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Abstract: The diversification of land plants largely relies on their ability to cope with constant en-
vironmental fluctuations, which negatively impact their reproductive fitness and trigger adaptive
responses to biotic and abiotic stresses. In this limiting landscape, cumulative research attention
has centred on deepening the roles of major phytohormones, mostly auxins, together with brassi-
nosteroids, jasmonates, and abscisic acid, despite the signaling networks orchestrating the crosstalk
among them are so far only poorly understood. Accordingly, this review focuses on the Ara-
bidopsis Amidase Signature (AS) superfamily members, with the aim of highlighting the hitherto
relatively underappreciated functions of AMIDASE1 (AMI1) and FATTY ACID AMIDE HYDRO-
LASE (FAAH), as comparable coordinators of the growth-defense trade-off, by balancing auxin and
ABA homeostasis through the conversion of their likely bioactive substrates, indole-3-acetamide and
N-acylethanolamine.

Keywords: arabidopsis; amidase signature superfamily; growth; stress; auxin; abscisic acid; amidase;
indole-3-acetamide; indole-3-acetic acid; fatty acid amide hydrolase

1. Introduction

Beneath the apparent simplicity of the sessile lifestyle of plants, an intricate hormone-
based machinery becomes crucial to face an often hostile environment. Infectious pathogens,
herbivorous predators, soil salinity, drought, or temperature fluctuations, are among the
diverse biotic and abiotic stresses challenging their survival and optimal reproduction [1,2].
In this restricting scenario, the sensing of these stimuli activates the concerted action of
diverse interconnected signaling pathways, wherein the combinatorial action of few major
phytohormones orchestrate a wide range of specific physiological processes, depending on
both the responding tissue and the stimulus itself [3–5].

Under favorable circumstances, a vast miscellany of plant growth and developmental
aspects, such as promotion of cell elongation, expansion, and differentiation, have been
so far majorly ascribed to those signaling molecules of the auxin class [6–8]. In contrast,
brassinosteroids, jasmonates (JAs) and abscisic acid (ABA) are widely known elicitors
of stress responses to biotic and abiotic factors [9–18], in most cases, adapting the plant
growth strategy by means of growth rate reduction and the anticipation of vegetative to
reproductive phase transition [19–21]. However, the underlying crosstalk by which, e.g.,
JAs and ABA impact auxin homeostasis, thereby coordinating the growth-defense response
trade-off, and thus rewiring transcriptional circuits to maximize phenotypic fitness for the
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prevailing stress condition, also remains largely elusive. Indeed, despite the cumulative
knowledge on auxin homeostasis control, ranging from de novo biosynthesis to inactivation
through conjugation, sequestration and degradation [22,23], the biosynthesis of the major
auxin-representative indole-3-acetic acid (IAA) is still inconclusive [24,25].

Hence, this work provides updated information on the Arabidopsis AS superfamily
members, focusing our main attention not only on the Amidase 1 (AMI1)-dependent IAA
biosynthesis, but also on the hydrolysis of N-acylethanolamines (NAEs) by a fatty acid
amide hydrolase (FAAH), based on the strong evidence to bridge their growth-inhibiting
shared roles to ABA signaling pathway. Thereby, our review may fuel future synergistic
research approaches, integrating the converging roles of their preferred substrates in early
plant growth, thus leading future biotechnological innovations to sustainably increase crop
yields and meet the worldwide growing demand.

2. The AS Superfamily

The ubiquitous AS members are a numerous group of amidohydrolases widely
distributed throughout prokaryotes and eukaryotes (such as bacteria, mammals and
plants). AS members are highly divergent both in terms of substrate preferences and
function [26–28]. The products of their hydrolytic activity are the resulting carboxylic acids
and either amine or ammonia compounds derived from the C-N amides bond. The shared
feature of all the family members is this so-called amidase signature (AS), which refers to a
conserved serine- and glycine-rich motif of 50–130 amino acids containing an unorthodox
Ser-cisSer-Lys catalytic triad, instead of the typical Ser-His-Asp triad found in the active
sites of serine proteases [27,29,30].

