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Abstract: Network biology has become a key tool in unravelling the mechanisms of complex dis-
eases. Detecting dys-regulated subnetworks from molecular networks is a task that needs efficient 
computational methods. In this work, we constructed an integrated network using gene interaction 
data as well as protein–protein interaction data of differentially expressed genes derived from the 
microarray gene expression data. We considered the level of differential expression as well as the 
topological weight of proteins in interaction network to quantify dys-regulation. Then, a nature-
inspired Smell Detection Agent (SDA) optimisation algorithm is designed with multiple agents trav-
ersing through various paths in the network. Finally, the algorithm provides a maximum weighted 
module as the optimum dys-regulated subnetwork. The analysis is performed for samples of triple-
negative breast cancer as well as colorectal cancer. Biological significance analysis of module genes 
is also done to validate the results. The breast cancer subnetwork is found to contain i) valid bi-
omarkers including PIK3CA, PTEN, BRCA1, AR and EGFR; ii) validated drug targets TOP2A, CDK4, 
HDAC1, IL6, BRCA1, HSP90AA1 and AR; iii) synergistic drug targets EGFR and BIRC5. Moreover, 
based on the weight values assigned to nodes in the subnetwork, PLK1, CTNNB1, IGF1, AURKA, 
PCNA, HSPA4 and GAPDH are proposed as drug targets for further studies. For colorectal cancer 
module, the analysis revealed the occurrence of approved drug targets TYMS, TOP1, BRAF and 
EGFR. Considering the higher weight values, HSP90AA1, CCNB1, AKT1 and CXCL8 are proposed 
as drug targets for experimentation. The derived subnetworks possess cancer-related pathways as 
well. The SDA-derived breast cancer subnetwork is compared with that of tools such as MCODE 
and Minimum Spanning Tree, and observed a higher enrichment (75%) of significant elements. 
Thus, the proposed nature-inspired algorithm is a novel approach to derive the optimum dys-reg-
ulated subnetwork from huge molecular network. 
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1. Introduction 
Communities are significant components that are found in networks, such as social 

networks and biological networks. Its constituent elements are highly interconnected to 
perform the intended function. The structural, as well as functional, aspects of biological 
systems are well represented as biological networks comprising of different biomolecular 
elements. These networks can encode knowledge about local molecular interaction as well 
as some higher-level cellular communication. Studies show that changes to the network 
properties are very much linked to the phenotypes, such as tumors and mendelian disor-
ders [1]. Network data in the form of interactome, functional regulatory networks and 
gene co-expression networks, along with other public repositories, helped biologists to 
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gain a deep understanding of variations in cellular processes. The healthy condition of 
human beings can be considered the result of the perfect functioning of biological net-
works. While investigating the mechanism of diseases, it has been found that diverse 
causes of complex diseases act together to dys-regulate the same components of the cellu-
lar system [2]. 

Consequently, the network biology approach has emerged as an effective approach 
for understanding the underlying mechanism of complex diseases, including cancer [3]. 
In various cancer types, the disease condition is reflected through the perturbed state in 
pathways or molecular subnetworks [4,5]. Subnetworks are a collection of inter-connected 
molecules that perform a particular function. Finding dys-regulated subnetworks will 
help extracting useful biological information. Furthermore, mapping molecular expres-
sion data with protein interaction networks is found to be an efficient approach for effec-
tively elucidating patterns from the network [6]. The integrative approach of combining 
gene expression data with other biomolecular networks was found to be efficient in ex-
tracting disease phenotypes [7]. An individual-specific network was constructed using 
gene expression correlations and protein–protein interactions (PPI). Here, the interacting 
genes in the network were found to be associated with disease states. Also, this approach 
could find some proteins linked to diseases that act as potential therapeutic targets [8]. In 
the target-centric method of drug discovery, a single target approach fails in complex dis-
ease scenario due to drug resistance and other facts [9,10]. 

Synergistic drug combination therapy has become a new trend, targeting pathways 
and modules consisting of multiple prominent targets. During the paradigm shift hap-
pening in drug discovery through systems-level target focusing, mining such pathway-
based drug targets became challenging. This paper concentrates more on investigating 
network-oriented targets that could supplement the synergistic drugs in combating com-
plex diseases. Thus, mining of dys-regulated subnetworks in multi-omics data has gained 
significance in drug design as well [11]. 

During the past few decades, developing methods for extracting disease-related 
modules in molecular data was one of the major goals in computational biology. A variety 
of approaches have been applied to this computationally complex problem. The greedy 
approach, random walk, evolutionary approach and maximum clique identification are a 
few well-known methods, among others. Greedy methods such as Module Analysis via 
Topology of Interactions and Similarity Sets (MATISSE) and DIAMOnD employ seed 
molecule selection followed by expansion to derive disease modules [12,13]. Starting from 
the seed genes, neighbouring nodes are explored based on connectivity significance [13]. 
Though the resulting disease modules are validated biologically, the greedy approaches 
fail to find optimum global networks. Another greedy method based on multivariate anal-
ysis used the scoring technique to derive a differentially expressed subnetwork [14]. As 
these approaches are developed based only on exploitation to construct the path, a global 
optimum solution is not guaranteed. 

GLADIATOR is an algorithm that made use of the evolutionary global search ap-
proach to derive disease modules. A simulated annealing algorithm is applied here to 
maximise the gold standard module similarity measure [15]. Unlike other evolutionary 
algorithms, it uses a similarity index concerning known disease modules as an objective 
function. Moreover, it does not perform any statistical evaluation of the obtained results. 
However, the pure evolutionary algorithms require a precise objective function to meas-
ure actual perturbation in the module. HotNet2 is another algorithm developed for find-
ing cancer subnetworks by mapping the connection strength to heat diffused over the 
network links [16]. EnrichNet is a random walk approach associated with restart ability 
to identify known subnetworks that are strongly connected to input genes [17]. 

Walktrap-GM is another algorithm that follows a random walk, exploiting the neigh-
bours through the transition probability assessment on the weight value. A merge process 
of selected communities was also done to maximise the network modularity. Though this 
approach finds cancer-relevant modules, due to community-related computations, the 
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complexity becomes O(n3) for sparse data [18]. A multi-objective approach is imple-
mented, combining the properties, including module scores from gene expression, the 
pathway coverage score and connectivity measure [19]. Although prior information re-
garding pathway enrichment is incorporated into the algorithm to extract active modules, 
the drug-related functionality analysis is not provided. Breast cancer modules were gen-
erated by IODNE by running a modified minimum spanning tree algorithm upon gene-
protein data. This approach has extracted dys-regulated modules with the presence of a 
few drug targets. However, no statistical analysis has been conducted to validate the re-
trieved modules [20]. 

