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Abstract: Drug-resistant cases of human immunodeficiency virus (HIV) nucleoside reverse tran-
scriptase inhibitors (NRTI) are constantly accumulating due to the frequent mutations of the reverse
transcriptase (RT). Predicting the potential drug resistance of HIV-1 NRTIs could provide instructions
for the proper clinical use of available drugs. In this study, a novel proteochemometric (PCM) model
was constructed to predict the drug resistance between six NRTIs against different variants of RT.
Forty-seven dominant mutation sites were screened using the whole protein of HIV-1 RT. Thereafter,
the physicochemical properties of the dominant mutation sites can be derived to generate the protein
descriptors of RT. Furthermore, by combining the molecular descriptors of NRTIs, PCM modeling
can be constructed to predict the inhibition ability between RT variants and NRTIs. The results
indicated that our PCM model could achieve a mean AUC value of 0.946 and a mean accuracy of
0.873 on the external validation set. Finally, based on PCM modeling, the importance of features was
calculated to reveal the dominant amino acid distribution and mutation patterns on RT, to reflect the
characteristics of drug-resistant sequences.

Keywords: HIV; reverse transcriptase; drug resistance; computational model

1. Introduction

According to the World Health Organization, there are 38 million people worldwide
living with human immunodeficiency virus (HIV) in 2019 [1]. Moreover, approximately
33 million deaths have been reported due to HIV [1], which remains a major global public
health issue. In the clinical treatment of HIV-1 infection, most drugs target enzymes,
including protease (PR), reverse transcriptase (RT), and integrase (IN) [2]. HIV reverse
transcriptase (RT) is a common target in highly active antiretroviral therapy, and RT
inhibitors can target the early stages of virus-host interactions [3]. The lack of proofreading
capability of HIV RT combined with a high replication rate leads to a wide range of genetic
variability [4], resulting in drug resistance. The rapid emergence of drug-resistant virus
variants is an obstacle to the success of anti-HIV agents. Drugs approved by the U.S. Food
and Drug Administration (FDA) for RT variants include nucleoside reverse transcriptase
inhibitors (NRTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) [5]. HIV-1
RT is composed of a heterodimer of the p66 subunit and p51 subunit, DNA-binding pocket,
and active sites located on the p66 subunit [6]. Thus, the p66 sequence variation should be
considered in RT drug design.

Several studies have demonstrated that the existing drug resistance could affect the
treatment regimen and genotyping and drug-resistance tests are recommended before
starting clinical therapy [7,8]. To deal with drug resistance, several approaches, includ-
ing resistance prediction and a combination of drugs, have been tested. Several in silico
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HIV resistance prediction models and computer-aided drug design (CADD) have been
proposed for the development of drug design. Beerenwinkel et al. proposed an infor-
mation profile to interpret the sequence variation of PR and RT sequences, and decision
tree classifiers were constructed to predict resistance or susceptibility to drugs [9]. There-
after, a regression model was generated to predict phenotypic drug resistance based on
650 genotype-phenotype pairs [10]. To optimize the use of existing drugs and understand
the genetic basis of drug resistance, Rhee used five statistical learning methods to determine
the correlation between mutations in the protein (PR/RT) sequence and the susceptibility of
16 antiretroviral drugs. The accuracy tested by 5-fold cross-validation reached 80.1% [11].

Based on the amino acid sequence of the target protein, several descriptors have also
been designed and used in machine learning model construction. Tarasova et al. [12] used
short fragments of both amino acid sequences and nucleotide sequences as descriptors.
The performance of the two descriptors was compared using the random forest algorithm
for model construction. By constructing the drug-specific resistance prediction model,
it was demonstrated that the model performance was more sensitive to drug type than
the descriptors. Agata Paneth et al. [13] constructed a quantitative structure-activity
relationship (QSAR) model based on the docking results of 47 inhibitors to 107 allosteric
centers. Shiri et al. [14] calculated the 2D and 3D molecular descriptors and fingerprints for
NNRTIs and then used a genetic algorithm to select variables. The support vector machine
model was constructed based on the designed molecular descriptors with the EC50 values
to classify the compounds into active and inactive ones. Furthermore, weighted categorical
kernel functions were introduced to evaluate the contribution of different positions on the
resistance prediction [15]. Recently, Brand expanded the application of the prediction model
and proposed a multi-label classification model to predict the cross-resistance between RT
sequences and five nucleoside analogs [16].