This group of enzymes include: the plant AMI1, a specific indole-3-acetamide (IAM)
amidohydrolase that synthesizes IAA from IAM [31]; FAAH, an integral membrane protein
which hydrolyzes NAEs, thereby terminating their actions [27]; Glu-tRNAGln amido-
transferase, an heterotrimeric enzyme required for the formation of appropiately charged
glutamine codons during translation [32]; allophanate hydrolase, crucial for urea usage as
a nitrogen source by diverse organisms, by means of allophanate to ammonium and carbon
dioxide conversion [33]; peptide amidase (PAM), for selective hydrolysis of the C-terminal
amide bond of peptides [34]; the bacterial malonamidase E2 (MAE2) catalyzing the hydrol-
ysis of malonamate to malonate and ammonia, by symbiont bacteroids for transport of
fixed nitrogen to plant cells [35].

2.1. The Arabidopsis AS Superfamily Members

Only two proteins, AMI1 and FAAH, out of the seven different coding genes constitut-
ing this small enzyme family were characterized for their enzymatic activity [27,30,31,36–38].
A third isoform (At5g09420) is seemingly located in the outer mitochondrial membrane as
part of the preprotein translocon (Tom-complex) [39], whereas the fourth one (At3g17970)
associates by protein cross-linking with those of the outer envelope of chloroplast Toc-
complex [40,41], and both most probably lack enzymatic activity. The remaining three
members are yet to be functionally characterized, although At4g34880 gene might function
in leaf vascular tissues during sink-to-source transition [42], and At3g25660 likely interacts
with the Glu-tRNA(Gln) amidotransferase subunit B (GAT-B) [43].

2.1.1. AMI1
The Atypical Member of the Family

The apparent molecular mass of AMI1 is around 45 kDa, its subcellular localization
is in the cytoplasm, and the canonical residue composition of the Ser-cisSer-Lys triad
remains conserved (PS00571 in the PROSITE dictionary) [36,44]. However, the CX3C
motif is missing (this additional pattern is only conserved in a restricted number of AS
members, enabling nitrile cleavage capability), thus excluding the accessory Cys-cisSer-Lys
catalytic center described in Rhodococcus rhodochrous strain J1 or Sulfolobus solfataricus [45].
Functional and structural comparative analyses were performed taking advantage of three-
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dimensional homology-based protein models, revealing conspicuous similarities between
AMI1 and rat FAAH regarding the arrangement of the active-site residues, and explaining
the dramatic impact of several AMI1 functional mutations on its enzymatic activity linked
to the essential Ser137 residue. Over the past years, two different mechanisms for the
enzymatic conversion of primary and secondary amides, respectively, have been proposed
for AS enzymes. Concerning the initially proposed mechanism [46], Ser137 acts as a
nucleophile, while Lys36 is a proposed catalytic base and proton acceptor from Ser113
of AMI1, which likely collaborate in a proton relay system. As depicted in Figure 1, the
conversion of IAM includes the formation of an acyl-enzyme intermediate stage. However,
detailed information is still missing, and further investigation is needed. On the other
hand, the alternative mechanism proposed by Labahn and colleagues (2002) [47] assumes a
protonated lysine residue and a tetrahedral transition state over the course of the enzymatic
conversion. However, given a pKR of 10.53 for the lysine residue and an only marginally
basic environment in the cellular setting, it seems as if the initial mechanism must be
favoured for the activity of AMI1. Besides, AMI1 activity is drastically impaired by very
low concentrations of phenylmethanesulfonyl fluoride, as is the case for most of the AS
members, thus underscoring the catalytically active serine residue in the center of its
polypeptide active site [26].

Figure 1. Proposed mechanism for the conversion of IAM by Arabidopsis AMI1. The enzymatic
reaction initiates with a nucleophilic attack of the α carbon atom of IAM by Ser137. Lys36 acts as a
catalytic base and, possibly, receives protons from Ser113 in a proton relay. After the liberation of
ammonia, an intermediate acyl-enzyme complex is formed, which disintegrates after the addition of
H2O and the release of the reaction product, IAA.