In our approach, we propose an ensemble of nature-inspired greedy approaches 
where the algorithm complexity is reduced. Most of the existing approaches initiate the 
search process from genes that are found to be relevant either topologically or biologically. 
Moreover, these methods suffer from extensive computations in the form of the repeated 
objective value calculation. In the proposed algorithm, the searching is performed by mul-
tiple agents starting from random nodes in the network and hence avoids the necessity 
for any prioritisation of start nodes. Additionally, the algorithm complexity has been re-
duced over existing greedy approaches. 

To test the proposed framework, gene expression data of the two most aggressive 
types of cancers, which affect the female and male category, were considered. Triple-neg-
ative breast cancer (TNBC) and colorectal cancer (CRC) samples were taken to generate 
the weighted network and for the subsequent subnetwork finding. 

2. Materials and Methods 
2.1. Dataset 

In this work, microarray data were used for the analysis as they can be easily accessed 
and pre-processed quickly. The microarray data used for the analysis were downloaded 
from a genomic database, Gene Expression Omnibus (GEO) [21]. Moreover, efficient and 
easy-to-use tools are available for the processing of microarray expression data. 

The TNBC Dataset includes GSE15852 (Affymetrix U133) comprising 43 tumor sam-
ples and 43 normal samples. The analysis for CRC was done with two Affymetrix micro-
array data sets GSE77953 and GSE113513. The first set comprises a total of 58 samples 
pertaining to various stages of tumor samples (17 adenoma, 17 carcinoma and 11 metas-
tasis) along with 13 normal samples. The differential analysis needs a group of tumor 
samples and normal samples. However, each of these cancer stages differs in the charac-
teristics. We took 17 carcinoma samples and 13 normal samples for the analysis. The 
GEO2R tool does not consider this as an unbalanced data set, as it processes the samples 
as tumor and normal groups. The second data set GSE113513 consists of 14 pairs of normal 
and tumor tissues. 

2.2. Proposed Approach 
This work aims to extract an optimum subnetwork from an integrated network cu-

rated out of differentially expressed (DE) genes. The optimality of the subnetwork in dis-
ease condition is defined in terms of maximum dys-regulation of the molecules as well as 
maximum connectivity. The set of DE genes was initially extracted from the microarray 
gene expression data of tumor and normal samples. Then, corresponding to the DE genes, 
a functional correlation network and the corresponding PPI network were constructed. 
By making use of statistical parameters of differential expression analysis and the topo-
logical properties of the PPI network, weights were assigned for both network compo-
nents. Later, the integrated network data were given as input to the heuristic Smell Detec-
tion Agent (SDA) algorithm. One major goal was to develop a less complex optimisation 
algorithm that can find the best possible subnetwork. Accordingly, agents of the proposed 
SDA algorithm explore various paths (subnetworks) using heuristic information extracted 
from nodes and links. The overall steps for the proposed approach are shown in Figure 1. 
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Figure 1. Data Flow of the proposed approach for subnetwork detection. The Smell Detection Agent 
(SDA) optimisation algorithm is applied on the network created using gene interaction data and 
protein–protein interaction data. 

2.2.1. Deriving DE Genes 
After accessing the raw data of data set GSE15852, background correction and nor-

malisation steps were done using the Multi-array Average (RMA) function of bioc-
Manager v12 in R language. BiocManager is a CRAN package used for installing and ac-
cessing software for the statistical analysis of genomic data. 

The duplication of probes was also eliminated. The obtained data were subjected to 
differential analysis using the limma package [22]. Relevant functions were used to fit a 
linear model, generate t-statistics and necessary computations for deriving a differentially 
expressed gene list table. 

2.2.2. Curating Integrated Network 
The input to the proposed SDA algorithm is the weighted network made out of the 

DE set of genes. This section describes how these weights are derived from different 
sources. As part of extracting the subnetwork with differentially expressed and highly 
connected genes, a network was curated from both the gene–gene interaction network 
and the corresponding protein interaction network. The weight assigning method fol-
lowed here is an extended method used in IODNE. The integration of two weight values 
is expected to support and expedite the module extraction process. The significance of 
protein interaction data is that it provides the connection strength of genes. The function-
ality of proteins is regulated by their interaction. If two proteins are strongly connected, 
then the probability of sharing the same functionality is more. Moreover, these genes 
could be highly associated with disease mechanisms. Thus, using the PPI data would help 
expediting the extraction of genes that are strongly related and with the same functional-
ity. 
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Gene Interaction Network (Ng) 
The first network corresponds to the functionally correlated genes in normal and tu-

mour samples. The weight values were assigned to each node/gene based on the statistical 
measures of differential expression. 

g(i)w = g(i)|t-value| + g(i)|log(fc)| (1) 

Here, g(i)|t-value| is the absolute value of the t-value for ith gene. The combined t-value 
and log(fc) value was taken to assign the node weight. 

As network Ng reflects the functional association of genes, the gene pair correlation 
values were used as the link weights. The gene correlation value of (gi, gj) indicates how 
strongly these genes are associated with their expression values. The most popular and 
efficient Pearson correlation value of a gene pair is calculated using the R tool. The asso-
ciation coefficient values were computed for all N genes in normal samples and the tu-
mour samples and assigned to matrices Mcorrnor and Mcorrtum. The final correlation matrix 
Diffcorr is generated by computing the difference between these two intermediate tables as 

Diffcorr = Mcorrnor − Mcorrtum (2) 

A portion of Ng generated for the first DE gene set is shown in Figure 2. While map-
ping the network Ng onto the graph Gg, we have computed the edge weight from the cor-
relation value and the STRING database’s functional association score for the correspond-
ing protein interactions [23]. 

 
Figure 2. Correlation matrix generated from the Differentially Expressed (DE) gene set with rows 
and columns corresponding to the differentially expressed genes, and each cell holds the measure 
of the difference in correlation values across the samples. 

