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Abstract: Many studies have clarified that microRNAs (miRNAs) are associated with many human
diseases. Therefore, it is essential to predict potential miRNA-disease associations for disease
pathogenesis and treatment. Numerous machine learning and deep learning approaches have
been adopted to this problem. In this paper, we propose a Neural Inductive Matrix completion-
based method with Graph Autoencoders (GAE) and Self-Attention mechanism for miRNA-disease
associations prediction (NIMGSA). Some of the previous works based on matrix completion ignore
the importance of label propagation procedure for inferring miRNA-disease associations, while
others cannot integrate matrix completion and label propagation effectively. Varying from previous
studies, NIMGSA unifies inductive matrix completion and label propagation via neural network
architecture, through the collaborative training of two graph autoencoders. This neural inductive
matrix completion-based method is also an implementation of self-attention mechanism for miRNA-
disease associations prediction. This end-to-end framework can strengthen the robustness and
preciseness of both matrix completion and label propagation. Cross validations indicate that NIMGSA
outperforms current miRNA-disease prediction methods. Case studies demonstrate that NIMGSA is
competent in detecting potential miRNA-disease associations.

Keywords: miRNA-disease association; inductive matrix completion; graph autoencoder; self-attention
mechanism

1. Introduction

Micro RNAs (miRNAs) are a kind of small non-coding RNAs (about 22 nucleotides)
that can regulate target mRNA expression during the post-transcriptional stage, via binding
to the 3′-untranslated region of target mRNAs [1–3]. Thus, miRNAs can influence a series of
biological processes (e.g., epigenetic regulation, cell differentiation, and basal metabolism),
playing key roles in plenty of human diseases. For instance, previous research [4] has con-
firmed that the expression of miRNA hsa-mir-21 can facilitate the proliferation of several
kinds of tumor cells, such as breast neoplasms, pancreatic neoplasms, and glioblastoma
neoplasms. MiRNA mir-34a can suppress neuroblastoma via promoting tumor cell apopto-
sis [5]. Therefore, predicting potential miRNA-disease associations is crucial for disease
prevention, diagnosis, and treatment.

Potential miRNA-disease associations can be discovered by experimental approaches
or computational approaches. As computational approaches, especially machine learning
algorithms, are more cost-effective and time-efficient, many machine learning-based meth-
ods were proposed to predict potential miRNA-disease associations [3,6,7]. These methods
can be categorized into the following types.

1. Matrix analysis-based methods. Two commonly-used matrix analysis methods for
predicting associations among biological entities are manifold regularization [8]
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and matrix completion [9], which respectively suggest that the association matrix
follows manifold constraint or low-rank constraint. Manifold regularization based
methods have been widely used for link prediction among biological entities [10–12].
Chen et al. [13] proposed a manifold regularized subspace learning method for
detecting miRNA-disease associations. Xiao et al. [14] proposed a graph regularized
non-negative matrix factorization method to predict microRNA-disease associations.
Matrix completion based methods have been commonly used to infer associations
among biological entities [15–17]. Chen et al. [18] proposed an inductive matrix
completion-based method for inferring miRNA-disease associations. Li et al. [19]
proposed a matrix completion algorithm for miRNA-disease associations prediction.
Yu et al. [20] proposed a matrix completion algorithm for low-rank subspace learning,
while incorporating label propagation for miRNA-disease associations prediction.
Chen et al. [21] adopted neighborhood constraint matrix completion to predict disease-
related miRNAs.

2. Graph analysis-based methods. Since the dependency among biological entities can
be depicted via graphs, methods based on graph algorithms, such as bipartite graph
algorithms, neighborhood sampling, and random walk, have been commonly applied
in the field of bioinformatics [22–24]. Zeng et al. [25] proposed a structural perturba-
tion method-based model for inferring disease-related miRNAs on bipartite miRNA-
disease graph. Chen et al. [26] proposed a bipartite network projection-based method
for miRNA-disease associations prediction. Xuan et al. [23] adopted a weighted
neighborhood sampling algorithm for predicting potential disease-associated miR-
NAs. Chen et al. [24] proposed a matrix decomposition and heterogeneous graph
inference-based model for miRNA-disease association prediction. Since random walk
is an efficient way to learn graph representation via topologial relationships of graphs,
Chen et al. [22] and Xuan et al. [27] adopted the random walk algorithm to identify
potential miRNA-disease associations.

3. Heterogeneous features fusion methods. Integrating multi-source features is an effi-
cient technique for predicting associations among biological entities [7,16,28]. Peng
et al. [29] integrated multiple networks to identify potential miRNA-disease associa-
tions. Liu et al. [30] predicted disease-related miRNAs on a heterogeneous network
with multiple features. Xiao et al. [31] proposed an adaptive heterogeneous feature
inference model for predicting potential disease-associated miRNAs. Ha et al. [32] de-
signed a metric learning model to fuse heterogeneous features for predicting miRNA-
disease associations. Yu et al. [33] proposed a multi-layer heterogeneous network
embedding model to predict potential miRNA-disease associations.