Aside from the expected common features to other AS members, AMI1 exhibits some
striking differences, being the only member with indole-3-acetamide hydrolase activity,
with IAM and phenylacetamide as its preferred substrate [36]. This amidohydrolase shows
minor reactivity towards oleamide and NAEs [48], as well as strong co-localized expression
in tissues with high auxin content, thus suggesting a role of AMI1 in auxin biosynthesis [44].
In this line, AMI1 also converts 1-naphthaleneacetamide (NAM), a synthetic structural
homologue of IAM, to 1-naphthaleneacetic acid (NAA), which is a strong auxin [49],
similarly to Agrobacterium tumefaciens IaaH gene product acts against IAM and NAM [50].
On the other hand, significant evidences point to dimerization properties of AS hydrolases,
such as MAE and FAAH, wherein a fragment of the N-terminal end was the selected
locus for protein-protein interaction and membrane association experiments. However,
both PAM and AMI1 show a monomeric mechanism of enzymatic action, as evidenced
by blue native gel electrophoresis [51], yeast two-hybrid and bimolecular fluorescence
complementation results, which allowed to distinguish between AMI1 and both MAE
and FAAH [26]. Furthermore, unlike the characteristic bifunctionality reported for most
AS family members, AMI1 lacks esterase ⁄ peptidase activities, and so, is unable to attack
ester- or nitrile-bearing compounds at specific enzyme/substrate ratios [29,35,45,46]. Thus,
AMI1 is incapable of converting IAA glucosyl ester or IAA methyl ester, nor N-substituted
amides, such as IAA–amino acid conjugates and the characterized FAAHs substrates,
NAEs [38].
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Alternative Roads to IAA Biosynthesis

General auxin biosynthesis is mainly derived from the indole-3-pyruvate (IPyA) an-
abolic pathway, wherein, the fine-tuning of tryptophan aminotransferases (TAA1/TAR2)
and flavin containing monooxygenases (YUC1-11), becomes crucial to converting L -
tryptophan (L-Trp) into IAA via the intermediate IPyA [52,53]. Either redundantly or
in a parallel way with this major IPyA-derived auxin source, a reduced number of addi-
tional pathways are proposed to operate in higher plants [54–57], as shown in Figure 2.
Among these routes, the IAM pathway was originally circumscribed to plant pathogenic
bacteria and later proposed to operate in plants, based on three pivotal findings. Firstly,
the IAM endogenous contents in Prunus jamasakura, Citrus unshiu, Cucurbita maxima and
A. thaliana [51,58–61]. Secondly, the reported IAM amidase activity in Triticum aestivum
and Pisum sativum tissues [62], Oryza sativa [63,64] and Poncirus trifoliata [65]. Lastly, and
primarily based on in vitro and in vivo results, the AMI1 competence to convert IAM into
IAA [26,36,37,66,67].

Within the Brassicaceae family and concretely in A. thaliana, up to 95% of IAM has
been proven to originate from the precursor IAOx by a hitherto unidentified enzyme [68].
Moreover, IAOx is well-known as a significant metabolic bifurcation node, by which pri-
mary and secondary metabolism gets connected [69,70]. Thereby, IAOx stands out as
the joint biochemical input required for the L-Trp-derived production of key glucosino-
lates [71], such as the Arabidopsis defensive compounds brassicin and camalexin [72], thus
involving the transcription factors MYB34, MYB51, MYB122 and WRKY33 to promote
glucosinolate and camalexin biosynthesis, respectively. [73,74]. Strikingly, although there
are no indications of other IAM hydrolases intervening in the conversion of IAM into IAA
within the AS family members [26,44], the aforementioned activity was not suppressed in
loss-of-function mutants, thus inferring the existence of putative contributing enzymes
outside this family [37]. In line with this assumption, and most probably explaining the
remaining enzymatic activity, two recently reported formamidase-like proteins, IAMH1
and IAMH2, have been associated with this conversion [75,76].

