose URL1

ASTEROIDS Ensemble reweighting tinyurl.com/2fhuf4wj 2

BioEn Ensemble reweighting github.com/bio-phys/BioEn

DEER-PREdict 3 Distance distributions and
PRE

github.com/KULL-
Centre/DEERpredict

Flexible Meccano Raw ensemble tinyurl.com/2fhuf4wj

FPS smFRET label modelling github.com/Fluorescence-
Tools/FPS

FRETrest 4 restrained MD github.com/Fluorescence-
Tools

IMP Modelling pipeline integrativemodeling.org/
MMMx Modelling pipeline github.com/gjeschke/MMMx

mtsslSuite 5 Distance Distributions mtsslsuite.isb.ukbonn.de
PLUMED-ISDB Modelling pipeline plumed.org
reMD Prepper 6 restrained MD charmm-gui.org

Spin-Pair Distributor 6 Distance distributions charmm-gui.org
Yasara 7 Structure refinement yasara.org

1 All URL accessed on 24 September 2022. 2 in preparation 3 Python package: pip install DEERPREdict 4

Requires proprietary AMBER. 5 Server version including modules for several tasks. 6 Requires proprietary
CHARMM. 7 Proprietary software.

5.2. Molecular Dynamics Approaches

Hybrid modeling using a molecular force field is usually implemented by molec-
ular dynamics (MD) simulations. Such approaches aim to compensate for bias of the
force field by adding a counter-bias derived from experimental restraints [44,45]. Small or
medium-sized ensembles can be obtained in this way by replica MD simulations [46–48].
Alternatively, larger raw ensembles obtained from “unbiased” MD simulations can be
refined, which is often referred to as ensemble reweighting. Both types of approaches
can be based on maximum entropy considerations [44] or on Bayes’ theorem [49]. Bayes’
theorem in this context states that the conditional probability P(C|D) of a conformer C
given experimental data D is equal to the product of the conditional probability P(D|C) of
occurrence of these data for the conformer and the prior probability P0(C) of occurrence
of the conformer in the absence of experimental information. The calculation of P(D|C)
is usually straightforward and allows for the consideration of experimental uncertainties.
Difficulties can arise in the presence of unknown contributions to experimental uncertainty,
such as systematic errors, and unknown uncertainty in the physical model used in predict-
ing experimental data from the structure. The prior is usually chosen as the result of an
unrestrained MD simulation with a molecular force field considered appropriate for the sys-
tem under study [50]. Insofar as different force fields differ in their energy hypersurface for
disordered or partially ordered proteins, the outcome of Bayesian approaches will depend
on the chosen force field even in the limit of complete sampling of the conformational space.
To the best of our knowledge, this problem has not yet been investigated systematically.

PLUMED-ISDB is a toolbox that provides a computational framework for Bayesian
metainterference applied to integrative structural biology [51]. Bayesian refinement of
ensembles (BioEn) [46] is applicable to raw ensembles regardless of their origin, but is
most easily connected to the thermodynamic framework for MD simulations. The prior is
then defined by the energy hypersurface of the molecular force field, which is known to be
biased with respect to the native energy hypersurface. Directly using probabilities from

https://www.ibs.fr/research/scientific-output/software/flexible-meccano/?lang=en
https://github.com/bio-phys/BioEn
https://github.com/KULL-Centre/DEERpredict
https://github.com/KULL-Centre/DEERpredict
https://www.ibs.fr/research/scientific-output/software/flexible-meccano/?lang=en
https://github.com/Fluorescence-Tools/FPS
https://github.com/Fluorescence-Tools/FPS
https://github.com/Fluorescence-Tools/FRETrest
https://github.com/Fluorescence-Tools/FRETrest
https://integrativemodeling.org/
https://github.com/gjeschke/MMMx
http://www.mtsslsuite.isb.ukbonn.de/
https://www.plumed.org/doc-v2.7/user-doc/html/_i_s_d_b.html
https://charmm-gui.org/?doc=input/deerre
https://charmm-gui.org/?doc=input/deer
http://www.yasara.org/
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an “unbiased” MD simulation (i.e., a simulation that includes the bias of the force field
with respect to the native energy hypersurface) as the prior would leave some of the bias
of the force field uncorrected. To mitigate this problem, the BioEn approach corrects the
prior via a relative entropy formalism by assigning a confidence level θ > 0 to the force
field. Although θ also cannot be derived from first principles unless the magnitude of the
force field distortion is known, refinement can be performed for multiple values of θ and
an optimal value selected by an L-curve criterion (for details, see [46]).