4. Deep learning methods. Neural networks have been widely used for detecting po-
tential associations among biological entities [28,33,34]. Zeng et al. [35] adopted
a neural network-based model to identify potential miRNA-disease associations.
Chen et al. [36] proposed a deep-belief network for inferring disease-related miR-
NAs. Ji et al. [37] proposed an autoencoder for detecting miRNA-disease associations.
Tang et al. [38] proposed a multi-view multi-channel graph attention networks to iden-
tify potential miRNA-disease associations. Graph Neural Networks (GNN) [39] have
been proposed in deep learning on graphs. Thus, there are some recent studies for
predicting associations among biological entities based on GNNs [40–42]. Li et al. [43]
implemented an inductive matrix completion algorithm based on Graph Convolu-
tional Networks (GCN) for predicting miRNA-disease associations. Li et al. [44]
adopted graph autoencoders to identify potential miRNA-disease associations.

In this paper, we propose an inductive matrix completion-based method to predict
miRNA-disease associations. Varying from the previous study [18], the inductive matrix
completion algorithm in our method is implemented through neural networks, so it is
called neural inductive matrix completion. Li et al. [43] implemented a neural inductive
matrix completion algorithm based on GCN [45]. In previous works [18,43,44], matrix com-
pletion algorithms or graph neural networks were assigned to compute the representations
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of miRNAs and diseases, then the prediction scores of miRNA-disease pairs were obtained
through the dot product of miRNA representations and disease representations. Hence,
these works ignored the label propagation procedure for inferring potential miRNA-disease
associations. Yu et al. [20] proposed a matrix completion algorithm for low-rank subspace
learning and assigned label propagation for miRNA-disease associations prediction. How-
ever, in [20], matrix completion and label propagation are separate procedures, leading
to decrease their effectiveness. To address this issue, our method propose an end-to-end
framework by graph autoencoders to integrate matrix completion and label propagation.
Graph autoencoders on miRNA graph and disease graph are competent to reconstruct
score matrix through initial association matrix, which is equivalent to propagating la-
bels on graphs. Meanwhile, graph autoencoders on miRNA graph and disease graph
are capable of low-rank representation learning from miRNA space and disease space,
respectively. The two graph autoencoders are trained collaboratively via neural inductive
matrix completion. Since Geng et al. [46] suggested that the attention mechanism is linked
to matrix factorization, we illuminate that our inductive matrix completion-based method
is an implementation of self-attention mechanism. In a word, our method implement a
Neural Inductive Matrix completion-based method with Graph Autoencoders (GAE) and
Self-Attention mechanism for miRNA-disease associations prediction. Our method, named
NIMGSA, has the following advantages.

1. NIMGSA implements inductive matrix completion through graph autoencoders,
which not only ensures the low-rank property of representations from both miRNA
space and disease space, but also depicts label propagation procedure through the
reconstruction of association matrix.

2. NIMGSA integrates inductive matrix completion and label propagation through an
end-to-end deep learning framework, which enhances the robustness and preciseness
of both integrated procedures.

3. NIMGSA implements self-attention mechanism through inductive matrix comple-
tion on two graph autoencoders, which provides theoretical analysis and biological
application to enhance the performance of attention-based neural networks.

4. The inductive matrix completion procedure is equivalent to training two Graph
Autoencoders (i.e., GAE on miRNA graph and GAE on disease graph) collaboratively,
which improves the capability for representation learning of these two GAEs.

Experiments demonstrate that NIMGSA is superior to the current state-of-the-art
methods. Ablation studies demonstrate the superiority of our proposed architecture of
networks. Case studies on several diseases demonstrate the capability of NIMGSA to
detect new miRNA-disease associations. The source code of our model is available at
https://github.com/zhanglabNKU/NIMGSA (accessed on 13 December 2021).

2. Materials and Methods
2.1. Problem Formulation

Let m and n denote the number of miRNAs and diseases, respectively, and Y ∈ Rm×n

denotes the miRNA-disease association matrix. Y(i, j) = 1 if miRNA i has been known
to be associated with disease j, otherwise Y(i, j) = 0. An algorithm predicating miRNA-
disease associations requires matrix Y, along with miRNA similarity matrix Sm ∈ Rm×m

(see Section 2.2) and disease similarity matrix Sd ∈ Rn×n (see Section 2.3), then ensures an
optimal score matrix F ∈ Rm×n, where F(i, j) ∈ [0, 1] denotes the predicted score of the
association between miRNA i and disease j. A higher score stands for a higher probability
if miRNA i is associated with disease j.