Protein–Protein Interaction Network (Np) 
The PPI network created was used to extract the connectivity patterns of co-ex-

pressed genes corresponding to the DE set of genes. While mapping this network Np onto 
the weighted graph Gp, the connection strength among the proteins was also considered. 
The node weight and link weight were assigned considering this topology feature of pro-
teins. Accordingly, the eigenvalue for each protein in the network was computed to ex-
tract its influence over the entire network. 

As an accurate centrality measure, the eigenvector considers neighbouring nodes of 
the current nodes. It is described as a function of the degree of current vertex ni and its 
adjacent vertices. For a given matrix A corresponding to the input graph, a scalar λ is an 
eigenvalue if it satisfies the condition AV = λV, and V is a non-zero vector, considered the 
eigenvector corresponding to λ. To represent the connection strength, different centrality 
measures are used. One simple approach is using degree centrality, which considers only 
the number of connections of the given protein in PPI network. The eigenvector is a more 
efficient method, which considers the connection strength of the current node as well as 
the connection of associated neighbours. Thus, this measure gives an accurate quantity 
for connection strength among proteins. The selection of the most suitable node/gene in 
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the network is more important, as far as the subnetwork extraction is concerned. This node 
selection is done based on the weights assigned to the nodes. The eigenvalue is a signifi-
cant part in defining weights. 

Here, the protein network Np is the input matrix for eigenvalue computation. The R 
function was used to derive an eigenvector of size m, which corresponds to the number of 
vertices in the protein network. In contrast, while mapping Np → Gp, two vectors Vp for 
vertices and Ep for edges were generated. Here, the result of eigenvalue computation Veig 
was assigned to Vp as the weight of nodes in graph Gp. Each node of Gp was assigned a 
weight wi, where wi ϵ Veig. 

To compute the edge weight in Gp, the maximum score of proteins forming the edge 
is taken. For each edge ei ϵ Ep, if ei is composed of (gk, gl), then 

w (ei) = max [w(gk), w(gl)] (3) 

Generating the Final Network (Nf) 
The final network creation has now been reduced to the weight integration process. 

The weights of Nf will reflect both functional properties and topological properties. The 
size of the edge set becomes the same as the number of links in Np. The node weight be-
comes 

c1 × gi(w) + c2 × eigen_value (4) 

where c1 and c2 are tuning parameters. Here, we assigned 0.5 to assign equal weights to 
both the factors. Similarly, the edge weight is calculated as 

d1 × total_linkweight (Gg) + d2 × link weight (Gp) (5) 

where d1 and d2 denote tuning parameters to adjust weight contributions. Various combi-
nations of values between 0.1 and 0.9 were used as the tuning parameters. However, based 
on the results obtained, the final value pair was chosen as (0.5, 0.5). The graphical repre-
sentation of the integrated network is given in Figure 3. In the figure, only the elements 
that are to be combined are shown. The parameters for combining the attributes are not 
included in the weight representation. 

 
Figure 3. Graphical representation of the portion of the integrated network with final weights. Node 
weight comprises the differential weight of the gene gi and the topological weight of the correspond-
ing protein pi. Edge weight comprises the correlation value of genes and the connectivity score of 
proteins in the PPI graph. 
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2.2.3. SDA Algorithm 
Nature-inspired algorithms have been proven as efficient in solving diverse optimi-

sation problems, including biodata mining [24]. SDA is a recently developed optimisation 
algorithm suitable for path-finding applications. The algorithm mimics the behavior of 
dogs, described as agents, in order to detect the optimum path. Dogs are creatures known 
for their sniffing as well as memorising ability and therefore are trained for various target-
finding applications. They also mark their region or territory by some specific biological 
mechanism, such as urination. Due to the superior capacity of olfactory cells, they can 
easily identify marked smell spots while searching paths to reach their destination. More-
over, this is a suitable mechanism that prevents other dogs from entering one’s territory. 
The basic SDA algorithm was developed and applied successfully for solving shortest 
path problems [25]. There exist plenty of optimisation problems known to be Non-deter-
ministic Polynomial time (NP)-hard but easily solved by a nature-inspired metaheuristic 
approach. The basic SDA algorithm applied on the shortest path problem finds the opti-
mum solution in a parallel search mechanism, achieved through multiple agents perform-
ing the search. 

The agents (dogs), as well as smell spots (search points), constitute the algorithm en-
vironment. Initially, each agent is assigned an identification code known as a signature 
and a region size. These agents search for the nodes in their own territory by exploring 
the most suitable unmarked spot. The most suitable node is chosen based on the amount 
of smell value secreted by it. This exploitation terminates when an agent reaches the des-
tination. All the agents with varying capacities are expected to find independent paths. 
Finally, the algorithm returns the optimised path with respect to a suitably defined objec-
tive function. 

One of the most successful applications of the SDA algorithm is seen in the field of 
advanced computer networking. In software-defined networks (SDN), the centralised 
controller has applied this algorithm to find the optimal path for packets [26]. In this pa-
per, we extended the basic algorithm to modify a few properties to provide the algorithm 
the ability to return the global optimum module out of the huge molecular network. In 
the basic algorithm, all agents start from the same start location. Additionally, the search 
process terminates at the destination node. In the proposed SDA algorithm, each agent 
will begin searching from different nodes, and the termination criterion is set as per the 
accepted region size. The detailed steps devised for subnetwork extraction from our inte-
grated network are given as Algorithm 1. 

Algorithm 1 SDA 
Input: Weighted Network Nf {Vf, Ef}, Module size m 
Step 1: Initialize source positions: sr[] 
Number of agents na 
Number of smell spots ns = Vf, gene count 
Step 2: Create smell spots/nodes 
i) Assign smell value by 
s = c1 × x + c2 × y, x and y are the differential and topological weight of nodes 
c1 and c2 are tuning coefficients 
ii) Mark node as ‘unvisited’ 
Step 3: Create agents and assign start nodes to each agent 
For i = 1 to na 
st[ai] = sr[i] 
Step 4: Initialize link smell as sl = Ef 
Update smell value by 
sl = sl + δ × p, δ: smell decrement constant, 
p: accumulated weight from the current node 
Step 5: For each agent ai 
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current node = st [ai] 
while (path size < m) 
Find neighbour list nb[] 
Choose the next node Nx from nb[] 
if (Nx = Unvisited) and (link smell is maximum) 
Include Nx into path and mark Nx ‘visited’ 
Compute total path weight F 
Step 6: Return the maximum weight path as solution 

