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Abstract: A variety of cell types in pulmonary arteries (endothelial cells, fibroblasts, and smooth
muscle cells) are continuously exposed to mechanical stimulations such as shear stress and pulsatile
blood pressure, which are altered under conditions of pulmonary hypertension (PH). Most functions
of such vascular cells (e.g., contraction, migration, proliferation, production of extracellular matrix
proteins, etc.) depend on a key event, i.e., the increase in intracellular calcium concentration ([Ca2+]i)
which results from an influx of extracellular Ca2+ and/or a release of intracellular stored Ca2+.
Calcium entry from the extracellular space is a major step in the elevation of [Ca2+]i, involving
a variety of plasmalemmal Ca2+ channels including the superfamily of stretch-activated channels
(SAC). A common characteristic of SAC is that their gating depends on membrane stretch. In general,
SAC are non-selective Ca2+-permeable cation channels, including proteins of the TRP (Transient
Receptor Potential) and Piezo channel superfamily. As membrane mechano-transducers, SAC convert
physical forces into biological signals and hence into a cell response. Consequently, SAC play a major
role in pulmonary arterial calcium homeostasis and, thus, appear as potential novel drug targets for
a better management of PH.

Keywords: calcium; endothelial cell; fibroblast; mechanosensitive channel; pulmonary arterial
smooth muscle cell; pulmonary artery; pulmonary hypertension; Piezo channel; TRP channel;
vascular cell

1. Introduction

Pulmonary arteries (PA) are continually subjected to mechanical forces exerted by
circulating blood on the three-layered vessel wall (i.e., intima, media, and adventitia)
(Figure 1). Among these forces, shear stress and pulsatile blood pressure are the most
notable (for review see [1]). Shear stress, the frictional force generated by blood flow, is
parallel to the vessel wall and mainly acts on pulmonary arterial endothelial cells (PAEC)
which are longitudinally aligned and form the inner tunica of the vessels. Conversely, blood
pressure is a perpendicular force that causes a circumferential and a longitudinal stretch to
the vessel wall, proportionally to the cardiac output resistance. Blood pressure acts both on
pulmonary arterial smooth muscle cells (PASMC) which align circumferentially and form
the median layer, and, to a lesser extent, on PAEC.
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Figure 1. Hemodynamic forces acting on the vessel wall. Section of an artery wall showing that the
endothelial cells, forming the inner tunica, are longitudinally aligned, whereas smooth muscle cells,
forming the median layer, are circumferentially aligned; the surrounding adventitia predominantly
includes fibroblasts and matrix. Shear stress, frictional force generated by blood flow, is parallel to
the vessel wall, whereas blood pressure is perpendicular to the vessel wall, causing circumferential
and longitudinal stretching. Beside blood mechanical forces, composition of extracellular matrix,
contributing to arterial stiffness, may itself modulate compliance and mechanotransduction in the
vessel wall.

Shear stress and blood pressure have opposite effects: the former, acting on PAEC, in-
duces a vasodilatation, whereas the latter, acting on PASMC, exerts an intrinsic vasomotor
mechanism termed “myogenic tone” [2]. However, these two phenomena are conveyed
through an elevation of the intracellular Ca2+ concentration ([Ca2+]i) that involves the su-
perfamily of stretch-activated channels (SAC) and acts as an intermediate to physiological
responses. Indeed, shear stress increases the [Ca2+]i in PAEC leading to a vasodilatation
via, particularly, nitric oxide (NO) production that, in turn, influences adjacent PASMC
contraction. Intravascular pressure, acting on PASMC, is also directly transduced by SAC,
which can serve as direct route for Ca2+ entry and/or cause membrane depolarization
which secondarily activates voltage-dependent Ca2+ channels. The resulting [Ca2+]i in-
crease subsequently activates PASMC contraction through activation of calmodulin and
myosin light chain kinase.

Beside blood mechanical forces, the composition of the extracellular matrix (ECM)
also contributes to arterial stiffness and may, per se, modulate mechanotransduction in
the vessel wall. Indeed, there is a complex crosstalk between ECM and vascular cells:
PASMC and pulmonary artery adventitial fibroblasts (PAAF) produce the ECM, which in
turn interacts with cells through SAC and different receptors such as integrins, altering
stiffness-dependent vascular cell activation [3].

Mechanical stretch affects all of the main cell types (i.e., PAEC, PASMC, and PAAF)
of the vessel wall and adapts the vessel tone to pressure in physiological circumstances.
An alteration of mechanical stimuli is observed under pathological conditions, such as
pulmonary hypertension (PH). Indeed, PH is a group of multifactorial pathological car-
diovascular disorders characterized by a progressive elevation of pulmonary arterial
pressure leading to right ventricular hypertrophy, heart failure and, ultimately, to pre-
mature death [4]. The recent haemodynamic definition of PH states that pre-capillary
pulmonary hypertension due to pulmonary vascular disease is diagnosed when mean
pulmonary arterial pressure of over 20 mmHg is associated with abnormal pulmonary
vascular resistance of 3 or more Wood Units [5]. PH is divided into five groups according
to clinical, hemodynamic, etiological characteristics, and treatment strategy: idiopathic and
heritable pulmonary arterial hypertension (PAH) (group 1), PH due to left heart disease
(group 2), PH due to lung diseases and/or hypoxia (group 3), PH associated to chronic
thromboembolism (group 4), and finally PH forms with unclear or multifaceted origins
(group 5) [4].

This is accompanied by an alteration of mechanical stresses to the vessel wall: an
increased myogenic tone [6], a reduced flow rate [7] that is responsible for a lower shear
stress [8], and a progressive PA stiffening [3]. In case of endothelium injury, occurring in
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PH or PA catheterization, especially during the measurement of pulmonary arterial wedge
pressure, PASMC can also be directly exposed to flow shear stress or elevated transmural
flow shear stress [9].

Although many mechanosensitive cellular components and extracellular structures
have been shown to contribute to mechanotransduction [10], in PA wall in particular, the
scope of this review is deliberately limited to SAC activation.

2. Stretch-Activated Channels

Plasma membrane SAC are referred to as mechanotransducers since they convert
physical forces into biological signals and hence into an adaptive cell response. In the
late 1970s, their existence was postulated by Corey and Hudspeth [11], before being elec-
trophysiologically characterized, a few years later, in embryonic chick skeletal muscle by
Guharay and Sachs [12]. Since their original characterization, SAC have been identified in
a variety of tissues and species including mammalian vascular cells (for review see [13–15])
and pulmonary vascular cells in particular [9,16–27].