In this paper, the dataset is retrieved from the HMDD v2.0 database (http://www.
cuilab.cn/static/hmdd3/data/hmdd2.zip (accessed on 13 December 2021)) [47], including
5430 miRNA-disease associations among 495 miRNAs and 383 diseases.

https://github.com/zhanglabNKU/NIMGSA
https://github.com/zhanglabNKU/NIMGSA
http://www.cuilab.cn/static/hmdd3/data/hmdd2.zip
http://www.cuilab.cn/static/hmdd3/data/hmdd2.zip
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2.2. MiRNA Similarity Matrix

Wang et al. [48] proposed a method to infer miRNA functional similarities from
miRNA-related diseases. The similarity data can be downloaded from MISIM database
(http://www.cuilab.cn/files/images/cuilab/misim.zip (accessed on 13 December 2021)).
However, there are some miRNAs that are not included in this database. So we compute
Gaussian kernel similarity for those not included miRNAs. The gaussian kernel similarity
of miRNA pair (i, j) is defined as:

GMS(i, j) = exp(−‖Y(i, :)−Y(j, :)‖2/θm), (1)

where Y(i, :) denotes the i-th row of Y, and

θm =
1
m

m

∑
i=1
‖Y(i, :)‖2, (2)

denotes the kernel bandwidth. In summary, miRNA similarities can be computed through:

Sm(i, j) =

{
MS(i, j) if (i, j) has functional similarity
GMS(i, j) otherwise

, (3)

where MS(i, j) denotes the functional similarity of miRNA pair (i, j) from the MISIM database.

2.3. Disease Similarity Matrix

Wang et al. [48] and Xuan et al. [23] proposed two different models to compute disease
semantic similarities. The Medical Subject Headings (MeSH) database (https://www.
ncbi.nlm.nih.gov/ (accessed on 13 December 2021)) is commonly used for describing
relationships among human diseases, and both of the models above are based on MeSH
descriptors. At the beginning, a hierarchical Directed Acyclic Graph (DAG) is constructed
from MeSH, where each node in this DAG denotes a disease, and each directed edge i→ j
denotes a link from disease i to disease j.

Wang et al. [48] suggested that the semantic contribution of disease pair (i, j) is
computed through:

SC1(i, j) =

{
1 j = i
max{δ · SC1(i, t)|t ∈ children of j} j 6= i

, (4)

where δ is a hyperparameter and is set as 0.5 in [48]. Suppose N(i) denotes a node set
including node i itself and its ancestor nodes in disease DAG, disease semantic similarity
of disease pair (i, j) is computed as:

DS1 =
∑t∈N(i)∩N(j)(SC1(i, t) + SC1(j, t))

∑t∈N(i) SC1(i, t) + ∑t∈N(j) SC1(j, t)
. (5)

Xuan et al. [23] suggested that the semantic contribution of disease pair (i, j) is com-
puted through:

SC2(i, j) = − log
(

the number of DAGs including j
the number of diseases

)
. (6)

Then, disease semantic similarity of disease pair (i, j) is computed as:

DS2 =
∑t∈N(i)∩N(j)(SC2(i, t) + SC2(j, t))

∑t∈N(i) SC2(i, t) + ∑t∈N(j) SC2(j, t)
. (7)

However, there are some diseases that are not included in the MeSH database. So we
compute Gaussian kernel similarity for those unincluded diseases. The Gaussian kernel
similarity of disease pair (i, j) is defined as:

http://www.cuilab.cn/files/images/cuilab/misim.zip
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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GDS(i, j) = exp(−‖Y(:, i)−Y(:, j)‖2/θd), (8)

where Y(:, j) denotes the j-th column of Y, and:

θd =
1
n

n

∑
j=1
‖Y(:, j)‖2, (9)

denotes the kernel bandwidth. In summary, disease similarities can be computed through:

Sd(i, j) =

{
DS(i, j) if (i, j) has semantic similarity
GDS(i, j) otherwise

, (10)

where

DS(i, j) =
DS1(i, j) + DS2(i, j)

2
, (11)

denotes the semantic similarity of disease pair (i, j). DS1 and DS2 is from Equations (5)
and (7).

The procedure of similarity computation is summarized as Figure 1.

miRNA similarity
 graph Sm

MISIM database

Known miRNA-disease
association matrix Y

disease similarity
 graph SdGaussian kernel

similarity of diseases
Gaussian kernel

similarity of miRNAs

HMDD v2.0
 database

MESH database

Figure 1. Flowchart of similarity computation.

2.4. Related Works
2.4.1. Label Propagation

Previous research [49] demonstrates that label propagation is equivalent to solving
manifold regularization problem [8] through fixed-point iteration. Manifold regularization
assumpts that samples are distributed on a manifold, samples with higher feature similari-
ties are closer on the manifold, and tend to share the same labels. The manifold of data can
be depicted by graph structure constructed through feature matrix, which leads to graph
semi-supervised learning. This type of method for biological association prediction first
computes adjacency matrix from biological features to construct a graph, then propagate
labels from labeled biological entities to unlabeled ones on this graph iteratively.