The objective function for SDA has been defined based on both the measure of dif-
ferential expression and the topological strength. These two aspects were computed and 
assigned as weights on nodes and edges in the network. The algorithm finally generates 
the optimum path, which has the maximum weight based on the following objective func-
tion 

F = 1/m ∑ wi + 1/q ∑ w (gi, gj) (6) 

for node count m and edge count q. 
The algorithm parameter agent_count was given different values by keeping other 

parameters fixed. For the same agent_count value, the algorithm was run ten times with 
varying start points. The final value was taken by computing the average of all objective 
function values. Though much significant difference was not observed with objective val-
ues, the optimum performance value found was 8. The smell update coefficient was used 
as the proportionality coefficient when agents put smell value for protein–protein links. 
Unlike the basic SDA algorithm, here, δ was applied as an increment constant. Accord-
ingly, we put different values for δ, and the value corresponding to the maximum objec-
tive value was chosen (Figure 4). As the number of nodes increases with the k value, the 
objective value is also increased. Finally, the robustness of the algorithm is checked by 
running the same process repeatedly with different parameter combinations. 
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Figure 4. Objective function based on varying values of parameter δ. The smell update coefficient 
takes the value 0.5 corresponding to the maximum objective function. Agent_count represents the 
number of agents used by the algorithm for finding separate paths. After performing multiple 
runs, final value is taken as 8. 

2.2.4. Pathway Enrichment Analysis 
The association of the SDA-derived subnetwork with various functional pathways 

was investigated through the DAVID (Database for Annotation, Visualization and Inte-
grated Discovery) tool [27]. It is a database which provides gene annotation as well as 
functional details curated by sophisticated experiments. The genes of our module were 
analysed by the tool so as to extract the biological processes and pathway enrichment. 
From the results, pathways with p-value < 0.05 were considered as the most significant 
ones in the disease. 

3. Results 
3.1. TNBC Data Analysis 

Triple-negative breast cancer is one of the most aggressive subtypes of cancer in 
around 15% of the detected cancers. The absence of three receptors—estrogen, progester-
one, and hormone epidermal growth factor receptor 2 (HER2)—characterises TNBC in 
tumor samples. The data set GSE15852 used in this study consists of samples collected 
from patients of different age groups [28]. After analysing the dataset with the limma 
package, we obtain the table with values generated for parameters p-value, adjacent p-
value and log(fc) value. To filter DE genes, we have set the selection criterion as adjacent 
p-value < 0.01 and |log(fc)| ≥ 1. As the resulting gene set size was too small, the log(fc) 
cut-off was reduced further to 0.5. This step has helped to include more relevant genes in 
the derived list. Thus, we obtained a list of 1478 genes, which was used for the network 
construction. 

3.1.1. Extracting Paths 
The network corresponding to the DE gene set was created by integrating gene–gene 

correlation data and protein interaction data. The curated network has 1478 genes and 
21,320 connections. This network is applied to the SDA algorithm to extract the dys-regu-
lated subnetwork. Here, the algorithm used different agents to find modules starting from 
different locations, and the maximum weighted module is designated as the optimum 
one. Similar to the behaviour of dogs that are reluctant to enter another one’s territory, the 
paths developed by the agents will also be unique. As per the size given, the algorithm 
derived different paths with different weights and returns the optimum one with the high-
est weight value indicating maximum dys-regulation of the involved elements. 

3.1.2. Evaluating and Comparing Algorithm Performance 
This section analyses the performance of the proposed SDA algorithm in the module 

extraction process. Additionally, the solution quality is compared with another efficient 
optimisation approach known as the Artificial Bee Colony (ABC) algorithm [29]. The ABC 
algorithm mimics the foraging behaviour of honey bees and provides sufficient explora-
tion ability. Thus, it provides global optimum solutions to many optimisation problems. 
Here, the SDA performance is measured in terms of the objective function value corre-
sponding to various agent counts. These objective values are compared with the objective 
values of the ABC algorithm corresponding to different bee counts, as in Table 1. 
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Table 1. Comparing performance of the proposed algorithm and Artificial Bee Colony (ABC) algo-
rithm. 

SDA Algorithm 
No. of Agents Objective Value Time (s) 

4 111.1 0.03 
8 110.98 0.05 

12 111.0 0.07 
14 111.5 0.08 

ABC Algorithm 
No. of Bees Objective Value Time (s) 

20 104.37 0.238 
30 105.18 0.467 
40 108.94 0.574 

It is seen that the number of agents required is less in SDA compared to the ABC 
algorithm to obtain higher objective values. Although we can increase the bee count to 
obtain a high-quality solution, the time complexity will also increase tremendously. To 
maintain the balance between the solution quality and the time requirement, we cannot 
increase the bee count beyond a particular limit. 

Apart from this, the time complexity of both the algorithms are also compared. The 
ABC algorithm involves objective value computation for every iteration by each worker 
bee. Computing the objective value itself requires the path tracing process within the net-
work, which is of complexity O(n3). Accordingly, the total complexity of the algorithm 
becomes N*O(n3) for N worker bees and a network with n nodes. Analysing the agent 
processes in the SDA algorithm, each agent explores the path with nlog (n) complexity. 
Thus, for k agents, the total complexity becomes k*nlog(n). However, as the value of k is 
too small compared to the value of n, it is approximated to nlog(n). Therefore, it is ob-
served that the time complexity of the proposed SDA algorithm is less than the ABC al-
gorithm. 

The computing time of both the algorithms is also noticed and given in Table1. It is 
observed that the time taken by the SDA algorithm is less than the execution time of the 
ABC algorithm. 

One existing challenge in module identification problems is the non-availability of 
benchmark functions for evaluating the obtained modules. Existing approaches apply 
topological features, such as connectivity and hub nodes, to rank the resulting module. 
Some other tools, such as DIAMOND, make use of the similarity index regarding other 
disease modules. A few of them search for the existence of drug targets in the subnetwork. 
However, no other statistical measures were used to evaluate the obtained module. None 
of these methods, including disease module detecting tools, have done statistical, func-
tional and target-related measures for analysing the module. The list of DE genes, network 
links and the generated subnetwork for TNBC data are given in Supplementary File S1. 
Figure 5 depicts the visual representation of the dys-regulated module obtained for TNBC 
data. 