Alternatively, experimental restraints can be introduced into MD simulations as
ensemble-averaged harmonic restraints [52,53]. It has been argued that in this way a
single ensemble-averaged restraint affects not only the mean conformation but also inap-
propriately the variance of the conformation, i.e., the ensemble width, whereas this problem
can be avoided in maximum entropy approaches [44]. Therefore, maximum entropy or
Bayesian approaches provide a more realistic estimate of ensemble width than mean-value
harmonic restraints, assuming that the underlying force field provides a realistic estimate
of that width. If distributional restraints are available, the quality of the ensemble width
estimate can be tested. The state of development of force fields for difficult systems, ap-
proaches to reweighting, and experimental bias in MD simulations have recently been
discussed [54].

5.3. Separation of Ensemble Width from Uncertainty

Uncertainties in experimental data, in their prediction from structure, and in the
energy hypersurface lead to uncertainties in the conformation, even in the Anfinsen limit.
This effect is different from the true distribution of the conformation, which results from the
finite width of the global minimum of the energy hypersurface and from the presence of
local minima within a few kBT. The predictive power of a structural model is improved if
the width of the ensemble due to the conformational distribution can be separated from the
conformational uncertainty. Conceptually, this requires a representation in terms of a super-
ensemble whose members are ensembles that are all consistent with experimental data. The
variability of the conformation within each ensemble is a feature of the biomolecular system
that may be related to its function, while the variability between ensembles in the super-
ensemble quantifies the uncertainty of the model. Such a representation is implemented, for
example, in the ASTEROIDS software [42]. It provides a straightforward way for predicting
any observable quantity, including its uncertainty. Current Bayesian approaches provide a
single set of conformer weights that include both uncertainty and ensemble width.

6. Specifics of Label-Based Restraints

Label-based EPR and fluorescence techniques provide valuable experimental restraints
in a distance range inaccessible to most other techniques which are applicable to partially
disordered systems. Compared to small-angle scattering, they can provide more detailed
information with higher resolution. This benefit comes at the cost of a relatively high sample
preparation cost and a low yield of restraints per sample. Therefore, integrative or hybrid
approaches to modelling are used in most applications. An additional problem arises
from the introduction of the labels, whose size and conformational distribution exceed
the accuracy of the measurements [16,55]. In order to take full advantage of label-based
restraints, the labels must be considered in the modelling [56].

6.1. Label Position versus Backbone Position

DEER depends on the distance between the spin density centres of two paramagnetic
markers, while smFRET depends on the distance between the donor and acceptor chro-
mophores. The latter is usually assumed to be the distance between the chromophore
centers. In modelling, one usually tries to restrain the distance between backbone atoms,
e.g., between Cα atoms in proteins. The positions of the labels differ from the position
of the representative backbone atom of the labelled residue by at least a few Angstroms.
Moreover, the distance rbl between the backbone and the label is distributed due to the
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conformational distribution of a flexible linker. Flexible linkers are used to minimise the
risk of perturbing the conformational distribution of the backbone. In the case of smFRET,
a flexible linker is also required to achieve sufficient orientation averaging of the factor κ
related to the direction of the transition dipole moments of the donor and acceptor with
respect to the distance vector [57]. The spatial distribution of the labels matters even if one
restrains only the mean distances, because the magnetic dipole-dipole interaction measured
with DEER EPR involves r−3 ensemble averaging and the smFRET efficiency involves r−6

ensemble averaging. Therefore, the spatial distribution of the label position should be
taken into account at least in the ensemble refinement (reweighting). In contrast, when
generating a raw ensemble, it may be advantageous to consider only an approximate mean
position of the labels. Otherwise, modelling the labels may become the time-limiting step
of the conformer generation.