Suppose L denotes normalized Laplacian matrix of the graph, minimizing trace(FT LF)
can obtain the label matrix F following manifold assumption. Belkin et al. [8] added this
manifold constraint to least square problem, then derived Laplacian Regularized Least
Square (LRLS) method:

min
F
‖F−Y‖2

F + ηtrace(FT LF), (12)

where ‖ · ‖F denotes the Frobenius norm of a matrix, and η is a hyperparameter. Equation (12)
is a trade-off between the accuracy based on labeled data, and the smoothness of the manifold.
This is classified as manifold regularization [8]. Label propagation follows the framework
of manifold regularization as Equation (12). Xia et al. [10] derived that association matrix F
follows manifold assumption, and can be obtained via solving Equation (12).

Numerous research [50–52] demonstrate that Graph Neural Networks (GNN) is closely
linked to label propagation algorithm. The outputs of GNN follow the manifold constraint.
Hence, a graph autoencoder with Y as input and F as output can obtain the optimal solution
of Equation (12). Simulating the label propagation algorithm through the reconstruction pro-
cedure of graph autoencoder, has been validated as an efficient way for biological association
prediction in previous research [41,42].
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2.4.2. Inductive Matrix Completion

Natarajan et al. [15,18] proposed inductive matrix completion to predict associations
among biological entities. The matrix completion problem is to approximate the initial
miRNA-disease association matrix Y through a low-rank matrix Z ∈ Rm×n. If rank(Z) ≤
r ≤ min(m, n), Z can be factorized into matrix M ∈ Rm×r and D ∈ Rn×r, i.e., Z = MDT .
Inductive matrix completion is to optimize:

min
M,D

1
2
‖Y− Sm MDTST

d ‖
2
F + λ‖M‖2

F + λ‖D‖2
F, (13)

where Sm ∈ Rm×m and Sd ∈ Rn×n denote similarity matrices of miRNAs and diseases,
respectively. Equation (13) can be solved through a non-negative matrix factorization
algorithm [53]. After obtaining optimal M and D, score matrix F is computed through:

F = Sm MDTST
d . (14)

2.4.3. Attention Mechanism

Attention mechanism [54] in the deep learning model is similar to that in cognitive
science, which first calculates a probability distribution over the elements in the inputs, then
takes the attention score based on this probability distribution while generating outputs.

The self-attention mechanism [55,56] is a commonly used implementation of attention
mechanism. In self-attention mechanism, the input Y is transformed into three matrices,
the Query (Q), Key (K), and Value (V), by three different functions. The weight assigned to
each value is calculated as the dot-product of the query with the corresponding key:

Attention(Q, K, V) = So f tmax
(

QKT
√

d

)
V, (15)

where d is the dimension of the vector K, and T is the transpose operation. The Q, K, and
V are obtained by three linear transformations with the same input separately:

Q = WQY, K = WKY, V = WVY, (16)

where WQ, WK, and WV are trainable parameters.
Usually, d is set less than the dimension of Y. It is obvious that the rank of

Attention(Q, K, V) is no more than d, i.e., the attention score matrix is low-rank.
Geng et al. [46] suggested that attention mechanism is linked to matrix factorization for
obtaining low-rank outputs.

2.5. NIMGSA
2.5.1. Graph Autoencoder

Suppose Zm = Sm M, Zd = SdD, Equation (13) can be rewritten as:

min
M,D

1
2
‖Y− ZmZT

d ‖
2
F + λ‖M‖2

F + λ‖D‖2
F, (17)

where Zm and Zd denote the low-rank representations of miRNAs and diseases, respec-
tively. Previous studies [57,58] have found that autoencoders are competent to obtain
low-rank representations. Therefore, we adopt graph autoencoders [59] to obtain low-rank
representations in our model, NIMGSA, that Zm and Zd are learned by 2-layer graph
convolution [45] encoders, respectively. The encoder is defined as:

Enc(A, X) = tanh(A · ReLU(AXW(0))W(1)), (18)

where A, X, and W denote adjacency matrix, inputs, and weights, respectively.

Zm = Enc(Am, Y). (19)
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Zd = Enc(Ad, YT). (20)

Am and Ad denote the normalized adjacency matrices of miRNA graph and disease
graph, respectively.

Am = D−1/2
m SmD−1/2

m , (21)

where Dm is the degree matrix of Sm. Dm is a diagonal matrix that is computed via
Dm(i, i) = ∑j Sm(i, j). Similarly,

Ad = D−1/2
d SdD−1/2

d . (22)

Then, Equation (17) can be rewritten as:

min
W

1
2
‖Y− ZmZT

d ‖
2
F + λ‖W‖2

F. (23)

The encoder-decoder architecture [54] is widely applied for reconstructing outputs
from representations. The decoder is defined as:

Dec(A, X) = sigmoid(A · ReLU(AXW(2))W(3)). (24)

Score matrices Fm ∈ Rm×n and Fd ∈ Rn×m can be decoded through Zm and Zd,
respectively:

Fm = Dec(Am, Zm). (25)

Fd = Dec(Ad, Zd). (26)

Following previous research [41], since both Fm ∈ Rm×n and Fd ∈ Rn×m are low-rank
provided by autoencoders, and through the rank-sum inequality that:

rank(αFm + (1− α)FT
d ) ≤ rank(Fm) + rank(FT

d ), (27)

the final result:

F = αFm + (1− α)FT
d (28)

is low-rank, where α ∈ (0, 1) depicts a balance between miRNA space and disease space.