These machine learning approaches could provide a rapid and accurate prediction
of drug-target relationships and are helpful in virtual screening in drug design. In recent
studies, more and more researchers have proposed that the feature importance should be
determined to increase the explanation of machine learning approaches [17]. In this study,
an in silico random forest drug-resistance prediction model was proposed to classify the
binding potential between nucleoside reverse transcriptase inhibitors (NRTI) and reverse
transcriptase (RT), based on the protein descriptors for RT and the molecular fingerprints
for NRTI. Further, 40 key features contributing to classification in the prediction model were
screened. The mutation patterns and distributions on the selected 10 sites were proposed
to illustrate the possible mutations that lead to drug resistance. The proposal of this model
could be helpful for drug usage in HIV treatment.

2. Materials and Methods
2.1. Datasets

The genotype and phenotype data of the reverse transcriptase in this study were
derived from the HIV Drug Resistance Database [18]. A total of 1683 non-redundant
mutated sequences of reverse transcriptase were collected. The in vitro susceptibility tests
were performed using the PhenoSense assay [19], which included 9538 fold resistance
values, calculated by dividing the IC50 value of the drug for mutated RT by the IC50 value
of the drug for the wild-type RT [12]. The tested drugs included lamivudine (3TC), abacavir
(ABC), zidovudine (AZT), stavudine (D4T), didanosine (DDI), and tenofovir (TDF). For
each drug, the resistant variants and susceptible variants were classified based on the
cutoff of fold resistance [12]. The detailed cutoffs combined with the numbers of each
class are listed in Supplementary Table S1. The full data set of 9538 fold resistance values,
including 5317 susceptible variants and 4221 resistant variants, was randomly split into
7625 training datasets (80%) and 1913 independent testing datasets (20%) without changing
the proportion of the two classes (Table S2). The random splitting of the training and
testing datasets was evaluated 10 times.
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2.2. Protein Structure Modeling

To illustrate the spatial features and compare the structural deviations between the
consensus RT and RT mutants, the three-dimensional structure of RT proteins was con-
structed using SWISS-MODEL [20]. The consensus RT sequence was obtained from the
HIV Drug Resistance Database [18]. For homology modeling, the template structure of RT
was derived from the Protein Data Bank [21] by searching for the ID of 4ZHR (Chain A).
The sequence identity between consensus RT sequence and template was over 98.6%, with
a sequence coverage of 100%. Thereafter, the spatial structure of the RTs can be constructed,
and the pdb file, which contains the three-dimensional coordinates of each atom, can
be obtained.

2.3. Mutation Sites Selection

To describe the mutated reverse transcriptase, important sites with frequent muta-
tions were screened. For 1683 reverse transcriptase sequences, among the total length of
562 amino acids, there were 372 sites on which mutations occurred, including insertion,
deletion, and mutation. The mutation sites were defined as sites with a mutation frequency
of more than 10% among all sequences. Finally, 47 frequent mutation sites were selected
for protein description (Table S3).

2.4. Ligand Binding Site Prediction

To detect the relationship between selected mutation sites and potential ligand-binding
sites for RT protein, the constructed RT structure was uploaded to POCASA [22] to predict
the potential ligand-binding sites under the default parameters. The atoms involved in
the ligand-binding sites were listed and divided into different regions based on their
spatial locations.