However, despite the severely reduced IAM contents of cyp79b2 cyp79b3 plants [68],
both IAOx and AMI1 impaired mutants, exhibited minor IAA altered levels under stan-
dard conditions [31]. Herein, excluding the upregulation of YUC8 and ILL5/IAR3, no
other significant differentially expressed auxin homeostasis-related genes were identified
in ami1-2 [37]. Both the induction of YUC8, which takes part in auxin biosynthesis [13],
along with the two comparable specific IAA-Leu and IAA-Phe IAA-amino acid hydro-
lases [77,78], might correspond to counteracting the lack of AMI1 activity. Conversely,
inducible mutants overexpressing AMI1 (AMI1ind-2), showed significant overexpression
of the auxin conjugation-related genes UGT75D1 and GH3.17, together with a number of
auxin transport- and signaling-related genes, including LAX2, PIN4, PIN5, IAA1, IAA12,
IAA14, ARF6, ARF7, and ARF16, most likely in response to IAA overproduction. Fur-
ther, no other alternative auxin biosynthesis routes, such as IAMH1 and IAMH2, were
transcriptionally induced in cyp79b2 cyp79b3 to balance the loss of IAOx source [68,69,79]
or AMI1 activity [37], but demonstrated a significantly increased susceptibility towards
pathogens [73]. Taken together, and despite the required AMI1 activity for appropriate
culmination of concrete developmental processes, such as lateral root growth or seed
maturation [37], all these evidences contrast with the role of AMI1 in overall auxin influx
in Arabidopsis. Indeed, the fact that IAM has been found in several non-Brassica plant
species commonly lacking the IAOx pathway [80], nourishes the assumption that a still
unidentified tryptophan 2-monooxygenase, such the ones known from bacteria, i.e. iaaM
and tms1 [81,82], are most probably leading to IAM by an alternative biosynthetic pathway.
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Figure 2. Abbreviated representation of L-Trp derived anabolic pathways for indole glucosinolate,
camalexin, and indole-3-acetic acid biosynthesis in Arabidopsis. The reaction steps catalyzed by so
far unidentified genes/enzymes are represented by dashed lines. Each postulated L-Trp derived
shunts are coloured as follow: thiohydroximate in blue, IAM in yellow, IAN in orange, IPyA in
green, TRA in grey. AMI1, AMIDASE1; CYP71A13, CYTOCHROME P450 MONOOXYGENASE
71A13, CYP79B2, CYTOCHROME P450 MONOOXYGENASE 79B2, CYP79B3, CYTOCHROME
P450 MONOOXYGENASE 79B3, I3M, glucobrassicin; IAA, indole-3-acetic acid; IAAld, indole-3-
acetaldehyde; IAM, indole-3-acetamide; IAMH, IAM HYDROLASE1-2, IAN, indole-3-acetonitrile;
IAOx, indole-3-acetaldoxime; L-Trp, L-tryptophan; MYR, MYROSINASE; NIT, NITRILASE1-3; PAD3,
PHYTOALEXIN DEFICIENT3 (CYP71B15); RTY, ROOTY; SUR1, SUPERROOT1; SUR2, SUPER-
ROOT2 (CYP83B1),TAA1, TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1; TAR, TRYP-
TOPHAN AMINOTRANSFERASE RELATED; TDC, TRYPTOPHAN DECARBOXYLASE; TRA,
tryptamine.