2.5.2. Self-Attention

In NIMGSA, Zm ∈ Rm×d and Zd ∈ Rn×d are equivalent to the Query Q and Key K in
self-attention mechanism, which can be obtained by transformations with the same input
Y. F can be regarded as Value V of self-attention mechanism. Similar to the definition of
attention Equation (15), the attention score of the association matrix can be defined as:

T = So f tmax

(
ZmZT

d√
d

)
� F, (29)

where d is the dimension of hidden vectors, � denotes element-wise product. Then,
Equation (23) can be rewritten as:

min
W

1
2
‖Y− T‖2

F + λ‖W‖2
F. (30)

Then, following previous research [41,42], we add reconstruction error:

Lr = α‖Y− Fm‖2
F + (1− α)‖Y− FT

d ‖
2
F, (31)

into Equation (30).
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min
W

1
2
‖Y− T‖2

F + βLr + λ‖W‖2
F. (32)

In NIMGSA, we set β = 1, λ = 10−7.
The architecture of the NIMGSA model is illustrated as Figure 2. The procedure of

NIMGSA is summarized as Figure 3 and Algorithm 1, where GAEm and GAEd represent
GAEs on the miRNA graph and disease graph respectively, and NIMC denotes neural
inductive matrix completion.

Algorithm 1 NIMGSA Algorithm

Input: initial association matrix Y, miRNA similarity matrix Sm, disease similarity matrix Sd
Output: score matrix F
1: Compute the adjacency matrix of miRNA graph Am and disease graph Ad via

Equations (21) and (22) respectively
2: repeat
3: Compute Query: Zm = Enc(Am, Y) // Equation (19)
4: Compute Key: Zd = Enc(Ad, YT) // Equation (20)
5: Fm = Dec(Am, Zm) // Equation (25)
6: Fd = Dec(Am, Zd) // Equation (26)
7: Compute Value: F = αFm + (1− α)FT

d // Equation (28)
8: Compute attention score as Equation (29)
9: Train GAEm and GAEd through optimizing Equation (32) // Update W (i.e.,

parameters of neural networks) in Equation (32) by Adam optimizer
10: until Convergence
11: return F

miRNA similarity graph Sm

disease similarity graph Sd

Representation Zm

Representation Zd

Neural inductive

matrix completion

miRNA adjacency matrix Am

Known miRNA-disease

interaction matrx Y

disease adjacency matrix Ad

Output score Fm

Output score Fd

Final result fusion F

(Value)


GAEm

GAEd

(Query)

(Key)

Figure 2. Illustration of NIMGSA. GAEm and GAEd represent graph autoencoders on the miRNA
graph and disease graph respectively.
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Y

Zm

Zd

Fm

Fd

F T = Softmax
(

ZmZT
d√

d

)
� F

Self-attention (i.e. NIMC)NIMGSA model

Query

Key

Value

Reconstruction loss of GAE

Lr = α‖Y − Fm‖2F + (1− α)‖Y − FT
d ‖2F

minW
1
2‖Y − T‖

2
F + βLr + λ‖W‖2F

Output

F = αFm + (1− α)FT
d

combine
combine

total loss

Figure 3. Computation procedure of NIMGSA. NIMC denotes Neural Inductive Matrix Completion.

3. Results
3.1. Comparison with Other Methods

We compare our proposed method, NIMGSA, with other five state-of-the-art methods:

• IMCMDA: Chen et al. [18] proposed an inductive matrix completion-based method to
predict miRNA-disease associations.

• SPM: Zeng et al. [25] proposed a structural perturbation method- based approach to
predict miRNA-disease associations on bipartite miRNA-disease graph.

• NIMCGCN: Li et al. [43] implemented inductive matrix completion algorithm through
graph convolutional networks for miRNA-disease associations prediction.

• MCLPLDA: Yu et al. [20] adopted matrix completion algorithm for low-rank subspace
learning, while integrating label propagation for miRNA-disease associations prediction.

• GAEMDA: Li et al. [44] adopted graph autoencoders for miRNA-disease associa-
tions prediction.

We adopt PyTorch (https://pytorch.org/ (accessed on 13 December 2021)) to construct
NIMGSA, and apply an Adam optimizer [60] to train the model. Then, we set the dropout
rate [61] of neural networks at 0.5. Our model is trained on a single NVIDIA GeForce GTX
2070 GPU with 8 GB of memory.