6.2. Representation of Labels by a Rotamer Library

The distance vector~rbl depends on the bond lengths, bond angles and torsion angles
χi of the flexible linker and of the chromophore or free radical. The distributions of bond
lengths and bond angles are comparatively narrow and the chromophores and free radicals
usually do not contain rotatable bonds. Therefore, modelling ~rbl and its distribution
amounts to modelling the correlated distributions of the χi. This problem is equivalent
to modelling native amino acid side chains [58] and can be solved by a rotamer library
approach [59–61]. In this approach, the distribution of torsion angles χi is discretised. Each
set of torsion angles for the free label can be assigned a population. The populations are
computed by projecting a raw ensemble, which can be obtained by MD simulation [60]
or Monte Carlo sampling [61], onto the discrete set of canonical rotamers. For most spin
labels, the number of rotatable bonds ranges from 4 to 6 and the number of discrete
states per rotatable bond ranges from 2 to 6, while some rotamers are excluded due to
steric constraints. This leads to comprehensive libraries with about 100 to 1000 rotamers.
Figure 6a shows example for the rotamer representation of a spin label at a surface-exposed
site.

wlink

Llink

Rdye(i)

a b c ON

N
Ca

Cb

f

q
r

Figure 6. Representation of labels in modelling approaches (a) Rotamer library representation
(MMM). Rotamer population is encoded by transparency and by the volume of the purple spheres
that represent the N-O group midpoint of rotamers. (b) Accessible volume model parametrized by
a linker length Llink, a linker width wlink, and a set of three dye radii Rdye(i). Adapted from [57]
(c) Coarse-grained rotamer model based on a dummy ON particle, which represents the midpoint of
the N-O group. Each rotamer is defined by a distance r from the Cα atom and two angles that relate
the label position to the Cα-Cβ bond. Adapted from [62].

Chromophores are larger and their linkers typically include between 8 and 13 rotatable
bonds. Since the number of canonical rotamers grows exponentially with the number of
rotatable bonds, it is not possible to use comprehensive libraries. For 10 or more rotatable
bonds, even generating a raw ensemble by exhaustive sampling and its projection onto
discrete states by hierarchical clustering become a challenge. On the other hand, smaller
reduced sets of no more than 1024 representative rotamers are sufficient to sample the
accessible space [61].

Rotamer libraries allow the consideration of the interaction between the label and the
macromolecule through a statistical thermodynamics approach [59]. To this end, MMM [60]
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calculates the interaction energy through a simplified atomistic force field. In the simplest
version, electrostatic interactions are neglected and a Lennard-Jones potential is used to
account for repulsion (avoiding collisions between label and macromolecule) and van der
Waals attraction. The interaction energy is added to a free label energy obtained by Boltz-
mann inversion of the rotamer populations in the library, and a new Boltzmann distribution
of the populations is calculated from the energies of the attached label. Rotamers with
very small populations, typically accounting for 1% of the total population, are discarded.
Although such a discretisation and approximation for the interaction potential may seem
crude, it proves difficult to obtain more accurate models, even with full MD approaches
that require orders of magnitude more computational effort [63]. In the rotamer library
approach, the Lennard-Jones potential of a standard molecular force field is scaled down
by a “forgive” factor that compensates for the narrowing of the linker conformational
distribution by discretisation and presumably also for the shielding of the attractive part by
solvation. For chromophores [61] or stickier labels [64,65], scaling down the Lennard-Jones
potential by a “forgive” factor is also required in rotamer library construction.