After determining all potential ligand-binding sites on the RT structure, the spatial
relationship between mutation sites and potential ligand-binding sites was measured using
Euclidean Distance ED(sj), as shown in Equation (1):

ED
(
sj
)
= min{

√(
X
(

sjk

)
− X(lm)

)2
+
(

Y
(

sjk

)
− Y(lm)

)2
+
(

Z
(

sjk

)
− Z(lm)

)2
} (1)

where ED(sj) refers to the minimum distance between site j (sj) and all potential ligand-
binding sites. sjk refers to atom k in residue sj, and X(sjk), Y(sjk), and Z(sjk) refer to the spatial
coordination of atom k in residue sj X(lm), Y(lm), and Z(lm) refer to the spatial coordination
of atom m in the predicted ligand-binding atom. Then, the minimum distance between any
selected mutation sites and ligand-binding sites can be calculated.

2.5. Descriptor Generation

The drug resistance descriptor was composed of two parts: a protein descriptor
and a drug descriptor. A protein descriptor was designed to describe the changes in
the properties of amino acid mutations. All mutations were compared to the consensus
sequence of the reverse transcriptase from the HIV Drug Resistance Database [18]. The
Z-scales were designed to describe the protein features (Table S4), which were the result of
principal component analysis (PCA) from the initial 26 physicochemical descriptors [23].
The 26 variables include retention values in chromatography, nuclear magnetic resonance
shift, van der Waals volume, nonpolar surface area, hydrogen bond donor, side-chain
charge, and so on. After PCA transformation, the final Z1–Z5 scores were calculated, and
the detailed interpretation is as follows:

(1). Z1: lipophilicity scale. Negative Z1 refers to lipophilic residues, and positive Z1
correlates to hydrophilic ones.

(2). Z2: steric bulk, molecular weight and van der Waals volume.
(3). Z3: description of polarity.
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(4). Z4 and Z5: combined properties, including electronegativity, electrophilicity,
and hardness.

It should be noted that the Z scale could provide quantitative scales and translate each
residue into descriptors, which cover multiple physicochemical properties.

For the mutations that occurred at 47 sites, protein descriptors were calculated for
different mutations. (1) Point mutation: The descriptor score was calculated as the absolute
difference between the Z score for mutated amino acids and the Z score for previous amino
acids. (2) Deletion: The descriptor score was calculated as the maximum of the absolute
difference between the Z score of any amino acid and the Z score of the previous residue.
(3) Mixture: The scores were calculated as the absolute difference between the average Z
values for the mixture amino acids and the Z value for the previous residue. (4) Insertion:
The absolute difference between the Z sum of inserted amino acids and the Z value of
the previous residue. The 235-bit protein descriptors were generated from the calculated
Z1–Z5 scores for the 47 sites. The 200-bit drug descriptors were constructed using RDKit
(release Version 2017). A detailed description of each bit of drug descriptor is listed in
Table S5. A total of 435-bit descriptor was generated to build the prediction model.

2.6. Model Construction

To build a computational model to predict drug resistance, different machine learning
approaches, including random forest, logistic regression, decision tree, naïve Bayes, and
supporting vector machine, have been tested. Based on the descriptors and fold resistance
values in the training dataset containing 7625 drug-protein pairs, 10-fold cross-validation
was performed to select the machine learning algorithm. The hyperparameters for each
tested model are listed in Table S6. By inputting the drug descriptors and reverse tran-
scriptase protein descriptors, the constructed model could predict whether the HIV-1 RT
variants were resistant to the drug. The entire workflow to construct the prediction model
is shown in Figure 1.
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Figure 1. Workflow of drug resistance prediction model for HIV-1 reverse transcriptase. (A) The 435-bit descriptors
describing the physic-chemical and structural properties of the transcriptase proteins and NRTIs. (B) The experimental
assay was collected to reflect the resistant or susceptible relationship between transcriptase proteins and NRTIs. (C) Machine
learning approaches were introduced based on the descriptors and the experimental relationship to generate the PCM model.
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2.7. Model Evaluation

The internal and external validation were tested to evaluate the overall performance
of the model from different aspects, including AUC value, accuracy, precision, recall, and
F-score. The parameter definitions are listed in the following equations:

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F− score =
2

1/precision + 1/recall
(5)

the positive and negative samples refer to the drug-susceptible and drug-resistant samples,
respectively. TP represents the number of true positive samples, TN refers to true negative
samples, FN refers to false negatives, and FP refers to false positives.