The More IAM, the Less Plant Growth

AMI1 expression is majorly located in proliferating tissues, such as young seedlings
and developing flowers, but is repressed during early stages of germination [37,44,51,
83]. AMI1 is transcriptionally induced by its putative substrate, IAM, and, to a lesser
degree, repressed by its reaction product, IAA [80]. Furthermore, in-depth mutant analysis
provided further evidences to confirm the IAA formation from IAM in planta, most probably
impacting cellular auxin homeostasis by means of balancing the IAM pool [37,84]. In this
way, hindered AMI1 activity led to a moderate reduction of IAA contents (15 to 30%), but
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significantly increased IAM levels. Remarkably, this IAM accumulation exerted a negative
impact on seed maturation, since both seed and embryo size were notably smaller [37].
These phenotypes were in accordance with the previously reported role of IAM as a
transcriptional repressor of the elongation growth contributing K+ transporters HAK/KT12
and KUP4 [84,85]. Besides, the ami1 mutants displayed a slight growth reduction of aerial
parts, together with a significant reduction of root branching, as well as total root length
and area [37]. On the contrary, conditional AMI1 overexpression produced phenotypes
reminiscent of an auxin overproduction, as evidenced by growth retardation, curly leaf
morphology and flowering anticipation [13,37,86,87]. It is noteworthy that, as a result
of increased auxin levels, this downstream effects in AMI1 overexpressing mutants are
probably neutralized by expression enhancement of a limited number of auxin conjugation-
related genes, which, in turn, leads to a deactivation of the physiologically active free
IAA [37].

Therefore, in the line of assessing the described plant growth repressing role of IAM,
it was highly relevant to characterize the impact of endogenous IAM accumulation, aiming
at deepening on the molecular and physiological mechanisms for IAM signal perception
and integration. As a starting point to tackle this question, the consequences derived from
the simultaneous genetic interruption of the indole glucosinolate and IAM pathways in
A.thaliana were recently reported [31]. Strikingly, it was found that, normally germinating
homozygous ami1 rty parentals, set a reduced number of siliques producing non-viable
seeds. The offspring aborted germination just after radicle extrusion [31]. Consistently,
it had to be concluded that impaired nutrient acquisition during seed filling was most
probably inherited from heterozygous rty ancestors, thus explaining the parentals sterility.

To further dissect the observed IAM dwarfish effect on ami1 rty embryos and seeds,
additional IAM and IAA mass spectrometric analysis of these homozygous seeds were
performed, finding higher IAM:IAA ratios in ami1 rty relative to those of wt [31] and the rty
allelic sur1-1 mutant [68]. Alternatively, RNAseq transcriptional profiling of these double
mutant seeds, found not only any differentially expressed genes involved neither in auxin
metabolism nor camalexin biosynthesis pathway, but also, the induction of WRKY33, a
transcriptional repressor of this camalexin anabolic route [31]. So, the initially hypothesized
IAOx or IAM metabolic redirection into this pathway had to be finally discarded. On the
contrary, the transcriptomics analysis provided evidence of significant repression of plant
growth regulating processes in response to IAM treatment, for instance, hindering the
expression of the growth-regulating factors GRF3 and GRF5 on IAM treated wt Arabidop-
sis seedlings [31]. Further, the identified downregulation of the TCP family members,
TCP10 and TCP23 [31], underpins the observed AMI1-related growth and time flower-
ing alterations, considering the key roles of these transcription factors in the control of
shoot morphogenesis and developmental transitions [88,89].Of special note was also the
downregulation of translation-related genes, involved primarily in ribosome biogenesis
and assembly, as well as rRNA processing. Additionally, taking into account the impaired
expression of carbohydrate metabolism- and amino acid biosynthesis-related genes, it
has been proposed that IAM increased accumulation during seed development, impedes
a proper remobilization of sugars and nitrogen-containing compounds from maternal
tissues, which ultimately leads to developmental alterations responsible for nonviable seed
production [31].

The AMI1 Connection: IAM-ABA Crosstalk in Stress Responses

Altogether, IAM or other putative by-products, might act as a signaling molecule
with prominent impact on gene expression regulatory processes. More than 12% of the
differentially expressed IAM-responsive genes in ami1-2 mutants belong to different tran-
scription factor classes [37]. As represented in Figure 3, nearly 30% of these molecular
components belong to the AP2/ERF, while 13 and 4% are MYB and WRKY transcrip-
tion factors, respectively. The specific control of hormone and abiotic stress responses by
AP2/ERF transcription factor networks, have been well-established [90]. In this context,
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recent transcriptomics approaches suggest a tight connection of IAM accumulation with
biotic and abiotic stress responses, involving, e.g., key enzymes for JA and ABA produc-
tion [31,37]. For instance, besides the already mentioned role of YUC8 and ILL5/IAR3
in auxin homeostasis, these ami1-2 misregulated genes have been associated with biotic
stress responses [13,91]. On another note, despite the negligible impact of salinity on AMI1
expression, osmotic stress conditions have been demonstrated to severely repress AMI1
transcriptional activity [37]. Thus, on the basis of the exhibited hypersensitivity of ami1
seedlings in response to osmotic stress conditions, the repression of AMI1 activity has been
proposed as a first line adaptation mechanism. Additionally, the remarkable number of
identified differentially expressed small heat shock proteins by whole-genome transcript
sequencing of ami1 rty seeds, points towards the misregulation of desiccation tolerance
processes, involved in drought stress adaptive responses [31].