Another significant improvement in computational efficiency without reducing ac-
curacy was achieved in the RosettaEPR context by replacing the label with a single pseu-
doatom. The pseudoatoms calculated from the original rotamer library of this package were
fitted to an extensive set of experimental DEER data for T4 lysozyme and the redundancy
of the discrete set of pseudoatoms was reduced [63]. This representation is visualised in
Figure 6c.

In the Pronox approach, a library of preferred rotamers is created based on label
conformers observed in X-ray crystal structures of labeled proteins [66]. All of these
rotamers are assigned a population of 0.9, while other sterically possible rotamers are
assigned a population of 0.1. The interaction with the protein is based on the binary
collision criterion, in which some of the rotamers are discarded. Although populations of
label pairs can be obtained in this way with less computational effort, the overall approach
is somewhat slower than that of MMM, presumably because it involves a fine search for
possible conformations upon binding to the protein. The accuracy of the predictions is at
the level of MMM [67].

6.3. Representation of Labels by Accessible Volume

Similar to the pseudoatom approach in RosettaEPR, the accessible volume approaches
abstract partially or even fully from the internal structure of the label. The most popular
of these approaches in EPR is mtsslWizard [68,69], which scans the distribution of torsion
angles χi neglecting the torsion angle potential. The generated label conformers are checked
for internal collisions and collisions with the protein using a binary collision criterion for
which the user has two choices. In many cases, mtsslWizard performs equally well as
MMM and Pronox [67], albeit with slightly greater computational effort [63], presumably
because it scans a much larger number of conformers.

An even simpler description of the label is used in an accessible volume approach
used for FRET chromophores [57,70]. In this approach, the chromophore is represented by
a sphere of radius Rdye and the linker by a cylinder of effective length Llink and effective
width wlink (Figure 6b). The distribution of the label position is obtained by varying the
orientation of the linker with respect to the backbone and discarding all orientations that
cause collisions with the macromolecular surface. The three geometric parameters Rdye,
Llink and wlink depend on the structure of the label. The authors assumed a common
linker width of 4.5 Å and estimated Llink from the fully extended conformation of the
linker. For RNA labelling, this model was found to be oversimplified when run with a
single value of Rdye; a problem that can be remedied by running it for three different
radii [57]. A recent study seems to indicate that the accuracy of the predicted smFRET
efficiencies is slightly better with a rotamer library approach than with the accessible
volume approach [61]. However, a larger set of comparative simulations would be needed
to draw a firm conclusion.
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6.4. Representation of Labels in MD Simulations

MD simulations of spin-labelled proteins can be performed at a level where they almost
perfectly predict sets of continuous-wave EPR spectra recorded at multiple microwave
frequencies [71]. Because such sets of spectra are very sensitive to the time scale and
specifics of side-chain motion and are notoriously difficult to fit with simple models
for dynamics, this suggests a quantitative match between the simulated and real side-
chain dynamics of spin labels. However, there are some caveats. First, the approach has
been tested for surface-exposed spin labels at easily accessible sites. It may not work
as well for the slower dynamics and stronger label-protein interactions in denser label
environments, which cannot always be avoided. Second, the transitions between some of
the rotameric states of the spin-label side chain are so slow that a large number of very
long MD trajectories would be required for sufficient sampling. The latter problem can be
solved by constructing a Markov state model whose transition matrix quantifies the jump
rates between rotamer states [72], albeit at considerable expense that may be unrealistic
in the context of hybrid ensemble modeling. Therefore, one resorts to less sophisticated
approximate representations.

The conceptually simplest representation uses multiple replicas of the spin label to
improve the sampling of rotamer states [73]. This still involves a significant computational
cost. In a simplified model, the position of the spin is represented by a dummy ON particle
positioned with respect to the N, Cα, and Cβ atoms by parameterized force field terms [62].
Of course, this parameterization abstracts from the local packing density. Nevertheless, the
evaluation for 37 surface-exposed sites in T4 lysozyme gave a slightly better agreement
with experiment than with a static structure and the original rotamer library in MMM [62].