2.8. Calculating Feature Importance

For any feature in the above designed 435-bit descriptors, the feature importance was
calculated using the scikit-learn 0.22.1 package in Python 3.8.2 (detailed version can be
found in Table S7) and ranked in descending order. The feature importance was calculated
by the function “feature_importances” in the scikit-learn package, with Gini importance
as the returned value, evaluating data impurity in each node in the forest. The higher
the value, the more important the feature is. For any ith feature in the ranking list, the
accumulated feature importance (AF) and the growth rate of importance (GR) can be
calculated using Equations (6) and (7):

AF ( i ) =
i

∑
1

f (i) (6)

GR (i)=
AF(i)− AF(i− 1)

AF(i− 1)
(7)

where f (i) refers to the importance of feature i, f (i) ranges from 0 to 1, and i ranges from
1 to 435. The accumulated AF for all 435-bit descriptors was 1. According to the ranking
list of feature importance, the mutation sites involved in the top-ranking features with AF
over 50% were selected as the dominant sites.

2.9. Detecting Mutation Patterns in Experimental Pairs

To detect the important characteristics of RTs, the mutation patterns of 5317 drug-
susceptible proteins and 4221 drug-resistant proteins were derived and compared using
the following steps:

(1) Calculate the residue distribution on the individual target sites. For each target site,
the residue frequencies in both experimentally determined drug-susceptible proteins
and drug-resistant proteins were calculated.

For any amino acid i (ai) at site j (sj), the absolute difference in the amino acid frequency
DF(ai,sj) was defined as Equation (4):

DF
(
ai, sj

)
=
∣∣FS
(
ai, sj

)
− FR

(
ai, sj

)∣∣ (8)

where i represents one of the 20 amino acid types, and j represents one of the 47 mutation
sites. DF(ai,sj) refers to the absolute difference of the amino acid frequency on the drug-
susceptible protein FS(ai,sj) and the frequency of drug-resistant proteins FR(ai,sj). Then, we
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calculated the standard deviation of amino acid frequency changes at each site j, SD(sj),
based on the value of DF(ai,sj).

(2) Deriving the mutation patterns of the target sites. The amino acids on the dominant
sites (Section 2.8) were joined as peptide fragments. Then, the distribution of each
joint fragment was counted to form the mutation pattern.

2.10. Evaluation of Mutation Patterns

Furthermore, we evaluated the mutation patterns detected in our model through
molecular docking. In this study, the relationship between all 1683 proteins and six drugs
was predicted using our PCM modeling. For all 10,098 pairs (1683 × 6), the relationship
for 9538 pairs was determined by previous experiments in the HIV Drug Resistance
Database [18], while the remaining 560 pairs lacked experimental evidence.

For the above 560 pairs, new joint peptide fragments (Section 2.9) were detected in
the predicted drug-resistant mutants and selected as the potential mutation pattern. Joint
peptide fragments that already occurred in the above 9538 experimentally validated pairs
were excluded.

To validate the newly detected mutation pattern, we mapped the above peptide
fragment on the consensus RT sequence to generate new RT mutants with the new mutation
pattern. Thereafter, the three-dimensional structures of each protein mutant were built
using SWISS-MODEL [20] (Section 2.2). The drug-binding probability and modes between
the new RT mutants and six drugs were predicted by SwissDock [24]. In comparison,
the best FullFitness score between each drug and protein was calculated to evaluate the
binding ability.