A common characteristic of SAC is that their open probability increases with the ap-
plied pressure, i.e., that their gating depends on membrane stretch. In pulmonary vascular
cells, Ca2+ permeable non-selective cationic SAC share similar general electrophysiolog-
ical properties: I-V relationship of the evoked currents is almost linear with a reversal
potential around 0 mV and a unitary conductance around 30 pS [17–19,22,24]. Unlike
voltage-gated channels, very few pharmacological inhibitors are available for SAC. The
only specific one is GsMTx-4, a peptide toxin isolated from tarantula venom [28], which
has shown inhibitory effect on SAC in PAEC [26] and PASMC [19–22,24,25]. GsMTx-4 does
not act on a standard “lock and key” model, but acts by its incorporation into boundary
lipids surrounding the channel in a tension-dependent manner and thereby reducing the
transfer of force from the lipid bilayer to the channel [28]. In the context of PH, most
SAC inhibitors used in experimental studies are unselective blockers: amiloride and its
analogs, aminoglycoside antibiotics such as streptomycin [19,21,26], disulfonic stilbene
DIDS (4,4’-diisothiocyanatostilbene-2,2’-disulfonate) [17,22], and Gd3+ [17,19,21,25,26].
Their non-selectivity and potential side effects certainly explain the absence of clinical
studies.

As reviewed in [1], three general models are proposed to account for the activation
mechanisms of SAC: the “bilayer model”, the “tether model”, and the “secondary signal
model” (Figure 2).

In the “bilayer model” (Figure 2a), the tension developed in the lipid bilayer itself
is directly responsible for channel gating. Different mechanisms are also described for
this model in which intrinsic mechanosensitivity of the channel depends on dimensional
changes and/or hydrophobic mismatch (for review see [29]). This direct mechanical activa-
tion is supported by solubilization and liposome reconstitution experiments in which SAC
activity was maintained, as well as the kinetic and the reversibility of the current elicited
by stretch. In the “tether model” (Figure 2b), the force is transmitted to the channel via
proteins located in the extracellular matrix or the cytoskeleton or both. Thus, as demon-
strated by using agents that disrupt (such as cytochalasin and colchicine) or stabilize (such
as phalloidin) cytoskeleton or extracellular matrix organization, SAC opening depends on
the displacement of these proteins relative to the channel. In the “secondary signal model”
(Figure 2c), a distant mechanical-sensitive protein (e.g., phospholipase A2 or phospholi-
pase C (PLC)) can release a diffusible second messenger (such as arachidonic acid and
diacylglycerol (DAG)) or activate a kinase (such as protein kinase C (PKC)), which, in turn
can activate the channel. These different types of activation mechanisms could exist in
pulmonary vascular cells. Indeed, in PAEC and PASMC, a direct stretch activation of SAC
(“bilayer” and “tether” models) is supported by the fact that the stretch-induced current is
turned on and off without a noticeable delay [17,19,21,26]. Furthermore, SAC currents were
recorded in inside-out patch-clamp configuration, excluding the possible involvement of
secondary messengers, at the exception of enzyme-linked channels [17]. In contrast, some
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studies suggest an indirect mechanical activation (“secondary signal model”) in which
stretch leads to activation of PKC (via stimulation of PLC and production of DAG), which,
in turn, activates SAC [17,24]. Moreover, these two activation modes most likely trigger
converging pathways since numerous SAC are polymodal channels (see sections below).

Figure 2. Activation mechanisms of SAC. Three general models are proposed: (a) In the “bilayer model”, the tension
developed (red arrow) in the lipid bilayer itself is directly responsible for channel gating. (b) In the “tether model”, the force
is transmitted to the channel via proteins located in the extracellular matrix, the cytoskeleton, or both. Tensions are conveyed
by these accessory proteins to induce the channel opening. (c) In the “secondary signal model”, the channel activation
depends on a distant mechanical-sensitive protein generating diffusible second messenger or channel phosphorylation.

At the cellular and tissue levels, several strategies have been developed to investigate
SAC. Among cell-based assays (Figure 3), the most commonly used method is based on
membrane deformation including amphipathic compounds, elastomeric pillars, elonga-
tion of flexible cell substrates, magnetic particles, osmotic challenges, patch membrane
stretch, piezo-driven pressure, and shear stress (for review see [30] or [31]). These tech-
niques have been applied to pulmonary vascular cells in vitro [9,16–27,32]. An alternative
method consists in culturing cells in matrices of different stiffness in order to evaluate
the impact of the environment matrix on the cells. To this end, PAAF were cultured in
different stiffness polyacrylamide gels corresponding to a normotensive pulmonary artery
(0.5 kPa) or mimicking mild-severe PH (3-10 kPa) [33]. Furthermore, the effect of stretch
can also be studied in whole vessels for a more integrative approach using arteriography
or myography (Figure 4). In the former, a microvessel is cannulated at both ends with glass
micropipettes and placed in a microvascular flow system chamber, allowing intraluminal
pressure increase. In the latter, one end of the segment is anchored to a stationary support
and the other end is connected to a force-displacement transducer to monitor the vessel
contraction under resting tension corresponding to an adapted transmural pressure. These
protocols are commonly used to investigate myogenic tone [6,19,23] or basal stretch [22]
in small isolated intralobar PA. Mechano-dependent contraction of vessels can also be
induced by hypo-osmotic shocks [25].
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Figure 3. Experimental strategies to investigate SAC in cells. At the cellular level, several strate-
gies can be used to activate SAC. The most commonly used are based on membrane deformation:
(a) applying positive or negative pressure to the back end of the patch pipette, (b) poking of the
cell membrane by a piezo-driven glass pipette, (c) modifying the perfusion flow or the viscosity of
the solution, (d) using osmotic challenges: hypotonicity induces cell swelling, whilst hypertonicity
evokes cell-shrinkage, (e) elongating thin elastic silicone membrane where cells are seeded, (f) apply-
ing magnetic field to specific ligands coated with magnetic particles on the cells, (g) seeding cells
on elastomeric pillars to apply force to specific parts of the cells, and (h) using crenators and cup
formers (amphipathic compounds) to induce crenation or cup shapes. (i) Another alternative consists
in culturing cells in matrices of different stiffness, to evaluate the impact of the environment matrix
and more especially its stiffness.