It is also possible to perform MD simulations for the native system and then calculate
the conformational distribution of the spin label for as many trajectory frames as needed.
For this purpose, one can use the rotamer library approach [74,75]. This approach facilitates
the addition of new labeling sites, but cannot be applied when the distances between labels
are used to constrain MD simulations. A similar approach with an accessible volume model
has been proposed for smFRET chromophores [70].

6.5. Improving Label Representation with Experimental Information

The rotamer library and accessible volume approaches predict mean label-to-label
distances with an uncertainty of about 3 Å (standard deviation) [67,68]. The situation
does not improve substantially with more elaborate MD simulations [62]. Such accuracy
is sufficient in cases where substantial disorder limits the resolution of ensemble models,
but disappointing in cases where the conformation is very well defined. Although a
well-defined structure in the Anfinsen limit (Figure 2a) can be better characterised using
classical structural biology approaches, there are situations where one may want to resort
to label-based techniques. This is the case, for example, when a protein can be crystallised
in one of its functional states but not in another. The structure of the latter state can then
be elucidated with labelling-based restraints, albeit only with accuracy and resolution
limited by the quality of the spin-labelling representation. The same problem arises in the
elucidation of differences between a known crystal structure and an unknown solution
structure of a system.

This problem can be addressed by rotamer reweighting in terms of the Bayesian
approach BioEn [46]. The method was implemented by fitting to DEER time-domain data,
avoiding explicit calculation of distance distributions. For the three N-terminal polypeptide
transport-associated (POTRA) domains of Omp85, modest changes in rotamer weights
resulted in near-perfect agreement with experiment already for the crystal structure [75]. A
very small further improvement was achieved by shifting the domains by 1–3 Å. A similar
approach implemented in RosettaEPR resulted in improved modeling of a conformational
change of the transition from the outward to the inward state of the multidrug transporter
PfMATE [76].
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6.6. Influence of Label Dynamics

The label conformation is not only distributed, but also dynamic. While DEER distance
distributions are measured at temperatures between 50 and 80 K, where these dynamics
are stalled on the time scale of the experiment, smFRET data acquisition overlaps with
the time scale of side-chain dynamics at ambient temperatures. The problem can be
addressed with reasonable computational effort by modeling the dynamics of the labels
as diffusive motion in a potential of mean force [77]. In a recent study, this approach
was found to improve the prediction of smFRET efficiencies for both representations of
the conformational distribution of the label by accessible volume and rotamer library
approaches [61].

7. Specifics of Distribution Restraints

Most experimental techniques provide data either as a list of expectation values of
observables with their standard deviations or as a list of lower and upper bounds. In
either case, prediction based on an ensemble model yields a single value corresponding
to the ensemble average. The corresponding value for a single conformer, in the absence
of knowledge about other possible conformers, does not tell us whether that conformer
is consistent with the data. The situation is different for distribution restraints. The
distribution assigns a probability to the number predicted for a single conformer. Given a
list of independent distributional restraints, the individual (marginal) probabilities multiply
to a joint probability. Conformers whose joint probability is below a certain threshold can
be discarded without knowing the other potential conformers.

Distributional restraints also behave differently when reweighting ensembles. In
extreme cases, all observable values predicted for a single conformer may match the
expectation values of a broad ensemble within their uncertainty. In such a case, mean-
value restraints would suggest perfect order, although the system may be substantially
disordered. If discrepancies occur for predictions for a single conformer, it is still likely that
they can be resolved by assuming an ensemble much narrower than the actual distribution
of conformers. This is one reason why mean-value restraints should be supplemented
with distributional restraints, even in cases where the number of mean-value restraints is
sufficient for deriving a model of the system.

In the following, we discuss these issues for distance distribution restraints that can be
obtained by DEER EPR. Analogous considerations apply to angular distribution restraints
between three sites and dihedral angular distribution restraints between four sites, which
may become experimentally accessible in the future.

