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Abstract: Abdominal aortic aneurysm (AAA) is a life-threatening disease; however, there is no estab-
lished treatment for patients with AAA. Fibrates are agonists of peroxisome proliferator-activated
receptor alpha (PPARα) that are widely used as therapeutic agents to treat patients with hypertriglyc-
eridemia. They can regulate the pathogenesis of AAA in multiple ways, for example, by exerting
anti-inflammatory and anti-oxidative effects and suppressing the expression of matrix metallopro-
teinases. Previously, basic and clinical studies have evaluated the effects of fenofibrate on AAA. In
this paper, we summarize the results of these studies and discuss the problems associated with using
fenofibrate as a therapeutic agent for patients with AAA. In addition, we discuss a new perspective
on the regulation of AAA by PPARα agonists.

Keywords: abdominal aortic aneurysm; fibrates; peroxisome proliferator-activated receptor alpha;
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1. Introduction

Abdominal aortic aneurysm (AAA) is characterized by the progressive dilation of
the abdominal aorta that can lead to sudden death in a patient because of aortic rupture.
Studies have reported that the primary pathogenesis underlying AAA development occurs
as follows: (A) inflammatory cytokine production- and macrophage infiltration-associated
inflammation [1,2], (B) oxidative stress [3,4], (C) vascular smooth muscle cell apoptosis
accompanied by reduced elastin production [5,6], and (D) extracellular matrix degradation
caused by activated matrix metalloproteinases (MMPs) in the vascular wall [7–9]. Although
accumulated evidence has delineated the detailed pathophysiology of AAA development,
an effective clinical treatment for patients with AAA remains to be established.

Fibrates are agonists of peroxisome proliferator-activated receptor alpha (PPARα),
which is a transcription factor that is mainly expressed in hepatocytes. Binding of fibrates to
PPARα either activates or inhibits the genes involved in lipid metabolism [10]. In contrast,
activation of PPARα can regulate the expression of genes involved in inflammation and
oxidative stress [11–13]. Notably, PPARα is expressed in almost all the cells of the body,
including macrophages, vascular smooth muscle cells, and endothelial cells [12,14–18]. Pre-
viously, studies have demonstrated that fibrates decrease the production of inflammatory
cytokines, infiltration of monocytes, and expression of MMP genes [19–22]. Fibrates have
also been implicated in decreasing the production of antioxidative enzymes, including
superoxide dismutase and catalase, in the aortic wall [23]. Since the mechanism of action of
fibrates is counteractive to the mechanism of AAA pathogenesis, fibrates are potentially
valuable therapeutic agents for AAA treatment (Figure 1).
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Figure 1. Possible protective effects of fibrates against AAA. AAA—abdominal aortic aneurysm;
MMPs—matrix metalloproteinases; PPARα—peroxisome proliferator-activated receptor alpha;
VSMCs—vascular smooth muscle cells.

2. Discussion

Several basic and clinical studies have evaluated the protective effects of fenofibrate,
the most common PPARα activator, on AAA. Golledge et al. (2010) reported that pre-
administration of fenofibrate (100 mg/kg/day) to a hypercholesterolemic mouse model
reduced angiotensin II (Ang II)-induced aortic expansion in the model. This reduction
was associated with decreased expression of proinflammatory cytokine osteopontin (OPN)
and macrophage infiltration in the aortic wall [24]. In addition, Krishna et al. (2012)
reported that pre-administration of fenofibrate (100 mg/kg/day) significantly reduced
suprarenal aortic dilatation induced by Ang II infusion in hypercholesterolemic mice; this
was accompanied by a decrease in the abundance of macrophages, lymphocytes, and
apoptotic cells in the aortic walls [25].

However, two randomized controlled trials that assessed the effects of fenofibrate on
AAA in humans revealed differing results. In the FAME (Fenofibrate in the management
of AbdoMinal aortic anEurysm) trial, patients scheduled to undergo open AAA repair
(n = 43) were treated with fenofibrate (145 mg/day) or a placebo for at least 2 weeks
before their surgeries [26]. In this trial, although the serum triglyceride (TG) levels were
significantly reduced by the fenofibrate treatment, the concentration of OPN or the number
of macrophages in the aortic tissue was not significantly different between the two groups.
In the FAME-2 trial, 140 patients with AAA were enrolled and treated with fenofibrate
(145 mg/day) or a placebo for 24 weeks. However, the fenofibrate treatment did not
significantly reduce the serum concentration of OPN or the rate of AAA progression [27].

There are several possibilities as to why fenofibrate exhibits inconsistent protective
effects against AAA in basic and clinical studies (Table 1).
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Table 1. Difference in the progression and treatment of abdominal aortic aneurysm following
fenofibrate administration in mice and humans.