The nodes in the subnetwork have higher weight values with respect to the differen-
tial expression and connectivity within the network. Further analysis of molecules in the 
subnetwork was done based on the weight values. The Cytoscape tool was used to gener-
ate the colour gradients for nodes based on the weight values [30]. Low-weight nodes are 
assigned yellow colour. As the weight values increase, the intensity reduces, and thus, the 
medium-weight nodes appear white in colour. The top nodes are assigned a purple col-
our. To verify the connectivity between the nodes, a degree-based view of the subnetwork 
is also generated as in Figure 6. By analysing this figure, it is observed that the nodes 
within the module are strongly interconnected. One peculiarity of the subnetwork is that 
the nodes are interconnected, and the degree will be high. The Cytoscape generated view 
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shows that the nodes within the module are of a higher degree, and the nodes are strongly 
interconnected. 

 
Figure 5. Visual representation of SDA derived dys-regulated subnetwork for Triple Negative 
Breast Cancer (TNBC) with 60 nodes and 940 edges. The nodes correspond to the genes in the opti-
mum path with optimum weight values. The varying weights in increasing order is represented as 
colour gradient between yellow and purple. 

 
Figure 6. Degree-based view of the TNBC module generated by Cytoscape showing higher con-
nectivity among the nodes. 
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3.1.3. Evaluating Biological Significance 

Association with Disease 
The proposed SDA algorithm outputs the maximally weighted module comprising 

many genes highly associated with TNBC. After analysing genes in the subnetwork, 80% 
of the genes were found to be functionally significant. EGFR, TP53, BIRC5, TOP2A, JUN, 
BRCA1, IL6, AR, STAT3, CTNNB1, MYC, VEGFA and FEN1 were a few among the genes 
found in the module. DisGeNET is a novel platform that consists of associations between 
over 15,000 genes and diseases [31]. It is a rich repository of data curated from the Genome 
Wide Association Studies (GWAS) database and text-mined data to provide information 
about many complex diseases. When searched for disease-gene associations, it was found 
that ESR1, AR, PIK3CA, CTNNB1, BRCA1, IL6, EGFR, STAT3, MYC, etc., are linked to tri-
ple-negative breast cancer. Around 40% of the identified genes have a disease association 
score, DSA ≥ 1 in DisGeNET. Moreover, most of these genes act as biomarkers of the same 
disease. TNBCdb is another database that serves as a resource for TNBC by providing 
information on differentially regulated genes, molecular functions, and signalling path-
ways [32]. 

As shown in Table 2, 50% of the subnetwork genes were verified by DisGeNET as 
prognostic factors in TNBC, and 75% of the identified genes were verified by TNBCdb. 
We found many works in literature detecting different genes such as BRCA1, PIK3CA, AR, 
and PTEN as potential biomarkers of TNBC [33]. Studies show that alterations in BRCA1 
lead to dysfunction of DNA repair, checkpoint control of the cell cycle, and transcription. 
It also raises the risk for breast cancer and is considered one of the prominent genetic 
markers in TNBC [34]. Androgen Receptor (AR) plays a significant role in 90% of all breast 
cancers [35]. Another study performed on tissue microarray samples collected from 287 
TNBC patients revealed AR involvement in 26% as overexpressed [36]. Similarly, tyrosine 
kinase receptor EGFR is involved in various cellular processes such as proliferation and 
angiogenesis. It also takes part in apoptosis inhibition by initiating a signalling cascade. A 
majority of TNBC samples have shown differential expression of EGFR and therefore 
treated as a potential biomarker. One noticeable point is that we obtained two candidate 
genes, PIK3CA and PTEN, in our derived subnetwork of TNBC. It has been shown that 
these two serve as cytoplasm biomarkers of TNBC with leading activities [37]. PIK3CA is 
involved in cell growth, proliferation, and cell death inhibition, leading to cancer. PTEN 
is also known as a tumour suppressor gene, inhibiting the signalling pathway lead by 
PIK3CA [38]. 

Table 2. Module gene associations with diseases for TNBC gene set, verified with other methods. 

Molecules Approved/Undergoing Studies Significance Observed 
Genes in SDA Module 
Overlapped with Other 

Methods 

Number of Overlapped 
Molecules 

BRCA1, BRCA2, EGFR, PIK3CA, AR, PARP, PD1, PDL1, TP53, 
FGFR, VEGF, TROP2, NOTCH [34,36,37] Biomarker 

BRCA1, EGFR, PIK3CA, AR, 
PTEN, VEGFA, TP53 7 

VEGF, EGFR, FGFR, PD1, AR, CTLA4, AMPK, MDM2, MTDH, 
ATR, CHK1, WEE1, HSP90, CDC25, BRCA1, IGF1, AKT, 

PIK3CA, PTEN, PARP, CDK4, CDK1, STAT3, IL6, TOP2A [39–
42] 

Drug targets under clinical 
validation/pre-clinical evalua-

tion 

CDK4, CDK1, PTEN, AR, 
PIK3CA, TOP2A, STAT3, 

IL6, BRCA1, HSP90, 
VEGFA, IGF1 

12 

PLK1, CTNNB1, IGF1, AURKA, PCNA, HSPA4, EP300 Proposed targets Chosen based on weights  

Genes found in DisGeNET database Disease associated genes 
AR, PIK3CA, CTNNB1, 

BRCA1, IL6, EGFR, STAT3, 
MYC, etc. 

32 

Genes found in TNBCdb database Disease associated genes  45 

The significance of genes included in the SDA-derived module for TNBC data was 
validated with studies in literature. Disease-associated genes, biomarkers and druggable 
targets were identified in the subnetwork and validated with results of other methods. 



Biomolecules 2022, 12, 37 13 of 21 
 

Drug Targets 
Due to the highly complex biology of TNBC samples, a thorough study became nec-

essary in finding effective drug targets. Aiming at targeted therapy for this heterogeneous 
disease, more specific molecular targets are to be identified. Most of the identified bi-
omarkers were clinically validated as promising targets. On analysing the obtained result-
ant subnetwork, a few already proven molecular targets were detected. We observed that 
the identified molecules in the derived module could act as clinically verified targets as 
well. BRCA1 is one such biomarker that exists within the nucleus and is targeted by plat-
inum drugs. HDACs are expression regulators playing an important role in TNBC. Effec-
tive clinical experiments are going on involving this genetic marker as a target [39]. Sev-
eral clinical trials are underway targeting AR and sufficiently tolerated in different phases. 
Studies show that STAT3 and IL6 act as mediators for target genes AKT and ERK. Also, 
application of the drug Bazedoxifine seems to block IL6 stimulated processes such as cell 
viability, proliferation, etc. [40]. Alterations in TopoisomeraseII alpha (TOP2A), com-
monly amplifications, were seen in different breast cancer subtypes. Moreover, it is exper-
imentally proved that TOP2A acts as a predictive response to anthracycline application 
[41]. We found that 24% of proteins are either druggable targets or closely linked to drug-
gable targets. The inhibiting function of HSP90 by Simvastatin was proved to be effective 
against TNBC [42]. This emphasizes the role of heat shock protein 90A extracted by our 
module as a valid drug target. In short, 50% of the genes in the identified module are 
tightly associated with a disease state, and 20% of the genes are utilised in drug-related 
clinical experiments. 