3. Results
3.1. Spatial Location of Screened Mutation Sites

For fingerprint generation, 47 amino acid positions with high mutation frequencies
were initially screened as the key mutation sites of RT (Table S3). Thereafter, five poten-
tial ligand-binding pockets were predicted by POCASA [22], and the spatial structure
was presented by Chimera [25] in Figure 2. The relative spatial location between mu-
tation sites and predicted ligand binding sites was measured using Euclidean distance
ED(sj) (Section 2). The detailed distances are listed in Table S8. In general, the nearest
distance between mutation sites and atoms in ligand binding sites was 12.47 ± 5.59 Å
(mean ± standard derivation). It was found that 61.702% (29/47) of the dominant muta-
tion sites were located within 15 Å around the ligand-binding sites, and the nearest atom
distance was only 2.102 Å. Mutations at all these sites could impact the micro-environment,
including electronic properties, steric effects, and hydrogen bond donors [5], and affect the
performance in the in silico prediction [26].

3.2. Model Performance on Drug Susceptibility Prediction

With the designed protein and drug descriptors, five machine learning methods,
including random forest (RF), logistic regression (LR), decision tree (DT), naïve Bayes (NB),
and support vector machine (SVM), were introduced to construct different PCM models.
Through 10-fold cross-validation on 7625 training data, the results of internal validations
can be found in Table 1. The results showed that all evaluated approaches could provide
satisfactory performance with a mean AUC value over 0.791 and an average accuracy over
0.712 in the 10-fold cross-validation, which indicated that the designed descriptors could
provide an accurate description of the physicochemical features of both RT variants and
NRTIs. Random Forest achieved the best prediction performance with an average AUC
value over 0.921 and an average accuracy over 0.827. Therefore, a random forest classifier
was selected to construct the PCM model for resistance prediction.
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Figure 2. Spatial illustration of key mutation sites. The 3D structure of reverse transcriptase is labeled
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Table 1. The model performance of 10-fold cross-validation using different machine learning approaches on training dataset.

AUC Accuracy F-Score Precision Recall

Random Forest 0.921 ± 0.060 * 0.827 ± 0.073 0.822 ± 0.087 0.815 ± 0.070 0.777 ± 0.206
Logistic Regression 0.871 ± 0.076 0.768 ± 0.094 0.758 ± 0.112 0.752 ± 0.104 0.750 ± 0.195

Decision Tree 0.791 ± 0.073 0.788 ± 0.069 0.793 ± 0.068 0.766 ± 0.070 0.772 ± 0.142
Naïve Bayes 0.813 ± 0.136 0.712 ± 0.099 0.685 ± 0.133 0.743 ± 0.121 0.596 ± 0.287

Supporting Vector Machine 0.896 ± 0.068 0.772 ± 0.098 0.758 ± 0.119 0.780 ± 0.107 0.717 ± 0.241

* Values refer to the mean and standard deviation of each result.

To compare the performance of different machine learning models, the Mann-Whitney
test was used to compare the predicted probability values of resistant drug-protein pairs
and those of susceptible drug-protein pairs. The p-values of each fold in the validation are
listed in Table S9. It was found the p-value for all machine learning approaches illustrated
statistical significance between the prediction scores for susceptible and resistant pairs.

To illustrate the stability of the model performance, the random forest classifier was
tested on an independent testing dataset 10 times (Section 2.1). It was found that the
model achieved a stable and high performance with an AUC value of 0.946 ± 0.004 and
an accuracy of 0.873 ± 0.007 (Table S10). The ROC curves for the 10 tests are shown in
Figure 3, indicating the stable and good performance of our PCM model for predicting
drug resistance.
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3.3. Detecting Important Features for HIV-1 Drug Resistance

For computer-aided drug design, the detection of important features of drug resistance
is essential. In this study, the features that significantly contributed to drug resistance
predictions were screened to reveal the drug resistance patterns. We introduce three
parameters: the importance of each feature i, f(i), the accumulated importance of features
(AF), and the growth rate of feature importance (GR) as indicators of feature contributions
(Section 2). As illustrated in Figure 4, the importance of each feature f(i) is not even, varying
from approximately 0 to 0.031. When ranked in descending order according to feature
importance, there are 40 features with GR over 0.01, demonstrating the fast accumulation
of contributions for these features in the model. In general, 40 out of 435 features (9.20%)
contributed more than 50% of the AF, and these features were selected as the most essential
features for HIV-1 drug resistance (Table S11).