As the increase in [Ca2+]i due to activation of Ca2+ channels plays a key role in
fundamental cellular processes involved in the pathogenesis of PH such as contraction,
migration, and proliferation, and thereby in vascular remodeling and hyperreactivity, PH
is often referred to as a vascular channelopathy. Thus, in the pulmonary vasculature, which
is continually subjected to mechanical forces, it is likely that facilitation of Ca2+ entry via
SAC contributes to development and/or maintenance of the pathology. Indeed, in PH
of group 3, hypoxia exposure could initiate, via the hypoxic pulmonary vasoconstriction
phenomenon [34], vascular tone elevation and subsequent SAC activation, contributing
to the early development of PH. In other PH groups, although not being the trigger, SAC
activation following alteration of mechanical stresses to the vessel could contribute to the
progression and/or maintenance of the pathology. Interestingly, SAC are more active in
PASMC from chronically hypoxic (CH) or monocrotaline (MCT) rats, two animal models
of PH, than in those from healthy rats [19,20,25]. Moreover, in the pulmonary vasculature
of normoxic rats, myogenic tone, sensitive to SAC blockers, is minimal as compared to that
in the pulmonary vasculature of CH rats [6,19,23]. In addition, hypoxia exposure induces
immediate upregulation of mechanosensitive TRPV4 channel in rat PA [23]. Thus, SAC
appear to play a major role in PA pathophysiological signaling. There is a growing body
of evidence implicating members of the Transient Receptor Potential (TRP), Piezo and
other families of ion channels in this mechanotransduction, which will be described in the
following sections.
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Figure 4. Experimental strategies to investigate SAC in vessels. At the tissue level, the effects of stretch can also be studied
in whole vessels using (a) arteriography: the microvessel is cannulated at both ends with glass micropipettes and placed in
a microvascular flow system chamber, allowing intraluminal pressure increase via modulation of inlet and outlet pressures
(Pin and Pout, respectively); or (b) myography: one end of the segment is anchored to a stationary support and the other end
is connected to a force-displacement transducer to monitor the vessel contraction under resting tension corresponding to an
adapted transmural pressure.

3. TRP Channels

TRP channels constitute a superfamily of non-selective cationic channels (Table 1) that
exhibit a common structure composed of N- and C-terminal regions containing protein
interaction motifs and six transmembrane domains (TM1-TM6). The putative ion conduct-
ing pore is located between the 5th and 6th TM domain. TRP channels are polymodal and,
hence, can be modulated by a wide variety of stimuli such as cold, heat, pH, membrane
potential, mechanical stress, neurohormonal signals, Ca2+ and Mg2+ ions, oxidative stress,
intracellular ligands, as well as vasoactive factors such as angiotensin-II, arachidonic acid
and its metabolites epoxyeicosatrienoic acids (EET), adenosine triphosphate (ATP), throm-
bin, endothelin-1 (ET-1), and serotonin (5-HT). According to their activation stimuli and
the presence of regulatory domains on the cytosolic N- and C-termini, TRP superfamily
is subdivided into seven main subfamilies: TRPC1-7 (Canonical), TRPV1-6 (Vanilloid),
TRPM1-8 (Melastatin), TRPP1-4 (Polycystin), TRPML1-3 (Mucolipin), TRPA1 (Ankyrin),
and TRPN (no mechanoreceptor potential C, NOMPC). Functional TRP are composed of
four homo- or heteromultimeric subunits. These latter display conduction properties and
regulatory mechanisms that are distinct from those of homomeric channels. TRP channels
are expressed in a wide range of cell types and, as Ca2+ permeable channels, they are
central actors in cellular Ca2+ homeostasis.
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Table 1. Biophysical properties of TRP channels in pulmonary arterial vascular cells.

Channel Cell Type
(Species) Conductance (pS) Permeability Activator Inhibitor PA Phenotype in KO

Mice References

TRPA1 - 9–16
53.1–62.8 - osmolarity

mustard oil HC030031 not described in PA [35]

TRPC1
human, mouse, and
rat PA (PAEC and

PASMC)
16 PCa/PNa < 10 stretch

store depletion
2-APB

Gd3+/La3+

reduced hyperreactivity,
remodeling, and
vasomotor tone

[36–39]

TRPC3 rat PA
human PASMC 66 PCa/PNa = 1.6

stretch
store depletion

DAG and analogs

2-APB
Gd3+/La3+ not described in PA [36–39]

TRPC4
human, mouse, and
rat PA (PAEC and

PASMC)
17.5–41 PCa/PNa = 1.1–7

store depletion, arachidonic
acid

calmidazolium

2-APB
SKF96365
Gd3+/La3+

niflumic acid DIDS

reduced vascular
permeability

(and remodeling in KO
rats)

[40–47]

TRPC5
human, mouse, and

rat PA
human PASMC

64 PCa/PNa = 9
stretch

hypotonocity
roziglitazone

2-APB
La3+ not described in PA [36,38,39,48–50]

TRPC6
human, mouse, and
rat PA (PAEC and

PASMC)
28–37 PCa/PNa = 4–5

stretch
hypotonicity

store depletion
DAG and analogs

2-APB
SKF96365

Cd2+, La3+, Gd3+

reduced hyperreactivity,
remodeling

and vasomotor tone
[36–39]

TRPM3 rat PA 65–133 PCa/PNa = 1.5–2 hypotonicity not described in PA [51,52]

TRPM4 rat PA 24–25 Na+//K+ > Cs+ >
Li+ stretch not described in PA [52–55]

TRPM7
rat PA

human and rat
PASMC

105
22–37

Zn2+ ≈ Ni2+ >> Ba2+

> Co2+ > Mg2+ ≥
Mn2+ ≥ Sr2+ ≥ Cd2+

≥ Ca2+

PNa/PCa = 3

stretch
osmolarity

not viable
→ conditional deletion:

reduced remodeling and
vasomotor tone

[52,56–59]

TRPP1 - 135–175 - PKD1
stretch - not described in PA [36,60]
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Table 1. Cont.