The aforementioned already proved drug targets and relevant biomarkers are in pur-
ple in the subnetwork of Figure 5. Apart from these, a few more genes were also found in 
the top position of our extracted module and appear in dark purple. 

Proposed Targets 
The constituent molecules of the derived subnetwork are filtered based on the gene 

function and weight values to be proposed as novel drug targets. Accordingly, based on 
the behaviour in TNBC, ESR1 is not considered for the analysis. On analysing the weights, 
it is observed that the top-weighted molecules such as TP53, MYC, JUN, etc., are already 
validated biomarkers or drug targets. Therefore, a weight threshold is applied as a filter 
to extract molecules that are significant but not over-researched. As the weight is defined 
using (eigenvalue, log(fc)) pair, the threshold is fixed as 0.7 < log(fc) < 0.95 and 0.4 < eigen 
< 0.6. Accordingly, the genes with weight values in this range are identifies as PLK1 (0.52, 
0.79), CTNNB1 (0.6, 0.82), IGF1 (0.44, 0.85), AURKA (0.50, 0.91), PCNA (0.44, 0.79), HSPA4 
(0.49, 0.86) and EP300 (0.6, 0.79). Apart from these, GAPDH is also proposed as it has 
higher weights (0.85, 0.86) but not explored much. All these molecules can be subjected to 
further analysis for consideration as targets. 

Searching for the applicability of these molecules as drug targets, it is seen that a few 
studies are conducted involving some of these genes as drug targets. PLK1 is a gene that 
is suggested through siRNA-mediated knockdown screening [43]. IGF1 is found to be a 
part of a signalling pathway which promotes growth of TNBC cells [44]. Thus, it is a novel 
candidate for the TNBC drug target. 

Targets of Synergistic Drugs 
As complex diseases such as cancer are caused by multiple proteins, a combination 

of drugs would help combat diseases effectively. Searching for such proteins that act as 
targets for synergistic drugs was one of our motives. Accordingly, we searched for the 
potential of proteins present in our derived module for TNBC during analysis. It has been 
observed that an in silico study involving synergistic drugs action against certain target 
proteins revealed the efficacy of those drugs on multiple target proteins in TNBC tissues. 
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The combination of afatinib and YM155 exhibited a synergistic cytotoxic effect across mul-
tiple TNBC models by inhibiting BIRC5 and EGFR proteins [45]. Our module also has 
these two proteins BIRC5 and EGFR that can be denoted as synergistic targets. Addition-
ally, the proteins which are identified as targets can be analysed further to showcase syn-
ergistic effects of associated drugs. 

Pathways Identified 
The derived subnetwork is expected to contain genes that belong to some significant 

functional pathways. Accordingly, the obtained TNBC module genes were submitted to 
the KEGG tool. It has returned 70 pathways contributing to various cellular and other 
functionalities. We have evaluated the genes involved in those pathways with a p-value < 
0.05 and observed that 82% of the module genes span over these KEGG pathways. Table 
3 shows a few pathways comprising module genes and found relevant in cancer progres-
sion and other cellular processes. 

Table 3. Top five pathways identified by KEGG tool from the TNBC subnetwork. 

Pathway Description p-Value Genes Present 

hsa04110: Cell cycle 3.84 × 10−17 
HDAC1, BUB1B, CCNA2, CDC20, CCNB1, MYC, MCM3, CDK1, MCM4, EP300, 

MCM5, ATM, TP53, MCM2, MAD2L1 

hsa05200: Pathways in cancer 5.49 × 10−16 
HDAC1, PTEN, FGF1, EGFR, MYC, CASP3, TP53, MAPK1, EP300, JUN, HSP90AA1, 

STAT3, FN1, IGF1, FOS, VEGFA, AR, IL6, PIK3CA, BIRC5, CTNNB1, KRAS 
hsa04115: p53signalling path-

way 
5.18 × 10−8 CCNB1, RRM2, CDK4, CASP3, PTEN, CDK1, ATM, TP53, IGF1 

hsa04915: Estrogen signalling 
pathway 

1.35 × 10−5 HSP90AA1, JUN, PIK3CA, MAPK1, KRAS, FOS, ESR1, EGFR 

hsa05202: Transcriptional mis 
regulation in cancer 

0.0022 IL6, HDAC1, MYC, ATM, IGF1, TP53 

Pathway enrichment analysis of genes found in the TNBC subnetwork was conducted. For a cut-
off p-value < 0.05, 55 functionally relevant pathways were obtained, and five are shown here. The 
list of all pathways is given as Supplementary File S3. 

After obtaining the enrichment of disease-relevant elements within the SDA-derived 
subnetwork, a comparison is done with enrichment in other methods. The presence of 
relevant drug targets, biomarkers and pathways in the TNBC module is compared with 
that of IODNE, as well as MCODE [20,46]. MCODE is a tool developed based on a clus-
tering technique and returns multiple modules with varying scores. IODNE was devel-
oped using the Minimum Spanning Tree technique for extracting modules from networks 
of breast cancer data. We have analysed the results of these techniques, and the estimate 
taken is shown in Table 4. 

Table 4. Comparing enrichment of significant elements in the subnetwork. 

Method Path Size Disease Genes (%) Drug Targets Significant Pathways Biomarkers 
MCODE 88 32 (36%) 7 4 9 

MST 58 37 (64%) 10 2 7 
SDA 60 45 (75%) 10 7 12 

It is observed that SDA-derived module has the highest enrichment compared to the 
modules of other techniques. This observation proves the superiority of the proposed ap-
proach in deriving subnetworks from biological networks. 
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3.1.4. Statistical Assessment 
Considering the quality of the obtained modules, a statistical evaluation is as im-

portant as biological validation. Here, we have used the modularity index, known as “lo-
cal modularity,” as one evaluation criterion [47]. 