Among the 40 important features, 87.5% (35/40) were protein descriptors for different
dominant mutation sites; therefore, the mutations in HIV-1 RT sequences have a significant
effect on the resistance of NRTIs. For example, the top three features were related to the Z2
score on site 210, Z2 score on site 215, and Z3 score on site 215, respectively. The scale of
Z2 is the sum of steric bulk, which reflects the value related to molecular weight, van der
Waals volume, and total surface area [23]. The scale of Z3 mainly describes the polarity of
each amino acid [23]. Therefore, the structural features of steric bulk and physicochemical
properties of amino acids are the most important elements for HIV-1 drug resistance.

Further analysis showed that 10 mutation sites were involved in the above 35 protein
descriptors, including 41, 67, 69, 70, 118, 184, 210, 215, 219, and 228, which remained to
reveal the mutation patterns of drug resistance. The residue frequency on the 10 dominant
sites from drug-susceptible and drug-resistant proteins was counted (Figures 5 and S1–S5).
Based on the result of drug 3TC (Figure 5A,B), there were 446 drug-susceptible proteins
in our dataset, and all contained at least one dominant residue with a frequency of over
90% for each of the above 10 dominant mutation sites. For example, Met (M) on site
41 (frequency 94.395%), Asp (D) on site 67(frequency 95.740%), Thr (T) on site 69 (frequency
93.498%), Lys (K) on site 70 (frequency 93.498%), Val (V) on site 118 (frequency 95.740%),
Met (M) on site 184 (frequency 97.982%), Leu (L) on site 210 (frequency 96.413%), Thr
(T) on site 215 (frequency 91.480%), Lys (K) on site 219 (frequency 95.740%), and Leu (L)
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on site 228(frequency 95.292%). However, for 1192 3TC-resistant proteins in our dataset,
the frequency of dominant sites decreased sharply, and the frequency of other residues
increased synchronously. For some sites, the population of dominant residues in 3TC-
resistant proteins remained dominant with a decreased population. For example, at site
219, the population of the dominant residue Lys (K) decreased from 95.740% in 3TC-
susceptible proteins to 59.732% in 3TC-resistant proteins, while that of Gln (Q) increased
from 2.915% to 17.114%. For the other sites, the dominant residue was shifted. Typical
examples are sites 41 and 215. For site 41, the population of Leu (L) was only 4.933% in
3TC-susceptible proteins, which rapidly increased to 49.497% in 3TC-resistant proteins,
whereas the previous dominant residue Met (M) in 3TC-susceptible proteins decreased
to 48.071% in resistant proteins. A similar situation was observed at site 215, in which
the dominant residue Thr (T) in the 3TC-susceptible proteins decreased from 91.480% to
34.899%, and the second Tyr (Y) increased from 3.139% to 44.631% in resistant proteins. The
above results showed that the dominant amino acids at key mutation sites are essential for
drug resistance. Drug-susceptible proteins tend to contain conservative residues, whereas
drug-resistance proteins contain diverse residue compositions.
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To illustrate whether the observed pattern on the 10 dominant sites also occurred
on the other 37 mutation sites. The residue frequency at 37 mutation sites was also
calculated for both 3TC-susceptible proteins and 3TC-resistant proteins (Figure 5C,D). The
frequency change at 37 sites is relatively small compared with the 10 dominant positions.
To quantitatively test the differences between the top 10 dominant positions and the other
37 mutation sites, the measurements of DF(ai,sj) and SD(sj) were calculated (Section 2). As
shown in Figure 5E and Table S12, both the DF(ai,sj) and SD(sj) of 10 dominant sites are
larger than those of 37 mutation sites with significant p-values (Table S13), which refers to
larger changes in amino acid frequency at 10 dominant sites.