Channel Cell Type
(Species) Conductance (pS) Permeability Activator Inhibitor PA Phenotype in KO

Mice References

TRPP2 - 177 PCa/PNa = 1–5
shear stress

hypotonicity
triptolide

Gd3+/La3+
not described in PA

(conditional in smooth
muscle cells)

[36,37,61–63]

TRPV1 human and rat PA
(PAEC and PASMC)

35–80
(unitary)

143–144 (whole cell)

PCa/PNa = 10
(capsaicin-activated)

hypotonicity
capsaicin

2-APB
cannabidiol

resiniferatoxin

capsazepine
AMG9810
A784168

5’-Iodoresiniferatoxin

not described in PA [36,52,64]

TRPV2 human and rat
PASMC - PCa/PNa = 1–3

hypotonicity
stretch
2-APB

tranilast not described in PA [36,52]

TRPV4
human, mouse, and
rat PA (PAAF PAEC,

PASMC)

30–90
(unitary)

452 ± 63 (whole cell)
PCa/PNa = 6–10

hypotonicity
shear stress

4-αPDD
GSK1016790A

HC607047
RN-1734

GSK2193874

reduced hyperreactivity,
remodeling

and vasomotor tone
[23,36,52,65,66]
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Although the relevance in mechanotransduction has not been examined for many of
TRP channel isoforms playing important physiological functions in pulmonary vessels,
their mechanosensitivity in other tissues has been demonstrated, suggesting their putative
role as SAC in pulmonary vessels. Thus, we describe in this section their role in pulmonary
vasculature and involvement in PH.

3.1. TRPC

Among TRPC1-7 channels, TRPC1, TRPC3, TRPC4, TRPC5, and TRPC6 are sensitive
to mechanical stimulation [36]. Interestingly, these five isoforms are detected in PA from
different species including rat or human, and some of them play a role in PH [67,68].

3.1.1. TRPC1

TRPC1 was the first member of this channel superfamily to be identified in drosophila,
in 1995 [69]. This channel is expressed ubiquitously and can interact with some other TRP
channels such as TRPC4, TRPC5, TRPC6, TRPP2, or TRPV4 [70]. TRPC1 is a mechanosen-
sitive channel involved in store-operated calcium entry (SOCE) and receptor-operated
calcium entry (ROCE) in various cell types playing a role in cell proliferation and migra-
tion [36,37].

In the pulmonary vasculature, previous studies have demonstrated that TRPC1 is
expressed in PASMC and PAEC in rat, mouse, and human [68,71,72]. The role of TRPC1
in PA has mostly been studied under pathological condition of PH where it participates
in the worsening phenotype of the disease. TRPC1 expression is upregulated at mRNA
and protein levels in PA from PH animal models such as CH [68], MCT [73] or chronic
ligation of the left main PA (thromboembolic PH) [74]. In PASMC from PH rat, TRPC1
is involved in basal increase in [Ca2+]i and SOCE currents [68,74,75]. This dysregulation
of Ca2+ homeostasis increases PASMC proliferation, observed in PH [71], and promotes
PA remodeling and altered contraction responses [73,76]. Moreover, Bone Morphogenetic
Protein 4 (BMP4), which plays an important role in PA remodeling, increases SOCE cur-
rents through TRPC1 overexpression in PASMC. This process is dependent on p38-ERK1/2
MAPK pathway [77,78]. In a pre-clinical study using a CH-induced PH murine model,
Sun et al. demonstrated that intratracheal TRPC1 siRNA delivery reduces the production
of pro-fibrosis factors, increases endothelial nitric oxide synthase (eNOS) expression that
favors vasodilatation, and decreases pro-apoptotic factors, overall attenuating PH pheno-
type [79]. In accordance with this study, pulmonary vasculature remodeling in response to
CH is reduced in trpc1−/− mice [71]. Moreover, vasomotor tone and hypoxia-enhanced
5-HT vasoconstriction are also attenuated in these mice [76]. Furthermore, right ventricu-
lar hypertrophy and microvessels remodeling are suppressed in double knock out mice
trpc1−/−/trpc6−/−. Finally, sildenafil, a phosphodiesterase-5 (PDE5) inhibitor currently
used to treat PH, reduces TRPC1 expression, diminishing basal [Ca2+] and SOCE currents
in PASMC and, consequently, the severity of PH in a CH rat model [75,80]. Overall, these
findings indicate that TRPC1 plays a central role in Ca2+ homeostasis in PH and that
regulating its expression and/or function can be used as potential therapeutic means in the
disease.

3.1.2. TRPC3

TRPC3 is a mechanosensitive channel ubiquitously expressed, particularly in central
nervous and cardiovascular systems. TRPC3 can interact with some other TRP channels
such as TRPC1, TRPC6, or TRPC7 [70]. TRPC3 is involved in SOCE and ROCE playing
various roles in cardiovascular diseases [38].

TRPC3 is expressed in human and rat PA [81,82], in both PASMC and PAEC [38].
Moreover, this channel is upregulated in PASMC from patients with pulmonary arterial
hypertension (PAH), at mRNA and protein levels [50]. This increase is associated with an
increased SOCE [83]. However, to our knowledge, few studies reported a distinct role for
TRPC3 in pulmonary vasculature or in PH.
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3.1.3. TRPC4

TRPC4 is a ubiquitously expressed channel involved in ROCE/SOCE currents. This
channel is one of the main TRPC channels expressed in human, mouse, and rat PA. Al-
though stretch-induced TRPC4 activation has not been shown to be involved in PH, it can
be activated by a variety of stimuli including arachidonic acid, whose signaling pathway is
implicated in mechanosensitivity [42,43].

In smooth muscle and endothelial cells, TRPC4 plays an important role in regulating
microvascular permeability, agonist-dependent vasorelaxation, and gene transcription [67].
At cellular level, TRPC4 is involved in Ca2+ signaling, altering endothelial permeability in
PAEC [44,47]. In pulmonary vasculature, TRPC4 promotes pulmonary arterial constriction
and remodeling in rat SUGEN-Hypoxia PH group 1 model. Thus, trpc4−/− rats present
attenuated PA remodeling, reduction of plexiform lesions, associated with an increase of
survival [46,47].

3.1.4. TRPC5

Initially identified in the central nervous system, TRPC5 is a Ca2+ permeable non-
selective channel expressed in a range of tissues and cell types. Its expression in the
pulmonary vasculature is conflicting. In some studies, this channel was detected in PASMC
and PAEC [48] whereas in others, it was not detected in distal PA or PASMC [49] or
detected only in PASMC but not in PAEC [50]. Despite the fact that TRPC5 role is well
documented in the systemic vasculature, particularly in pathophysiological regulation of
vascular tone [60,84] or in angiogenesis [85], to our knowledge, no studies have reported a
distinct role for this mechanosensitive channel in PA or PH.