In the graph corresponding to our generated network Nf, we know all the connection 
details of a small portion S (subgraph), and for the remaining portion S’ in G, we know 
only nodes that are adjacent to S. Consider those nodes in S that are connected to at least 
one node in S’, then these nodes said to constitute a boundary for S. This boundary B is 
said to be sharp if it has a smaller number of connections to S’ but more connections with 
nodes in the community S. In such a context, local modularity R is defined as 

R = ∑ (Bij δ(i,j)) / ∑Bij (7) 

Here, δ(i,j) becomes 1 if there exists a link between B and S; otherwise, it will be 0. As 
per the definition, to keep the best modularity, the R-value is expected to be low. We com-
puted R for the obtained module, and it is 0.17, which is low. This indicates the quality of 
the derived module. 

3.2. CRC Data Analysis 
CRC is another type of cancer that leads to a higher death rate among men of a par-

ticular age group [48]. Initiated as adenoma, this disease may develop into a metastasis 
condition with adverse effects on other organs [49]. As with other cancer types, CRC is 
also treated with targeted therapy, prepared for affecting predominant markers, such as 
VEGFA and EGFR [50]. Here, we have used two data sets, GSE77953 and GSE113513, for 
analysis [51]. After the normalisation process by the limma package, differentially ex-
pressed genes were extracted using GEO2R. After we applied the criteria p-value < 0.01 
and |log(fc)| > 1, we obtained two DE gene lists S1 and S2 comprising 1945 genes and 1748 
genes, respectively. Then we have extracted common genes of these two lists and obtained 
a list of 245 relevant ones. However, our aim is to construct a network of genes with func-
tional and topological significance. Therefore, we have extracted a subset of genes with 
|log(fc)| > 1.5 from both S1 and S2. These genes were combined with common 245 genes, 
and finally, a DE list of 825 genes was curated. 

The network was constructed, and weight was assigned based on the gene interaction 
values and topological scores. The curated network has 825 nodes and 7127 links. Then 
SDA algorithm with random start nodes was applied to this network. The extracted 
subnetwork was visualised using Cytoscape. The resultant optimum module consists of 
60 nodes and 666 edges, and the relevance of each molecule was investigated. The DE 
gene list, edge list of network and the output genes in the generated module are provided 
in Supplementary File S2. 

Validating result: The data of differentially expressed genes itself is found to be sig-
nificant for understanding the mechanism of CRC. This is due to the lack of enough mo-
lecular data in the form of targets and dys-regulated genes. Therefore, the obtained set of 
DE genes was compared with the gene list compiled by other methods. Among the com-
mon 245 genes, 90% of genes were matched with the results of the mRmR (maximum 
relevance minimum redundancy) method and the Human Protein Atlas database [52,53]. 
The dys-regulated subnetwork for CRC was extracted using the SDA algorithm run with 
seven agents. The obtained module is shown in Figure 7. 

To evaluate the significance of genes/proteins in the obtained module, we have con-
sidered a few techniques in literature, and the findings in comparison are given in Table 
5. A bioinformatics analysis was done on CRC gene expression data using existing tools, 
and a dense module of candidate genes was obtained by Chen et al. [54]. Among the 16 
genes found within this module, extracted by Cytoscape, 11 genes were overlapped with 
genes found by our approach. As one of our criteria for deriving dys-regulated module 
was maximally connected module, this high number of overlapped genes (78%) indicates 



Biomolecules 2022, 12, 37 16 of 21 
 

the relevance of our obtained module in terms of connectivity. Additionally, the hub genes 
identified by this method overlap with the module genes in the SDA algorithm. The un-
derlying molecular mechanism of most cases of colorectal cancer has been proved to be 
associated with genes such as KRAS, APC, TP53, EGFR, etc. [55]. Our extracted subnet-
work contains most of these genes, including TP53, BRAF, PTEN, EGFR and APC variants. 

 
Figure 7. The optimum dys-regulated subnetwork generated by the SDA algorithm for CRC. The 
yellow nodes represent genes with low weights in the module and top-weighted nodes are purple. 

Table 5. Module gene associations with diseases for the CRC gene set. 

Gene Symbol Identified by Other Methods Significance Observed/Method 
Used Genes in SDA Module No. of Overlapped 

Genes 
TOP2A, CDK1, ECT2, FEN1, NEK2, BUB1B, RRM2, 
NCAPG, MELK, AURKA, CCNB1, DLGAP5, FANCI, 

CKS2, CEP55, CKAP2 
Dense module/Cytoscape [54] 

TOP2A, CDK1, FEN1, NCAPG, MELK, 
RRM2, AURKA, CCNB1, CEP55, FANCI, 

DLGAP5 
11 

TOP2A, PAICS, CDK1, CKS2, CKAP2, CEP55, 
VEGFA, NEK2, PHLPP2, RRM2 

Hub genes [54] 
TOP2A, CDK1, CEP55, VEGFA, NEK2, 

RRM2 
6 

BRAF, RAS, APC, TP53, EGFR, PTEN, SMAD4, 
MSH2, MSH6, MLH1 

Common onco genes and tumor 
suppressor genes [55] BRAF, TP53, EGFR, PTEN, APC  

BRAF, C1QA, C1QB, VEGFA, FCG1A, FCGR2A, 
FCGR2B, TYMS, EGFR, TOP1, DDR2, EPHA2, 

FGFR1, RET, TEK 
Drug targets [56] BRAF, TYMS, VEGFA, EGFR, TOP1 5 

- Proposed targets AKT1, CCNB1, HSP90AA1, JUN, CXCL8  
Relevance of genes found in the SDA-derived module for CRC data was assessed. By comparing 
with results by other tools, hub genes, dense module genes and drug targets were identified. 
Overall, 80% of genes in subnetwork was found to be validated with the compared techniques. 