7.1. Should We Use Primary Data or Spatial Restraints for Model Evaluation?

An ensemble model allows us to easily compute the probability distribution ~P of any
geometric parameter, which we consider here to be discretized so that it can be represented
by a vector. Predicting the form factor ~F (Figure 7c) from ~P (Figure 7b is a mathematically
well-posed problem that relies on multiplying a kernel matrix K by the distribution ~F = K~P.
The uncertainty of the prediction arises only from the uncertainty of the kernel, which in
turn results from the fact that experimental parameters or further sample parameters are
not precisely known, or that the physics of the experiment is incompletely described. In
simulation of the primary data (Figure 7a), the main errors arise from the uncertainty of the
spin concentration and the uncertainty of the inversion efficiency of the pump pulses that
determine the background.

In contrast, computing ~P (Figure 7b) from ~V (Figure 7a) [16] is a mathematically ill-
posed problem, since the kernel matrix K has a high condition number. Therefore, inversion
of K leads to solutions that are unstable even for small deviations of ~V from the physical
model. This problem can be mitigated by representing ~P by a parametric model with few
parameters, by regularization, or by neural network analysis [16]. The simplest model,
a single Gaussian (Figure 7d), usually leads to a stable fit, but may suppress significant
details of the distribution. In general, converting ~V to ~P increases uncertainty compared to
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converting ~P to ~V. Therefore, a direct fit to the primary ~V data can reduce the uncertainty.
This strategy has been used for high-resolution docking of protomers in the dimer of
the sodium/proton antiporter NhaA [78] and in high-resolution approaches involving
reweighting of rotamer populations [75,76]. With such approaches, a good estimate for the
distance distribution is available during background fitting. This allows the use of DEER
EPR data with shorter trace length [63,75].
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Figure 7. Different representations of a distance distribution in modelling. Data corresponds to
spin-labelled site pair 202/475 in the complex of polypyrimidine tract binding protein 1 with en-
cephalomyocarditis virus internal ribosome entry site [31]. Transformations between representations
can be well-posed (stable) or ill-posed (potentially unstable) and may require different computational
effort. (a) Primary DEER EPR data (black), intermolecular background (green), and fit by a distance
distribution (red). (b) Model-free distance distribution (blue) with 95% confidence interval (pale
blue). (c) Form factor that results from separation of the label-pair contribution from intermolecular
background. The form factor is fully determined by the distance distribution. A fit to primary
data involves optimisation of background parameters. (d) Gaussian distribution, which is fully
determined by a mean value 〈r〉 and standard deviation σr (blue). Grey vertical lines denote twice
the full width at half maximum. Purple vertical lines denote three equidistant distance samples used
for exhaustive discrete sampling.

Direct fitting of primary data also has drawbacks. Some algorithms, such as deforma-
tion of an elastic network model by distance-dependent forces [79], and some modelling
platforms, such as IMP [80], require explicit spatial restraints. In addition, the need for
background adjustment during model scoring can become a computational bottleneck
when scores need to be computed for a very large number of models. This situation occurs,
for example, when reweighting large raw ensembles. In any case, it may be advisable
to calculate and visually check the distance distributions and their uncertainties, even if
primary data are used for model evaluation. This is because assessing data quality in the
distance domain is easier and more intuitive.

7.2. Distributional Restraints in Raw Ensemble Generation

In generating raw ensembles, an attempt is made to draw a sample from the entire
conformational space whose statistics are as close as possible to the conformer statistics of
the system under study. The sample size may be chosen larger than the expected size of a
representative ensemble to allow more flexibility in reweighting the ensemble. Monte Carlo
approaches, MD simulations, or algorithms specific to a particular modeling task are used
for sampling. The sampling of rigid body arrangements in MMM [81] and MMMx [41]
is an example of such a specific algorithm. The relative spatial arrangement of n rigid
bodies is fully specified by 3(n− 1) translation parameters and 3(n− 1) Euler angles. By
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assigning 3 reference sites in each rigid body, 9m(n− 1)/2 pairs of sites located in different
rigid bodies are obtained. The set of distance pairs overdetermines the relative spatial
arrangement, and the solution can be computed directly by distance geometry. If distance
distributions are available, exhaustive sampling is possible by setting lower and upper
bounds for each distance and defining a small set of distance samples between these bounds
(for example, see purple lines in (Figure 7d)) [81]. This notion of lower and upper bounds
is different from the notion used for mean-value restraints. For mean values, the bounds
are a measure of the uncertainty of the restraint, while for distributions they are a measure
of the distributional width.