3.1.5. TRPC6

TRPC6 is a mechanosensitive channel ubiquitously expressed in vasculature. There is
some evidence that TRPC6 is involved in SOCE and ROCE, playing a role in numerous
biological processes including cell proliferation, myogenic tone, and agonist-induced
vasoconstriction modulation [37]. Moreover, TRPC6 is also directly activated by DAG.

In pulmonary vasculature, studies have demonstrated TRPC6 expression in PASMC
and PAEC in mouse, rat, and human [86,87], in proximal and distal PA [48,49,82,88].
Moreover, TRPC6 is also present in pulmonary venous smooth muscle [89]. Interest-
ingly, it plays various roles in PH. Firstly, TRPC6 expression is upregulated in human
PA from PH patients [50] and PASMC from idiopathic pulmonary arterial hypertension
(IPAH) patients [90], as well as in PH animal models such as CH [68] and MCT [91]. A
polymorphism in TRPC6 is also associated with an increased risk to develop IPAH [92].
Secondly, in PASMC, TRPC6 promotes SOCE and ROCE currents, and PASMC prolif-
eration [50,90,93]. Furthermore, TRPC6 has been implicated in the adaptive contraction
response of pulmonary vasculature to alveolar hypoxia [87]. Thirdly, trpc6−/− mice present
less pulmonary vasculature remodeling in response to CH associated with a decreased
vasomotor tone and hypoxia-enhanced 5-HT vasoconstriction response, attenuating the
pulmonary hypertensive phenotype [76,94]. In addition, bosentan, an endothelin receptor
inhibitor currently used to treat PAH, reduces TRPC6 expression, inhibiting cell prolifera-
tion [90]. Finally, as for TRPC1, sildenafil reduces TRPC6-evoked SOCE current in PASMC
and consequently the severity of PH in CH rat model [75,80].

Promising new inhibitor candidates have been recently studied for PH treatment.
Indeed, in CH or MCT rat models, chrysin, a component of medicinal plants, inhibits
PH-induced TRPC1/6 upregulation, modulates Ca2+ homeostasis, reduces PASMC pro-
liferation, and reactive oxygen species production, attenuating the PH phenotype (right
ventricular pressure and hypertrophy, and vascular remodeling) [95,96]. In the same
way, in CH mouse model, chloroquine, used for antimalarial treatment in Plasmodium
vivax malaria, reverses TRPC1/6 overexpression and decreases vascular remodeling [97].
Finally, in CH rat model, topotecan, a toposisomerase inhibitor already used for cancer
therapy, inhibits CH-induced TRPC1/4/6 overexpression and reduces [Ca2+]i in PASMC,
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improving hemodynamic parameters and attenuating artery remodeling and right ventricle
hypertrophy [98].

3.2. TRPV

Among TRPV channels, TRPV1 [99,100], TRPV2 [101], and TRPV4 [66,102,103] are
known to be mechanosensitive [104], especially to an osmotic stimulation [105].

3.2.1. TRPV1

TRPV1 is expressed in PAEC and PASMC [21,106–109], as well as in rat distal pul-
monary venous smooth muscle cells (SMC) [110]. This channel is permeable to Ca2+ and
contributes, to a large extent, to many Ca2+-signaling pathways including proliferation and
migration associated with PH [21,107].

To study the functional implication of TRPV1 in PASMC, a specific agonist, capsaicin,
has been used to induce Ca2+ responses [21,64,107]. In these cells, TRPV1 activation pro-
motes PASMC migration associated with specific changes in the cytoskeleton architecture
such as reorganization of F-actin, tubulin, and intermediate filament networks as well as
NFAT nuclear translocation [21,107]. Thus, TRPV1 could activate Ca2+/calcineurin/NFAT
cascade signaling pathway known to play a crucial role in the physiopathology of PASMC,
implicated in hypoxia-induced PA remodeling and proliferation [21]. TRPV1 mRNA and
proteins are increased in human PASMC exposed to CH, an in vitro model of PH [108].
Consistent with these observations, both capsaicin-induced increase of [Ca2+]i and channel
activity are enhanced in PASMC from IPAH patients [64]. On the contrary, inhibition of
TRPV1 by means of antagonists or knockdown reduces human hypoxia-induced PH [108]
and IPAH PASMC proliferation [64]. Another evidence of TRPV1 role in proliferation is
the response of rat PASMC to acute exposure to silicium dioxide nanoparticles. After such
an exposure, the increase of the [Ca2+]i and a proliferative response are greater in PASMC
isolated from rats with PH than in those from control rats, and these responses are inhibited
in the presence of TRPV1 antagonist [111]. Although TRPV1 expression is not modified
in rat PASMC cultured under hypoxic conditions, it seems that hypoxia induces TRPV1
membrane translocation [21]. Likewise, hypoxia exposure does not potentiate the TRPV1-
induced cytoskeleton reorganization but TRPV1 inhibition limits the effect of hypoxia on
cytoskeletal changes suggesting an implication of TRPV1 in this remodeling [21]. More
recently, a beneficial effect of TRPV1 in PH was demonstrated through TRPV1 involvement
in human PA vasodilatation in response to cannabidiol [106]. This phenomenon could be
explained by the expression of TRPV1 in PAEC. Given that most of the previous studies
describing the implication of TRPV1 in proliferation and migration associated with PH
were performed on isolated PASMC, the signaling pathways implicated in PAEC after
TRPV1 activation could provide counterbalancing effects at the site of the entire vessel.

3.2.2. TRPV2

Although TRPV2 is expressed in PA, its function has been less studied. mRNA
expression for TRPV2 is greater than for TRPV4 and TRPV1 in rat distal pulmonary vein
SMC and this expression was confirmed by Western blot [110]. However, in PA, TRPV2
expression is lower than that of TRPV4 [108,109]. TRPV2 is notably expressed in human
and rat PASMC [108,112]. TRPV2 current shows a weakly outward rectifying I/V curve
similar to the one observed in response to thromboxane A2 analogue. This suggests that
TRPV2 is a potential candidate for non-selective cationic response to thromboxane A2. It
is noteworthy that thromboxane A2 analogue has been shown to play a critical role in rat
hypoxic pulmonary vasoconstriction, interfering that TRPV2 could also be implicated [112].