3.4. Mutation Patterns of Joint Fragment on Target Sites

Moreover, by aligning the residues on the above 10 sites, the joined fragments on the
dominant sites for different drugs were evaluated, as shown in Figure 6. In drug-susceptible
proteins, the joined fragments contained dominant patterns. For example, 76.457% of the
3TC-susceptible proteins had the joined set of MDTKVMLTKL, which was only observed
in 4.530% of the 3TC-resistant proteins. For 3TC-resistant proteins, the pattern of the joined
fragment was not significantly observed, among which the top 1 joined set MDTKVVLTKL
only covers 10.822% of the population. Similar results could also be found in drugs ABC,
AZT, D4T, DDI, and TDF, which contain dominant joined residues set with a frequency
over 32%, while this frequency was less than 5% for drug-resistant proteins. The results
showed the dominant pattern of joined residue fragments in drug-susceptible proteins.
Furthermore, mutated proteins contain varied mutations, which might be the reason for
drug resistance.
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The mutations on the above dominant sites also introduce huge property changes,
resulting in a decrease in binding probability. Typical examples such as the mutation from
Asp (D) to Asn (N) frequently occurred at site 67, which involved property changes from
acidic residues to neutral residues. Mutations from Leu (L) to Trp (W) at site 210 and
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Thr (T) to Tyr (Y) at site 215 will lead to the introduction of a benzene ring and may result
in the change of steric bulk to reduce the binding affinity of the target drugs.

Furthermore, we evaluated the mutation patterns of the predicted resistant proteins
in our model. For all 10,098 pairs between 1683 proteins and six drugs, there were a
total of 560 drug-protein pairs without experimental results for drug resistance testing.
For each of the above pairs, the mutation pattern of the joint fragment on the dominant
mutation sites was detected. For each drug, the prevalent mutation patterns detected in at
least three proteins are listed in Table S14. In general, 11 protein patterns were detected,
and three patterns, including NTKIVWYNL for ABC-resistant proteins, LNTKIMWYKL for
TDF-resistant proteins, and LNDKIVWYKL for TDF-resistant proteins were newly detected
in the predicted drug-resistant proteins without previous experimental evaluations.

To evaluate the reliability of the above three mutation patterns, the protein vari-
ants were mutated based on the consensus RT sequence, and the corresponding protein
structures were constructed by SWISS-MODEL [20]. Furthermore, a molecular docking
approach was introduced to compare the binding probability of the same drug between
the protein variants with mutation patterns and the consensus RT proteins using Swiss-
Dock [24]. A lower FullFitness score indicates more stable binding between proteins and
drugs. As shown in Table S14, in addition to the score between protein variants 3 and drug
3TC, most of the FullFitness scores for protein variants with target drugs were larger than
those of consensus RTs, indicating a decreased binding probability. These results were also
validated in protein variants with three newly detected patterns (Figure 7). The docking
results indicated that the mutation proteins that fit the detected drug-resistant patterns
decreased the binding ability of the same target drugs.
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4. Discussion

NRTIs are widely used to treat patients with HIV-1 infection by targeting the RT
protein and functioning as a chain terminator in the viral DNA replication step. As a typical
RNA virus, HIV mutated rapidly, which may cause drug resistance of previous NRTIs
to mutated RT proteins. Thus, predicting the drug resistance between RT proteins and
NRTIs could guide clinical medication and guide the broad-spectrum drug development
of RT mutants. In this study, by incorporating the protein and molecule descriptors with
a random forest classifier, we generated a PCM model to predict the drug resistance
relationship between RT mutants and six FDA-approved NRTIs. Moreover, we detected
the mutation patterns that may lead to drug resistance and validated the mutation patterns
through previously reported drug-resistance experiments or molecular docking.