Figure 3. Differentially expressed transcription factor classes in ami1-2 mutants according to
Pérez et al. (2021) [37], based on an adjusted p-value of <0.05 and a fold-change of ≥1.5.

The above-mentioned osmotic stress responses involve ABA-dependent and ABA-
independent pathways [92,93]. In the same way, ABA and gibberellins are indispensable
determinants of seed development and dormancy [94]. In this context, it is particularly
noteworthy the IAM connection with gibberellin signaling through the repression of
GNC and CGA1 transcription factors, both DELLAs downstream effectors [31]. Further-
more, the recently reported direct role of auxin in seed dormancy [95], as well as the
transcriptional and metabolic crosstalk between IAA and ABA in seed development and
germination [96,97], have led to propose an additional crosstalk connecting AMI1/IAM
contents and ABA-related processes, with prosperous seedling development and germi-
nation. As demonstrated by the Arabidopsis germination rate reduction in response to
IAM application, deficient AMI1 activity most probably enhances ABA production, and
later results in aberrant embryo and seed size [37]. In the same manner, both differentially
ABA-dependent pathways, have been shown to be activated through the transcriptional in-
duction of the ABA synthesis gene, NCED3, either by means of IAM exogenous application,
or as a result of ABA accumulation in the ami1 alleles [37]. Hence, the osmotic stressed-
induced transcriptional repression of AMI1, along with the resulting IAM accumulation,
orchestrate the fine-tuning of ABA-dependent stress responses through NCED3-mediated
ABA biosynthesis in Arabidopsis. However, no regulatory effect has been detected in a
ABA-controlled AMI1 feedback loop.

2.1.2. FAAH
What Lies Beneath the Structure

To date, FAAH is the sole known integral membrane protein within the AS enzymes,
which catalyzes the hydrolytic central step in NAEs metabolism, converting these lipid
signaling molecules into their corresponding free fatty acid and ethanolamine products,
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thus terminating their regulatory actions [29]. There are FAAHs representatives across
diverse multicellular eukaryotes, including animals and plants [98], which feature key
structural differences that account both for the types of bioactive NAEs, as well as for the
substrate specificity promiscuity of those of mammals and plants [27,99]. Concretely in
plants, this residue evolutionary adaptation have provided FAAHs with wide versatility,
in terms of shaping physicochemically diverse catalytic cavities to accommodate both
unsubstituted and oxygenated NAEs as signaling substrates.

Thus, the elucidation of the FAAH crystal structure [27], jointly with recent com-
prehensive in silico analysis of FAAH amino acid sequences in angiosperms, allowed to
identify the conserved substitutions, located in no other than key residues around the
acyl-binding pocket and the cytosolic access channel, responsible for the conformational
variations distinguishing two separated groups: the Arabidopsis including FAAH (At-
FAAH) group I, and the FAAH-like enzymes group II [30]. Interestingly, in contrast to
the rest of dicot and monocotyledonous species explored, including the proposed com-
mon ancestor of all flowering plants, Amborella trichopoda [100], the phylogenetic analysis
highlighted the Brassicaceae plant family (e.g., A. thaliana, Brassica napus, Camelina sativa)
and castor (Ricinus communis), as those having FAAHs uniquely belonging to the group
I. So, it has been suggested, in the basis of the joint presence of both FAAH groups in
the A. trichopoda genome, an ancestral plant FAAH evolutionary bifurcation, predating
angiosperms emergence, and later differential taxa-depending loss of orthologs. Con-
sequently, throughout evolution, A. thaliana and its relatives had entirely lost the group
II FAAH orthologs, whereas, e.g., group I is preferentially represented in Solanaceous
species, while Gossypium or the leguminous plants have mostly group II instead of group
I FAAHs [30].