3.2.3. TRPV4

TRPV4 is widely expressed in every layer of PA [109]. In PAEC, it plays a role in
vasodilatation [113,114], whereas in PASMC it is involved in contraction, migration, and
proliferation [9,65,108,115–117]; and in PAAF, it participates in remodeling processes [118].
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All these mechanisms are either impaired (namely endothelial dysfunction) or enhanced
(namely contraction and remodeling) in PH. Hence, TRPV4 activation in endothelium
induces relaxation through NO-signaling and endothelium-derived hyperpolarizing fac-
tor [119]. Furthermore, TRPV4 interacts with eNOS in PAEC [114] and activation of unitary
Ca2+ influx events through TRPV4 in these cells induces the release of NO, which initiates
the guanylyl cyclase–protein kinase G pathway. Besides, guanylyl cyclase–protein kinase G
signaling provides a negative feedback for TRPV4-eNOS coupling, thus regulating TRPV4
function [113]. Although TRPV4-induced Ca2+-signaling in PAEC is an important pathway
for vasorelaxation, a dysregulation of this signaling is observed in PH. Indeed, in a rat
model of PAH (SU5416 plus hypoxia) occurring through vascular endothelial growth factor
receptor 2 (VEGFR2) inhibition, elevated production of mitochondrial-derived ROS induces
a Ca2+ influx via TRPV4, which promotes enhanced migratory and proliferative responses
in PAEC [120]. In PAAF, TRPV4 activation induces proliferation, migration, and extracellu-
lar matrix production (collagen I and fibronectin) thereby modulating the matrix stiffness,
thus contributing to the adventitial remodeling occurring during PH [118]. PASMC ex-
press functional TRPV4 channels which are involved in increased [Ca2+]i, which triggers
proliferation [111,115,117] and migration [107]. TRPV4 expression is increased in CH rat
PASMC [23,65] associated with enhanced responses, providing evidence that TRPV4 is im-
portant in the development of the pathology. Indeed, the TRPV4 upregulation in PASMC is
consistent with the higher basal [Ca2+]i observed after CH, an enhanced myogenic tone and
5-HT-induced vasoconstriction via the cytochrome P450 epoxygenase–epoxyeicosatrienoic
acid pathway CH PA [23,121]. Nevertheless, whereas culturing PASMC in CH (1% O2
during 48 h) does not affect TRPV4 expression, the amplitude of the TRPV4-induced Ca2+

elevation and migratory response are more elevated [21], suggesting a direct role of hypoxia
on TRPV4 channel function. The deletion of the trpv4 gene in mice has provided evidence
of the implication of TRPV4 channel in the development of PH. Indeed, in CH trpv4−/−

mice, all the features of PH are reduced, such as right ventricle heart hypertrophy, remodel-
ing via muscularization of the arteries [23], PA pressure increase associated with hypoxic
pulmonary vasoconstriction [122], and enhancement in 5-HT induced contraction [116].
Moreover, in PASMC from IPAH patients, TRPV4 expression and shear stress-induced Ca2+

response are increased, whereas this hypersensitivity to mechanical stimuli is reduced by
TRPV4 inhibition using pharmacological antagonists or siRNA knockdown [9].

3.3. TRPM

Among TRPM channels, TRPM3, TRPM4, and TRPM7 are known to be mechanosensi-
tive [104]. TRPM3 is sensitive to hypotonic cell swelling [51] whereas TRPM4 implication
in mechanosensitivity seems to be indirect [55,123]. TRPM7 has been described as sensitive
to both stretch and osmolarity [58,124].

3.3.1. TRPM3

TRPM3 mRNA expression in rat PA was shown by RT-qPCR [109]. Its expression is
weaker than other TRPM channels such as TRPM8, TRPM4, and TRPM7 but higher than
TRPM5 or TRPM6. However, no functional studies have been performed on TRPM3 in PA.

3.3.2. TRPM4

TRPM4 is widely expressed in various tissues including SMC of rat aorta, cerebral
arteries, and PA. In PA, TRPM4 mRNA expression is, quantitatively, the second most
important TRPM channel detected after TRPM8 [109]. TRPM4 is selective for monovalent
cations and has a calcium-dependent activation (with an EC50 of 10 µM in native SMC) [125].
The function of TRPM4 in PA has not been studied but it was shown that this channel is
involved in the regulation of cerebral artery SMC membrane potential and contractility.
Indeed, its activation induces Na+ influx in SMC under physiological conditions and
a down-regulation of its expression impairs pressure-induced SMC depolarization and
vasoconstriction in isolated rat cerebral arteries [55]. Another study reported that trpm4−/−
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mice are hypertensive and present an increase in contractility of peripheral resistance
vessels and cardiac function [126]. The role of TRPM4 in PH should thus be further
investigated.

3.3.3. TRPM7

Similar to the other TRPM channels, TRPM7 expression in rat PA has been evaluated
by RT-qPCR and its mRNA levels are similar to those of TRPM4 [109]. TRPM7 is a divalent
cation permeable ion channel with a greater permeability to Mg2+ than Ca2+ [56] and has
been shown to contribute to various phenomena involved in PH such as inflammation,
fibrosis, cell migration, and cell proliferation [127]. Several studies show its implication in
enhanced proliferation and vascular remodeling associated with PH. Song et al. described
the role of TRPM7 in sensing fluid flow shear stress in human PASMC from IPAH or normal
patients. They also showed that TRPM7, as well as TRPV4, are necessary for shear stress-
mediated Ca2+ increase in PASMC and that TRPM7 is also responsible for Mg2+ influx.
Moreover, in IPAH PASMC, shear stress-induced Mg2+ increase is greater than in normal
PASMC. This augmentation is due to upregulated TRPM7 expression in these cells [9].
Thus, upregulated mechanosensitive channels such as TRPM7 in PASMC may contribute
to the development of IPAH by inducing sustained pulmonary vasoconstriction leading
to vascular remodeling. Confirming these findings, a study showed the therapeutic effect
of Ophiocordyceps sinensis, an entomopathogenic fungus, known to exert antiproliferative
and antiremodeling effects on PH through TRPM7 inhibition. They found that TRPM7 is
expressed in fibroblast-like cells of the right ventricle and in PA, and that this expression is
increased in PH rats. TRPM7 deletion in PH mice attenuates the signs of PH. Inhibition
of TRPM7 activity via this fungus has an antiproliferative effect in IPAH PASMC, and
vaso-dilates human PA [59]. However, an opposite effect was observed in another study
where, in condition of PH, TRPM7 currents and free Mg2+ concentration were reduced
in human or rat PASMC. There, TRPM7 inhibition increased proliferation and apoptosis
resistance in PASMC through MEK/ERK pathway and exacerbated hypoxia-induced PH
in vivo, whereas TRPM7 overexpression decreased PASMC proliferation and apoptosis
resistance [128].