We adopt five-fold cross validation to evaluate the performance, and the metrics are
listed below:

Sensitivity(SEN) =
TP

TP + FN
= TPR = Recall (33)

Specificity(SPEC) =
TN

TN + FP
= 1− FPR (34)

Accuracy(ACC) =
TN + TP

TN + TP + FN + FP
(35)

Precision(PRE) =
TP

TP + FP
(36)

F1-Score =
2× Precision× Recall

Precision + Recall
(37)

MCC =
TP× TN− FP× FN√

(TP + FN)× (TP + FP)× (TN + FN)× (TN + FP)
(38)

where TP denotes true positive, FN denotes false negative, TN denotes true negative, FP
denotes false negative, TPR denotes true positive rate, FPR denotes false positive rate,
and Mcc denotes Matthews correlation coefficient. The Receiver Operating Characteristic
(ROC) curve can be plotted by TPR and FPR, while the Area Under ROC curve (AUROC)
and the Area under Precision-Recall curve (AUPR) are important metrics to measure the
performance of a binary classification model.

We plot the ROC curves and PR curves on Figure 4. The mean values and standard
deviations of AUROC and AUPR are listed on Table 1. The results show that VGAELDA
outperforms the other state-of-the-art methods in both AUROC and AUPR. In AUROC,

https://pytorch.org/


Biomolecules 2022, 12, 64 10 of 17

NIMGSA achieves an AUROC of 0.9354, which is 0.2% higher than GAEMDA (0.9332),
0.6% higher than MCLPMDA (0.9292), 0.8% higher than NIMCGCN (0.9279), 4.3% higher
than SPM (0.8960), and 11.2% higher than IMCMDA (0.8329). In AUPR, NIMGSA achieves
an AUPR of 0.4567, which is 4.1% higher than MCLPMDA (0.4387), 10.2% higher than
GAEMDA (0.4142), 15.8% higher than NIMCGCN (0.3943), 63.9% higher than IMCMDA
(0.2785), and 85.3% higher than SPM (0.2464).

To further evaluate the performance of NIMGSA, we test our model at a high strin-
gency level of specificity according to Equation (34). We fix specificity at 0.99, and then
compute sensitivity, accuracy, precision, F1-score, and Mcc. The results are listed on Table 2,
which illustrate that NIMGSA outperforms other methods at all five metrics. Matthews cor-
relation coefficient (Mcc) is a comprehensive metric in binary classification on imbalanced
data [41]. NIMGSA achieves an Mcc of 0.4273, which is higher than GAEMDA (0.4213),
MCLPMDA (0.4138), NIMCGCN (0.3645), IMCMDA (0.3239), and SPM (0.2048).

Table 1. Mean values and standard deviations of AUROC and AUPR, compared with differ-
ent methods.

METHOD AUROC AUPR

IMCMDA 0.8329 ± 0.0011 0.2785 ± 0.0029
SPM 0.8960 ± 0.0070 0.2464 ± 0.0054

NIMCGCN 0.9279 ± 0.0006 0.3943 ± 0.0054
MCLPMDA 0.9292 ± 0.0069 0.4387 ± 0.0106
GAEMDA 0.9332 ± 0.0005 0.4142 ± 0.0034
NIMGSA 0.9354 ± 0.0047 0.4567 ± 0.0147
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Figure 4. ROC and PR curves of different methods.

Table 2. Binary classification metrics of different methods on Dataset2. Sp denotes specificity. Sn
denotes sensitivity. Acc denotes accuracy. Pre denotes precision. F1 denotes F1-score. Mcc denotes
Matthews correlation coefficient.

SPEC METHOD SEN ACC PRE F1-Score MCC

0.99

IMCMDA 0.2628 0.9692 0.4365 0.3281 0.3239
SPM 0.1551 0.9661 0.3137 0.2075 0.2048

NIMCGCN 0.3039 0.9703 0.4725 0.3699 0.3645
MCLPMDA 0.3567 0.9719 0.5127 0.4207 0.4138
GAEMDA 0.3650 0.9721 0.5186 0.4284 0.4213
NIMGSA 0.3718 0.9723 0.5229 0.4346 0.4273
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3.2. Hyperparameter Tuning

In NIMGSA, hyperparameter α ∈ (0, 1) depicts a balance between miRNA space and
disease space. After evaluating our model at each α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, we find that
NIMGSA performs best at α = 0.5. The results are shown on Table 3.

Besides, we evaluate our model at a different learning rate in {0.001, 0.01, 0.05, 0.1},
and the results are shown on Table 4. The results show that the best value of learning rate
is 0.01.

Moreover, we evaluate our model at different dimension d of hidden vectors, and
the results are shown on Table 5. The results depict that the performance of NIMGSA is
enhanced with the increase of hidden vector dimension. However, when the dimension is
larger than 64, there is little increment and the performance remains stable. Therefore, we
set the hidden vector dimension at 64 to save the time and space costs.

Table 3. AUROC and AUPR at different α.

α 0.1 0.3 0.5 0.7 0.9

AUROC 0.9119 0.9289 0.9354 0.9338 0.9312
AUPR 0.3648 0.4255 0.4567 0.4556 0.4509

Table 4. AUROC and AUPR at a different learning rate.

lr 0.001 0.01 0.05 0.1

AUROC 0.9193 0.9354 0.7693 0.5557
AUPR 0.4077 0.4567 0.2791 0.0709

Table 5. AUROC and AUPR at a different dimension of hidden vectors.