Currently, multiple models were constructed for drug resistance prediction using
different protein and ligand descriptors [12,15]. Although most of them could achieve high
prediction performance, the black box prediction obtained through the machine learning
model makes it difficult to point out the mutation patterns that make great contributions
to the model performance. Thus, besides prediction ability, we also tried to improve the
interpretability of the model to clarify the changes in biological situations. To achieve that,
two aspects have been considered in our model: (1) the important features contributing to
the drug-resistance prediction were quantified, and both the important sites and important
property changes were illustrated; (2) the mutation patterns were considered not only on
the individual sites but also on the joint site fragments. The dominant joint peptides in
drug-resistant protein could provide the sequence characters which may help the drug
usage prediction in clinical.

In this study, we attempted to detect the mutation features that contribute to model
performance, and all 47 mutation sites in drug-resistance mutants were detected. Among
them, 10 dominant sites with top-ranked contributions were derived to generate the
mutation pattern. The HIV Drug Resistance Database [18] proposed nine major drug
resistance positions for NRTI, including sites 41, 65, 70, 74, 75, 151, 184, 210, and 215,
five of which were detected in our ten dominant sites, indicating the importance of these
positions for drug resistance. Moreover, 10 dominant sites were combined to form the
mutation residue patterns of the resistance proteins. Validation through target-ligand
docking indicated that proteins fitting the resistant mutation patterns resulted in decreased
binding probability with NRTIs. Mutations in RT variants, including mutations that do
not appear in the binding pocket, may involve changes in the physicochemical properties
and spatial layout of the micro-environment, which will affect the binding between RT
variants and NRTIs. The resistant mutation pattern detected in this model could be used in
phenotype-testing prediction before clinical drug usage and screening of NRTIs.

5. Conclusions

This study introduced a PCM model to construct a drug resistance prediction model
between mutated RT variants and available NRTIs. Through the random forest classifier,
the relationship between drug resistance or susceptibility between RT variants and NRTIs
could be predicted. Furthermore, the 10 dominant mutation sites on RT variants were
detected, and the single or combined drug resistance patterns on the above dominant sites
were revealed. This model could be applied to NRTI resistance evaluation in pre-clinical
treatment and provide information for further RT-related therapy design.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11091302/s1, Figure S1: Amino acid distribution and frequency changes of ABC-
susceptible and ABC-resistant proteins on 47 sites, Figure S2: Amino acid distribution and frequency
changes of AZT-susceptible and AZT-resistant proteins on 47 sites, Figure S3: Amino acid distribution
and frequency changes of D4T-susceptible and D4T-resistant proteins on 47 sites, Figure S4: Amino
acid distribution and frequency changes of DDI-susceptible and DDI-resistant proteins on 47 sites,
Figure S5: Amino acid distribution and frequency changes of TDF-susceptible and TDF-resistant
proteins on 47 sites, Table S1: The cutoff and range of fold resistance for each drugs, Table S2: Data
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distribution of different classes, Table S3: List of 47 mutation sites, Table S4: Z-scale for 20 amino acids,
Table S5: Description of the 200-bit drug descriptors calculated by RDKit, Table S6: Hyper parameters
of each tested machine learning models, Table S7: The detailed version of installed packages, Table S8:
The nearest distance between 47 mutation sites and ligand binding atoms, Table S9: The p-value
of Mann-Whitney test on the probability value for each class in 10-fold cross validation, Table S10:
Model performance of the 10 times independent test, Table S11: List of top 40 ranked features, Table
S12: SD(sj) values on 10 important sites and 37 mutation sites, Table S13: The t-test result between
SD(sj) values on top 10 important sites and SD(sj) on 37 other mutation sites, Table S14: Binding
ability between each drug and mutated protein variants for each detected mutation pattern.
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