3.4. TRPA1

TRPA1 is also mechanosensitive and proposed as a candidate in mechanically gated
hair cell transduction in the auditory response [129], or as shown in Merkel cells from
hamster buccal mucosa [105]. However, it has not been studied in pulmonary vessels.

3.5. TRPP

TRPP channels consist of TRPP1, TRPP2, and TRPP3. Among TRPP family, TRPP1
can interact with Polycystin-1 [60]; TRPP2 along with Polycystin-1, TRPV4, and TRPC1,
then functioning as mechanosensitive channels [61]. TRPP1 and TRPP2 are both expressed
in vascular smooth muscle and EC from cerebral and mesenteric arteries playing a role in
regulation of blood vessel function and myogenic tone [130,131]. However, roles of TRPP
channels in pulmonary vasculature are not known and require further investigation.

4. Piezo Channels

Ten years ago, the discovery of Piezo channels as new SAC by Coste et al. [132] opened
up new research opportunities in the field of mechanotransduction. Firstly described in
pressure sensitive neurons, their involvement in vascular physiopathology has emerged.
Piezo are encoded by two genes, Piezo1 and Piezo2 (formerly named Fam38A and Fam38B),
coding for two different channels: Piezo1 and Piezo2. Piezo channels have the particularity
to form a homotrimeric protein complex. Hence, Piezo channels possess a propeller-shaped
architecture that comprises the central cap and three peripheral blades. Each monomer
presents 38 transmembrane domains [133] instead of the most common six transmembrane
domains as for TRP channels. Piezo channels are mainly permeable to Ca2+ but also to
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Na+, K+, and Mg2+, therefore being non-selective Ca2+ channels [134] (Table 2). They are
activated by several mechanical stress forces such as physiological shear stress [135], cell
wall tension or, in vitro, via a membrane crushing by a pipette, positive, and negative
pressures [132,136] or a hypo-osmotic stress. Recently, ultrasound waves (500 kHz) have
also been shown to activate those channels [137]. Piezo1 and 2 have similar properties
but Piezo1 appears to be preferentially activated by a negative pressure while Piezo2 by a
positive one. The channel sensitivity to pressure also differs: compared to Piezo1, Piezo2
channel is activated by higher pressures [138]. Furthermore, selective chemical agonists for
Piezo1 channel have been described: Yoda1, which acts as a gating modulator by sensitizing
the activation threshold of the channel and slows its inactivation kinetic [139,140]; Jedi1/2,
which modulates the channel activation by potentializing its mechanosensitivity and slows
down its inactivation kinetic [141]. Several common antagonists of SAC also antagonize
Piezo1 channel such as the GsMTx-4 toxin [142,143], Gd3+ or ruthenium red [132,144].
However, some selective antagonists of the Yoda1-induced Piezo1 activation have been
described such as Dooku1 (a Yoda1 analogue) [145] or Tubeimoside I (TBMS1) [146].

Table 2. Biophysical properties of Piezo channels in pulmonary arterial vascular cells.

Channel Cell Type
(Species)

Conductance
(pS) Permeability Activator Inhibitor

PA
Phenotype
in KO Mice

References

Piezo1

human,
mouse, and

rat PA
human and

mouse PAEC
human
PASMC

22–30

Ca2+ > Na+,
K+, Mg2+

PCa/PCs = 2;
PNa/PCs =

1.1; PK/PCs =
1.1; PMg/PCs

= 0.5

negative and
positive

pressures,
shear stress,
ultrasound

waves,
Yoda1,
Jedi1/2

GsMTx-4
ruthenium red

Gd3+

dooku1
tubeimoside I

not viable
→

endothelium
specific

conditional
deletion: no

effect

[26,132,134,
135,137–

142,144–150]

Piezo2 human PA 27–28 -
negative and

positive
pressures

GsMTx-4
ruthenium red

Gd3+

not described
in PA

[132,136,138,
143,147]

Piezo1 channels have been implicated in the pathogenesis of several vascular diseases.
Deletion of Piezo1 gene in mouse leads to an aberrant vascular development resulting in an
early embryonic death around day 10 [151]. In human, loss of function mutation of Piezo1
causes a congenital lymphatic dysplasia and patients are affected with a persistent lym-
phedema [152]. In systemic circulation, Piezo1 controls pressure or wall thickness [153,154].
Piezo1 channels display synergic or opposite functions in vessels, depending on the cell
type where they are expressed. Endothelial Piezo1 channels are required for flow-induced
vasodilatation due to eNOS activation and NO release [155]. Besides, the Ca2+ influx
through these channels is not the only mechanism leading to NO formation as it also
requires an ATP release through pannexin channels and subsequent P2Y2 receptor and
endothelial NOS activation [155]. An alternative signaling pathway involves the release
of adrenomedulin, which in turn, triggers NO release [156]. In uterine artery, as well
as in the aorta, endothelial Piezo1 induces vessel relaxation [145,157]. By contrast, in
mesenteric vessels, Piezo1 is responsible for flow-sensitive cationic ion influx in EC, which
depolarizes the membrane. This depolarization spreads to the adjacent vascular SMC and
activates voltage-gated Ca2+ channels causing vasoconstriction [158]. Retailleau et al. [153]
reported that the increased cytosolic Ca2+ due to enhanced Piezo1 activation in vascular
SMC influences both the diameter and wall thickness during hypertension in systemic
circulation.

The presence of Piezo1 and 2 channels in the lung was described in the first report
of Piezo as the tissue with the highest expression of these channels [132]. Others, as well
as we, have reported the presence of Piezo1 in rat, mouse, or human PA [26,147–149].
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Piezo2 is also present in human PA but its function remains unknown [147]. Human and
mouse PAEC express Piezo1 channels [26]. The stimulation of this channel by a hypo-
osmotic shock or by its selective agonist Yoda1 induces a large Ca2+ influx. The intracellular
Ca2+ increase subsequently stimulates NO formation through eNOS, which brings about
relaxation of mouse intrapulmonary arteries [26]. Unlike in the systemic circulation, Piezo1-
induced NO formation does not require activation of ATP receptors. Selective deletion of
Piezo1 in mouse EC inhibits Yoda-1-induced relaxation. Interestingly, endothelial deletion
of Piezo1 increases α-adrenergic agonist-mediated contraction. Two hypotheses could
explain this observation. On the one hand, phenylephrine-induced contraction of the vessel
modifies its shape, which could lead to PAEC stretch, which, in turn, activates PAEC-Piezo1
channels. NO released by PAEC would then antagonize the contraction. On the other hand,
phenylephrine could release factors derived from PASMC that may stimulate endothelial
Piezo channels. In this connection, a crosstalk between SMC and endothelium has been
previously described in pulmonary artery, where 5-HT stimulates both SMC contraction
and NO release [159–161].