DIMENSION 16 32 64 128

AUROC 0.9012 0.9228 0.9354 0.9357
AUPR 0.3642 0.4127 0.4567 0.4589

3.3. Ablation Studies

To evaluate whether the components in our proposed model are necessary, we con-
duct ablation studies by removing individual component in our model. As shown in
Equation (32), the total loss of NIMGSA consists of two parts: The self-attention loss (i.e.,
matrix completion loss) ‖Y − T‖2

F, and the reconstruction loss Lr. Hence, we evaluate
NIMGSA with the following models.

• Self-attention: Only use self-attention loss to train the model;
• Without self-attention: Only use reconstruction loss to train the model.

As seen from Table 6, NIMGSA achieves an AUROC of 0.9354, which is 3.4% higher
than the model with a self-attention loss only (0.9332), and 4.9% higher than the model
without a self-attention loss (0.8916). NIMGSA achieves an AUPR of 0.4567, which is 21.2%
higher than the model with a self-attention loss only (0.3768), and 34.6% higher than the
model without self-attention loss (0.3392). In summary, both the self-attention loss (i.e.,
matrix completion loss) ‖Y− T‖2

F, and the reconstruction loss Lr, are essential for NIMGSA.
Therefore, NIMGSA is a powerful model combining neural inductive matrix completion,
graph autoencoders, and self-attention mechanism, to enhance the preciseness, robustness,
and generalization of miRNA-disease associations prediction.
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Table 6. Ablation studies.

Models AUROC AUPR

Self-attention 0.9046 0.3768
Without self-attention 0.8916 0.3392

NIMGSA 0.9354 0.4567

3.4. Case Studies

Case studies are conducted to validate the capability of NIMGSA to predict unknown
miRNA-disease associations. The associations in our benchmark dataset are obtained in
HMDD v2.0. We adopt three other databases to confirm the predicted miRNA-disease asso-
ciations which are not included in HMDD v2.0. These three databases are dbDEMC v2.0 [62]
(http://www.picb.ac.cn/dbDEMC (accessed on 13 December 2021)), miR2Disease [63]
(http://www.mir2disease.org/ (accessed on 13 December 2021)), and HMDD v3.0 [64]
(http://www.cuilab.cn/hmdd (accessed on 13 December 2021)). We listed the predictions
of potential lncRNA-disease associations with respect to all diseases in Supplementary
Table S1. The unknown disease-related lncRNAs of a disease are ranked by their pre-
dicted scores. In this paper, we adopt case studies on miRNAs associated with esophageal
neoplasms, breast neoplasms, and lung neoplasms.

Esophageal neoplasms (i.e., esophageal cancer) is a major malignant cancer in diges-
tive system [65]. NIMGSA is applied to predict potential miRNAs related to esophageal
neoplasms. Supplementary Table S2 lists the top 50 predicted miRNAs associated with
esophageal neoplasms. All top 50 predicted miRNAs associated with esophageal neo-
plasms have been confirmed. Table 7 lists the top 10 predicted miRNAs associated with
esophageal neoplasms. For instance, miRNA hsa-mir-125b prevents the progression of
esophageal squamous cell carcinoma through the p38-MAPK signaling pathway [66].
MiRNA hsa-mir-17 and hsa-mir-18a are prognostic indicators in esophageal squamous
cell carcinoma [67]. MiRNA hsa-miR-16 induces the suppression of cell apoptosis while
promoting proliferation in esophageal squamous cell carcinoma [68].

Table 7. Top 10 predicted miRNAs associated with esophageal neoplasms.

MiRNA NAME EVIDENCE

hsa-mir-125b dbDEMC v2.0; HMDD v3.0
hsa-mir-17 dbDEMC v2.0
hsa-mir-16 dbDEMC v2.0

hsa-mir-18a dbDEMC v2.0
hsa-mir-19b dbDEMC v2.0
hsa-mir-29a dbDEMC v2.0
hsa-mir-222 dbDEMC v2.0

hsa-mir-1 dbDEMC v2.0
hsa-mir-29b dbDEMC v2.0
hsa-mir-200b dbDEMC v2.0

Breast neoplasms (i.e., breast cancer) is the most commonly diagnosed cancer among
females worldwide [65]. NIMGSA is applied to predict potential miRNAs related to breast
neoplasms. Supplementary Table S3 lists the top 50 predicted miRNAs associated with
Breast Neoplasms. A total of 49 of the top 50 predicted miRNAs associated with breast
neoplasms have been confirmed. Table 8 lists the top 10 predicted miRNAs associated
with breast neoplasms. For instance, miRNA hsa-mir-15b targets the 3′-untranslated region
of MTSS1 (metastasis suppressor protein 1), and the low abundance of MTSS1 correlates
with a poor patient prognosis of breast neoplasms [69]. MiRNA hsa-mir-192 causes breast
cancer cell growth arrest [70]. MiRNA hsa-miR-106a is significantly over-expressed in the
breast tumor specimens compared with those in normal controls [71].

http://www.picb.ac.cn/dbDEMC
http://www.mir2disease.org/
http://www.cuilab.cn/hmdd
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Table 8. Top 10 predicted miRNAs associated with breast neoplasms.