3.2.1. Biomarkers and Drug Targets 
The most promising fact noticed in the results is approved drug targets in the ob-

tained module. A total of 15 most prominent Food and Drug Administration (FDA)-ap-
proved drug targets along with the associated drugs were presented in an ontology-based 
network analysis approach [56]. Among these target genes, five are present in the higher 
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weighted genes of the SDA-derived subnetwork. Overexpression of CDC20 was proved 
to be associated with a prognostic marker for colorectal cancer [57]. A recent study reveals 
the scope for further clinical studies to consider a well-known tumour-related gene MYC 
as an effective drug target. Based on the experimental data, it was suggested that inhibit-
ing c-MYC expression may stop tumour growth. Its downstream target genes also act as 
effective targets for tumours therapy [58]. CDK1, MAD2L1, MYC and CCNB1 were also 
proposed as biomarkers as they associate with cell cycling-related pathways [59]. 

3.2.2. Proposed Targets 
The gradient colouring given to the module nodes based on the weights makes 

higher weighted nodes appear in purple. Additionally, the analysis of module genes 
shows that the relevant molecules that are identified as drug targets and biomarkers are 
purple. Accordingly, molecules denoting the top-weighted nodes that appear in purple in 
Figure 7, and AKT1, CCNB1, HSP90AA1 and CXCL8 are proposed as drug targets for 
further analysis. 

3.2.3. Pathways Identified 
The KEGG database returned a set of pathways enriched with the module genes of 

CRC. It is found that these pathways are related to cell cycle progression, cancer-related 
function or signalling processes. Table 6 shows the significant pathways observed for CRC 
along with their functionality and involved genes. One of the obtained pathways repre-
sents the colorectal cancer pathway consisting of genes JUN, MYC, AKT1, BRAF and 
TP53. This result proves the fact that the derived dys-regulated subnetwork has a tight 
association with disease, and the genes are relevant in other biological processes as well. 

By analysing the genes present, it is observed that 80% of the module genes are pre-
sent in the functionally relevant pathways. Thus, it is evident that our proposed algorithm 
is capable of extracting the significant module in CRC data. 

Table 6. Pathways observed during analysis of CRC subnetwork genes. This table shows a few top 
pathways associated to cellular functions, signalling and cancer-related processing. 

Pathway Description p-Value Genes Present 

hsa04110: Cell cycle 1.89 × 10−14 
PCNA, CDKN2A, TTK, CDC6, CDC25A, CDC20, CCNB1, 

CDK4, MYC, CDK1, MCM4, ATM, TP53, ATR 
hsa04115: p53 signaling 

pathway 
8.55 × 10−9 CCNB1, RRM2, CDKN2A, CDK4, PTEN, CDK1, ATM, TP53, 

ATR 
hsa03010: ribosome 2.45 × 10−5 RPS15, RPS14, RPS9, RPS5, RPL23, RPL13, RPS2, RPL7 

hsa05200: Pathways in can-
cer 

3.20 × 10−5 HSP90AA1, JUN, CXCL8, CDKN2A, CDK4, MYC, PTEN, 
AKT1, BRAF, TP53, EGFR, VEGFA 

hsa05210: Colorectal cancer 6.76 × 10−4 JUN, MYC, AKT1, BRAF, TP53 
hsa04151: PI3K-Akt signal-

ing pathway 
0.0065 HSP90AA1, CDK4, MYC, PTEN, AKT1, TP53, EGFR, VEGFA 

hsa0401: MAPK signaling 
pathway 

0.0238 JUN, MYC, AKT1, BRAF, TP53, EGFR 

The pathway enrichment analysis by KEGG has returned 35 pathways for a cut-off p-value < 0.05. 
This table shows seven functionally relevant pathways comprising the top genes of the derived 
subnetwork. The list of all pathways is given as Supplementary File S3. 

4. Limitations and Future Work 
Our proposed approach has succeeded in extracting the de-regulated subnetwork in 

both TNBC and CRC data. In TNBC data, we could detect relevant target proteins, includ-
ing proteins for synergistic drugs. While analysing the CRC module, we could find a cou-
ple of disease biomarkers and drug targets. However, in the data modules identified, our 
approach failed to identify some particular marker genes. KRAS and PAICS are two sig-
nificant genes in CRC, but these were not included in the derived module. This may be 
due to the limited number of data samples taken for analysis. 
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Furthermore, we have considered microarray expression data for the analysis. With 
the advancements in sequencing technologies, RNA-Seq data sets are currently available 
for analysis. We could not use these transcriptome data for this study due to some tech-
nical constraints. However, our future work would concentrate on extracting RNA-seq 
data of cancer samples so as to derive more accurate results. 

Similarly, the limitation with the smaller number of samples would be overcome by 
extracting more data samples. Additionally, the differential expression analysis would be 
performed by highly sophisticated methods. The final DE gene list would be prepared by 
taking the common genes obtained by each data sample. This is expected to improve the 
confidence of the initial seed genes for further analysis. 

Another aspect of the de-regulated module that can be considered is the copy number 
variation count. Combining these three attributes would make the tool much more effec-
tive in module extraction. 

5. Conclusions 
We have proposed an optimisation framework to elucidate the dys-regulated sub-

network from a weighted network curated out of differentially expressed genes and the 
corresponding proteins. An efficient nature-inspired SDA algorithm was designed for this 
path extraction. The most promising feature of this algorithm was the reduced time com-
plexity of n (log n) for n number of nodes in the network. This algorithm has successfully 
derived the most optimum set of nodes and links based on the topological and differential 
expression scores. As we provided multiple agents, the algorithm has chosen the best path 
as the final result. These nodes were mapped to genes/proteins to form the molecular sub-
network to extract maximum biological information. Once we can extract such modules, 
we can process it further to mine useful information. 

The biological evaluation of the obtained genes in the module has revealed the effi-
cacy of our proposed approach. Due to the deadly nature and higher death rates, we have 
chosen TNBC and CRC data sets for analysis. Overall, in both these cancer types, 70% of 
the genes were biologically validated, including drug target prediction. In CRC, we pro-
posed new drug targets considering the significance of the genes in the derived module. 

Compared to the other approaches, the major advantage is that a single algorithm is 
sufficient to elucidate the module comprising of biomarkers, hub genes, drug targets, and 
other aspects. In most of the existing approaches, multiple tools and techniques are re-
quired to obtain all this information. 

Above all, these modules’ future applications can be further analysed to access syn-
ergistic drug targets for the concerned disease. Through effective mechanisms, the syner-
gistic targets which are likely to be bound by multiple drugs or small molecules can be 
recognised. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/biom12010037/s1, Supplementary File S1: Input network and subnetwork for TNBC, 
Supplementary File S2: Input network and subnetwork for CRC, Supplementary File S3: Pathways 
in subnetworks. 
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