In CH mouse, Piezo1 still mediates arterial relaxation. Deletion of this channel in
PAEC does not impair the development of the disease [26]. This result is supported by
RT-qPCR measurements that show no variation in Piezo1 transcript in human PA from PH
patients [147]. This finding is original as several other relaxation pathways are reduced
during hypertension such as the acetylcholine pathway, which also requires NOS activation.
As the Piezo1-mediated relaxation is still present in PH, activation of this channel could
serve as therapeutic pathway.

In cultured human PASMC, Yoda1 induces a large intracellular Ca2+ increase due to ac-
tivation of Piezo1 channels located at the plasma membrane and in intracellular organelles
such as reticulum or mitochondria [149,162]. This Ca2+ rise through Piezo1 channels con-
tributes to cell contraction and proliferation. In cultivated PASMC derived from IPAH
patients, Piezo1 is upregulated and its activation triggers a higher Ca2+ influx (from both
extracellular and intracellular Ca2+ stores) leading to an increased cell proliferation that
could contribute to the pathophysiology of PH [149].

In conclusion, while endothelial Piezo1 function is not altered in mouse PA in PH,
PASMC-Piezo1 channels are upregulated in human arteries [149], and could contribute to
the development of the pathology. Furthermore, Piezo1 are also involved in several other
pathophysiological processes in other tissues that share common pathological character-
istics with PH. Indeed, activation of Piezo1 by hydrostatic pressure has been shown to
activate inflammasome signaling pathways in macrophages [163] and in nucleus pulposus
cells [164]. Turbulent flow induces Piezo1- and Gq/G11-mediated integrin activation,
resulting in focal adhesion kinase-dependent NF-κB [165]. Those mechanisms could also
contribute to PH and these pathways will also be interesting to explore in future studies.
Moreover, the fact that Piezo1 activation is involved in free radical and NO production
in PAEC [26] suggests that it could also contribute to the production of NOO−, a toxic
free radical that has been shown to be involved in PH [166]. Finally, Piezo1 induces cell
migration and metastasis in several cancers [167]. Furthermore, Piezo1 localizes at focal ad-
hesions to activate integrin-FAK signaling [168]. As Piezo1 is mainly expressed in the PAEC
lamellipodia [151], we could postulate that Piezo1 could be involved in the remodeling of
PA during PH.

5. Other Mechanosensitive Channels

In contrast to cationic depolarizing channels such as TRPV4 and Piezo, stretch also
activates K+ hyperpolarizing channels (Table 3) such as two-pore domain K+ channels
(K2P: TREK-1, TREK-2, TRAAK), ATP-dependent K+ channels (KATP) [169] or calcium-
activated K+ channels (BKCa) [170]. However, stretch is not the only activator of these
channels as they mainly respond to physiological chemical activators. Their activation,
inducing a cellular hyperpolarization, acts as counterparts to TRPV4 or Piezo1 depolariza-
tion activity, enabling fine-tuning of mechanosensation, reducing cellular contraction in
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response to mechanical forces [171]. Potassium flux is also involved in cell proliferation
and inflammation [172,173].

Table 3. Biophysical properties of mechanosensitive K+ channels in pulmonary arterial vascular cells.

Channel Cell Type
(Species)

Conductance
(pS) Permeability Activator Inhibitor

PA
Phenotype
in KO Mice

References

BKCa
rabbit and rat

PASMC 273 K+ negative
pressure, calcium - not described

in PA [170,174–176]

KATP

human and
rabbit

PASMC

42–55
(pressure), 28

(Levcro-
makalim)

K+

negative and
positive

pressures,
levcromakalim,

iptakalim

intracellular
ATP

glibenclamide

not described
in PA [177–179]

TREK-1 mouse PA
rat PASMC 90 K+ negative

pressure - not described
in PA [180,181]

TREK-2 mouse and
rat PA - K+ stretch - not described

in PA [180,181]

Whereas expression of K2P (TREK-1 especially) channels in PA has been
confirmed [180,181], involvement of these channels in PH has not been described yet.
KATP channels have been shown to be expressed in rabbit and human PASMC where they
are involved in the modulation of the resting membrane potential [178,179]. Furthermore,
the KATP opener, Iptakalim, has been shown to prevent pulmonary resistance vascular
remodeling, cell proliferation, endothelial dysfunction [182,183], and PH [184]. Early stud-
ies showed that BKCa channels were activated by stretch and arachidonic acid in rabbit
PASMC [175]. Besides, their activation prevents the development of PH in rat [176,185].
However, the mechanosensitive part of the function of these K+ channels has not been
studied in detail in PA cells and further investigation needs to be done.

6. Conclusions

Mechanosensing is a key mechanism that intervenes in the regulation of the vascular
tone. All the cellular layers of PA are able to sense mechanical forces, from PAEC to PASMC
and PAAF. Each cell type responds differently and jointly to induce vasodilatation or vaso-
contraction, depending on the physiological needs and the sensed pressure. During PH,
where mechanical stimulations in the PA are altered, modification of cellular processes oc-
curs, mainly mediated through SAC (e.g., TRP and Piezo channels), see schematic Figure 5.
Stretch-induced signaling pathways have been shown to disturb PAAF evoked-fibrosis,
PAEC evoked-vasodilatation, PASMC evoked-contraction, and also their proliferation and
migration. Altogether these alterations are involved in the pathophysiological phenotypes
observed in PH. Future studies should aim to elucidate, in more details, mechanistic path-
ways that involve SAC in PA with the objective to target SAC in a pre-clinical approach.
However, caution must be taken as mechanosensing is a key cellular mechanism that
should not be annihilated at any cost in the whole organism and organs.
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Figure 5. Schematic view illustrating the multifunctional contribution of SAC in the pathogenesis of PH. Red arrows
indicate PH-induced modifications of cellular processes in pulmonary arterial vascular cells.
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