Basic Studies (Mice) Clinical Studies (Humans)

Pathophysiological characteristics of AAA Similar between each mouse

Substantially different between each patient
(genetics, ethnicity, age, sex, smoking habit,

alcohol consumption, hypertension,
hyperlipidemia, and renal function) [28–36]

Rate of AAA progression Rapid
(days to weeks) [37]

Slow
(months to years) [38,39]

Timepoint of fenofibrate administration Prior to the time of AAA development
(pre-treatment) [24,25]

Following AAA development
(treatment) [26,27]

Effective concentration for activation of
PPARα by fenofibrate Lower [40] Higher [40]

AAA—abdominal aortic aneurysm; PPARα—peroxisome proliferator-activated receptor alpha.

First, this discrepancy may be because the human pathology during the development
of AAA is difficult to mimic in animal models. In humans, this development is affected by
various factors, including genetics, ethnicity, age, sex, smoking habit, alcohol consumption,
hypertension, hyperlipidemia, and renal function [28–36]. Therefore, it is extremely difficult
to reproduce an environment that takes into account all these factors that contribute to
AAA development in mouse models. Furthermore, small AAAs have a slower rate of
progression than large AAAs. For instance, a meta-analysis reported that a 3.5 cm AAA
takes approximately 6 years to grow to 5.5 cm [38]. Another meta-analysis demonstrated
that to maintain the risk of an AAA rupture in male patients to under 1%, follow-ups are
required at an estimated interval of 8.5 years for a 3.0 cm AAA and 17 months for a 5.0 cm
AAA [39]. On the contrary, a preliminary study using ultrasonography demonstrated that
AAAs in hypercholesterolemic mice progress rapidly within 1 week and usually rupture
within 2 weeks following AAA induction [37]. Therefore, it is highly possible that the effects
of fenofibrate on the rapidly progressing AAAs in mice cannot reflect the effects in humans.
In addition, drug treatments in basic studies are usually provided either before or during
the administration of the stimulants that induce AAA. However, these protocols only
evaluate the favorable effects of the treatments during the acute phase of AAA formation.
For example, previous studies that have assessed the impact of doxycycline on AAA
development in murine models reported varying results for doxycycline administration
before and after AAA induction [41–43]. Notably, mice were administered fenofibrate
before AAA development, induced by Ang II, in both the basic studies we discussed
previously [24,25]. Therefore, it is possible that fenofibrate does not regulate oxidative
stress, inflammation, or MMP-mediated extracellular matrix degradation in vascular walls
of already-formed AAA.

Another possibility is that fenofibrate does not effectively regulate the pathogenesis
of AAA in humans. This may be because the efficacy of a fibrate is clinically limited
because of its dose-dependent side effects, such as liver damage and increased serum
creatinine levels [44–46]. In addition, fenofibrate needs to be administered at a higher
concentration to activate human PPARα than that needed to activate mouse PPARα [40].
This is a critical weakness of fenofibrate as a PPARα agonist. On the contrary, pemafibrate
is a recently developed selective modulator of PPARα [47,48]. It has the potential to en-
hance PPARα activation even at low effective concentrations, and it has lower off-target
side effects than fenofibrate [49,50]. A clinical study has demonstrated that pemafibrate
(0.2 and 0.4 mg/day) is significantly more effective in lowering the serum TG levels than
fenofibrate (106.6 mg/day). It also lowers the rates of adverse drug reactions in patients
with elevated serum TG levels and decreases the serum levels of high-density lipoprotein
cholesterol [51]. Furthermore, in basic research, pemafibrate (1 mg/kg/day) exhibited
stronger effects in reducing the expression levels of vascular cell adhesion molecule 1,
macrophage marker F4/80, monocyte chemoattractant protein 1, and interleukin-6. No-
tably, it ameliorated the development of plaque formation in the aortic walls of hypercholes-



Biomolecules 2022, 12, 74 4 of 6

terolemic mouse models compared to fenofibrate (250 mg/kg/day) [52]. Future studies are
warranted to evaluate the efficacy of pemafibrate on AAA.

3. Conclusions

In this article, we describe the problems of reproducing the therapeutic effects of
fibrates against AAA, from basic studies to clinical research. This is because fenofibrate
can only be administered at limited concentrations in human subjects to activate PPARα;
high concentrations of fenofibrate increase the risk of off-target effects. Moreover, it does
not significantly attenuate the inflammation and dilatation of AAA. Thus, future basic and
clinical studies focusing on the impact of pemafibrate to treat AAA are required. These
studies will help investigate the possibility of using PPARα agonists as treatment options
for AAA.
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