MiRNA NAME EVIDENCE

hsa-mir-142 dbDEMC v2.0; HMDD v3.0
hsa-mir-15b dbDEMC v2.0; HMDD v3.0
hsa-mir-192 dbDEMC v2.0; HMDD v3.0
hsa-mir-106a dbDEMC v2.0; HMDD v3.0
hsa-mir-150 dbDEMC v2.0; HMDD v3.0
hsa-mir-130a dbDEMC v2.0; HMDD v3.0
hsa-mir-30e dbDEMC v2.0; HMDD v3.0
hsa-mir-92b dbDEMC v2.0; HMDD v3.0

hsa-mir-192b dbDEMC v2.0; miR2Disease; HMDD v3.0
hsa-mir-372 dbDEMC v2.0; HMDD v3.0

Lung neoplasms (i.e., lung cancer) is a major malignant cancer in the respiratory
system [65]. NIMGSA is applied to predict potential miRNAs related to lung neoplasms.
Supplementary Table S4 lists the top 50 predicted miRNAs associated with lung neoplasms.
All top 50 predicted miRNAs associated with lung neoplasms have been confirmed. Table 9
lists the top 10 predicted miRNAs associated with lung neoplasms. For instance, miRNA
hsa-mir-15a inhibits metastasis and lipid metabolism by suppressing histone acetylation
in lung neoplasms [72]. MiRNA hsa-mir-106b plays a tumorigenesis role in non-small
cell lung cancer progression by down-regulating BTG3 expression, which may lead to a
novel insight to the potential biomarker and novel therapeutic strategies for non-small cell
lung cancer patients [73]. MiRNA hsa-miR-16 regulates proliferation and invasion of lung
cancer cells via the ERK/MAPK signaling pathway by targeted inhibition of MAPK kinase
1 (MEK1) [74].

Table 9. Top 10 predicted miRNAs associated with lung neoplasms.

MiRNA NAME EVIDENCE

hsa-mir-16 dbDEMC v2.0; miR2Disease; HMDD v3.0
hsa-mir-15a dbDEMC v2.0; HMDD v3.0

hsa-mir-106b dbDEMC v2.0; miR2Disease; HMDD v3.0
hsa-mir-141 dbDEMC v2.0; miR2Disease; HMDD v3.0
hsa-mir-15b dbDEMC v2.0; HMDD v3.0
hsa-mir-122 dbDEMC v2.0; HMDD v3.0
hsa-mir-429 dbDEMC v2.0; miR2Disease; HMDD v3.0
hsa-mir-20b dbDEMC v2.0; HMDD v3.0
hsa-mir-23b dbDEMC v2.0; HMDD v3.0
hsa-mir-130a dbDEMC v2.0; miR2Disease; HMDD v3.0

4. Conclusions

Predicting potential miRNA-disease associations is important for understanding the
pathogenesis of human diseases. Thus, it is crucial to infer candidate disease-related
miRNAs for the scientific discovery of protecting human health. In this paper, we propose
a neural network model, NIMGSA, which incorporates inductive matrix completion and
graph autoencoders to detect potential miRNA-disease associations. Label propagation
can be simulated through the reconstruction procedure of graph autoencoders. Meanwhile,
neural inductive matrix completion algorithm not only adds collaborative training to label
propagation, but also learns representations in miRNA space and disease space effeciently.
Graph autoencoder is a powerful graph representation learning model that ensures the
low-rank property of learned representations. Hence, the optimal score matrix can be
obtained simply by the linear combination of reconstructed association matrices through
GAE on miRNA graph and GAE on disease graph. NIMGSA implements self-attention
mechanism through neural inductive matrix completion on two graph autoencoders, which
provides theoretical analysis and biological application to enhance the performance of
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self-attention mechanism. Experiments demonstrated that NIMGSA is superior to the
current miRNA-disease associations prediction methods in a series of statistical metrics,
such as AUROC, AUPR, and Matthews correlation coefficient. Ablation studies indicate
the superiority of our proposed architecture of networks. Case studies on three diseases
(esophageal neoplasms, breast neoplasms, and lung neoplasms) indicate that NIMGSA is
able to select candidate disease-related miRNAs.

Compared with existing miRNA-disease associations prediction methods, NIMGSA
adopts an end-to-end neural network model to integrate inductive matrix completion,
self-attention mechanism, and graph autoencoders. This data-driven end-to-end deep
learning model not only improves the robustness and preciseness of predicting potential
miRNA-disease associations, but also provides a general way for link prediction tasks of
other biological entities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom12010064/s1, Table S1: Predictions of potential miRNA-disease association. Table S2:
Top 50 predicted miRNAs associated with esophageal neoplasms. Table S3: Top 50 predicted
miRNAs associated with breast neoplasms. Table S4: Top 50 predicted miRNAs associated with
lung neoplasms.
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