Monte Carlo sampling for peptide chains can be based on Ramachandran statistics,
preferably residue-specific Ramachandran statistics for peptide segments without sec-
ondary structure [39,40]. Additional secondary structure propensities can be defined.
Flexible Meccano can be used to specify that long distance contacts must be satisfied for
a certain proportion of conformers. Distance distribution restraints can be evaluated in
MMM and MMMx once both residues of a pair of spin-labelled sites have been generated.
Such an evaluation provides a probability that the conformer is part of the intended sta-
tistical sample. As soon as this probability falls below a threshold, the conformers can be
discarded [39]. Since unrealistic conformers do not need to be fully computed, this strategy
improves sampling efficiency.

In MD simulations, distributional restraints can be introduced by representing them
through a histogram in the form of Gaussian functions with a standard deviation of
1.7 Å [73]. This representation provides smooth analytical derivatives for the restraining
potential. An empirical force constant of 10,000 (kcal/mol)/Å2 was used to ensure a good
fit of the distribution restraints. Working with this approach is made easy by an auxiliary
package for CHARMM, which includes a graphical user interface [82].

Alternatively, a pseudo-energy term can be derived by interpreting the distance
distribution as a Boltzmann distribution generated by a potential of mean force,

f = kBT
d ln P(r)

dr
. (1)

It is convenient to express P(r) as a sum over functions whose logarithm can be differenti-
ated by r. This choice balances the distance distribution restraints with the energy terms of
the molecular force field, rather than strictly enforcing them.

7.3. Distribution Restraints in Ensemble Reweighting

Ensemble reweighting requires finding a balance between different experimental meth-
ods and, in hybrid approaches, between experimental restraints and the molecular force
field. The optimal balance can only be determined if the uncertainties of all experimental
restraints and the force field are known. In Bayesian approaches, only statistical errors
of the experimental data are considered in terms of χ2 values, and the error of the force
field is assumed to be as small as it can possibly be given the experimental restraints and
their uncertainty. Since the calculation of distance distributions from experimental data is
an ill-posed problem, χ2 is not necessarily a good metric for such distributions. Bayesian
approaches to ensemble reweighting are therefore better combined with fitting to primary
data [75], for which χ2 is well-behaved.

Artefacts in P(r), such as those that can arise from under-regulation or the presence
of narrow peaks with high amplitude when fitting multi-Gaussian distributions, have
less effect when the overlap of the distributions is used as a metric [18]. The overlap is
defined as the joint area of two distribution functions Psim(r) and Pexp(r), where each of
the functions has a total area of one. Ensemble reweighting with only distance distribution
restraints determines the set of conformal weights that minimises the overlap deficit, i.e.,
the deviation of the overlap from unity. The overlap values are geometrically averaged so
that a very small overlap in individual restraints is heavily penalised [81].
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In many situations, the uncertainty of the distance distribution restraints is dominated
by the uncertainty of the representation of the spin labels. If only the experimental un-
certainty of the distribution is considered, this may lead to an inappropriate weighting of
these restraints. Furthermore, since the distance distribution restraints are measured in
glassy frozen samples and since the labels may distort the structure, these restraints can be
inconsistent to some extent with other experimental restraints. Such partial inconsistency
of experimental restraints from different techniques is a problem that can also occur with
other data. Therefore, it may be useful to determine the uncertainty and consistency of
the experimental data set during ensemble reweighting. For this purpose, the ensemble
reweighting is first performed for each individual subset of homogeneous experimental
restraints, i.e., for subsets of restraints originating from the same technique. In this way,
a set of figure of merits ms,1 is obtained, indicating how well the reweighting of a given
raw ensemble can fit the data of each individual experimental technique. The figure of
merit is defined such that its minimum corresponds to the best fit of the experimental data.
In a second step, all restraint subsets are considered simultaneously, resulting in a set of
conformer weight dependent figures of merit ms,2. In contrast, the ms,1 are fixed in the
second reweighting. One now minimises the loss of merit,

L =

(
1
S

s

∑
s=1

ms,2

ms,1

)
− 1 , (2)

where S is the number of subsets of restraints from different experimental techniques. The
loss of merit L is a non-negative number, where L = 0 means a complete match between all
restraint subsets. For L = 1, the simultaneous matching of all subsets of restraints causes
the figures of merit to double on average. Values L > 1 indicate significant inconsistencies
that should be resolved or at least explained before accepting the ensemble model.

Figure 8 illustrates the effect of ensemble reweighting by 19 distance distribution
restraints and a SAXS curve for the free, dispersed form of the RNA-binding protein
hnRNP A1 [21]. In this case, reweighting combined with discarding conformers with
less than 1% of the population of the most populated conformer reduces the number of
conformers from 1119 (raw ensemble in Figure 8a) to 138 (reweighted ensemble in panel (b))
while improving restraint fits as compared to the raw ensemble with uniform populations.
Note that in this case the 19 distance distribution restraints were already considered in
generation of the raw ensemble.

a b

Figure 8. Effect of distance distribution restraints in ensemble reweighting. Shown are the raw
ensemble (a) consisting of 1119 conformers for the RNA-binding protein hnRNP A1 in its free,
dispersed form ([18]) and the reweighted ensemble (b) of 138 conformers from integrating information
from 19 DEER distance distribution restraints and a SAXS curve ([21]). Visualization was performed
by ChimeraX.
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8. Outlook

To date, ensemble modelling with label-based restraints has been pursued by only a
few research groups. It is the rule rather than the exception that a new application requires
further method development. Software packages exist for FRET-based labeling (FRET
Positioning System FPS 2.0, [83]) and for DEER EPR-based modelling (Multiscale Mod-
elling of Macromolecules extended, MMMx, [41]). Both packages allow integration with
high-resolution structures obtained by other methods, and MMMx supports integration
with small-angle scattering and NMR-PRE data. When generating raw ensembles, MMMx
can use secondary structure propensities derived from NMR experiments. Future devel-
opments should allow integration of more experimental data, especially at the ensemble
reweighting stage.

MD simulations can be restrained by distance distributions using the CHARMM-GUI
DEER facilitator [82], which can also compute spin pair distance distributions from MD tra-
jectories. For the latter task, one can also use the DEER-PREdict package [74] or MMMx [41].
MMMx and BioEn [75] allow ensemble reweighting with distance distribution restraints.
Current approaches to distribution-based modelling provide ensembles without uncer-
tainty estimates, i.e., ensemble width and uncertainty are not separated. A possible, albeit
computationally intensive, solution to this problem is jackknife resampling [18] or boot-
strapping. Less computationally intensive approaches should be explored for estimating
the uncertainty of the ensemble model or of the expectation values of observables.

In the context of uncertainty estimation, it is currently difficult to predict how many
experimental restraints are required to obtain a reliable ensemble model. Usually, this
question can only be answered in the context of a validation. If the result of such a validation
is not satisfactory or inconclusive, further experimental restraints have to be acquired. This
strategy would benefit from a better understanding of how the different types of restraints
best complement each other. This issue is particularly pressing for hybrid approaches
because there is no systematic approach to estimating uncertainty in MD simulations.

In summary, integrative and hybrid structure determination based on label-based
long-range distance restraints and distance distribution distance restraints has gained
importance in recent years. The first ensemble models of biological systems of current
interest have been created, showing why partial disorder can benefit function. Further
developments in this direction may be our best chance to characterize systems that lie
between the extremes of perfect order and total disorder.
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