Herein, homology modeling between Glicine max (soybean) group I and group II
FAAHs were performed on the basis of the AtFAAH 3D structure template (PDB: 6DHV [27]).
Thus, despite the retention of the distinctive catalytic triad (Ser-cisSer-Lys) of the AS super-
family, this exhaustive inspection uncovered significant contrasts between the novel group
II of FAAHs and the AtFAAH. In brief, conversely to the group I polar residues conforming
the surroundings of the substrate-binding pocket, those of the group II are predominantly
nonpolar and more reminiscent of mammalian FAAH, including some bulkier aromatic
residues in the ligand-binding site. In the same manner, this lower group II hydrophilicity
has been also predicted for its cytosolic access channel building residues, most probably to
fit more hydrophobic head group substrates. Therefore, this structural diversity expands
the so far underestimated plant signaling communication system, as evidenced by the
putative vast collection of naturally occurring potential substrates for group II FAAHs,
beyond NAEs themselves. So, according to emerging literature, these unnoticed signaling
molecules may range from plant fatty acid amides, such as the alkamides [101], to microbial
origin N-acyl L-homoserine lactones (AHLs), which are essential in N-acyl amide-mediated
plant-microbe interactions [102].

One FAAH to Terminate Them All

Although there are marked structural differences between NAEs, the inherent FAAH
promiscuity to hydrolyze these ubiquitous signaling bioactive acylamides, appear to
be conserved throughout eukaryotic organisms [98,103], although it has been majorly
investigated in vertebrates. So, these studies revealed the minor membrane phospholipid
N-acylphosphatidylethanolamine (NAPE)-derived origin of NAEs, and further identified
the mammalian phospholipase D (PLD) as the specific enzyme catalyzing the conversion
of NAPE to NAE in vivo [104]. In plants, PLD-β and -γ isoforms are competent in vitro
NAE converters [105], likely with additional participation of tissue-specific phospholipase
A [106] or phospholipase C [107] mediated pathways. Thus, the resulting NAEs differ both
in the acyl chain length (X = number of C atoms), and in the degrees of unsaturation (Y =
number of double bonds), typically designated NAE X:Y, e.g., in the case of anandamide
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(NAE 20:4), the central bioactive molecule of the endocannabinoid signaling pathway in
mammals.

However, the orchestration of numerous behavioral and physiological processes in ver-
tebrates, not only depends on the anandamide binding to the membrane G protein-coupled
cannabinoid receptors, CB1 and CB2 [108,109], but also on the mammalian FAAH ability to
hydrolyze higher occurring CB receptor inactive NAEs, with the resulting competing pool
of substrates available to FAAH [110]. On the other hand, in higher plants, anandamide
is primarily absent, whereas NAE types range from 12 to 18C, the latter of which are the
most abundant, and display zero to three double bonds [111,112]. Remarkably, oxylipin
metabolites derived from polyunsaturated NAEs, as is the case with hydro(pero)xy deriva-
tives of NAE 18:2 and NAE 18:3, are the main regulators on plant development, rather than
their unsubstituted parent structures [113,114]. In addition, A. thaliana FAAH is equally
efficient hydrolyzing either the hydroxylated or the unsubstituted NAE 18:2 [27], although
the latter is the endogenous predominant derivative. So, both in animals and plants, the
so-called “entourage effect”, wherein the resulting physiological effects depend on different
competing NAE derivatives [115,116], is the evident operating signaling mechanism, which
is ultimately terminated by FAAH action [29,98].

NAE Signaling Alterations: Plant Physiological Processes in Jeopardy

As in the case of animals, mounting experimental evidence has so far underpinned the
crucial role of NAE signaling in regulating multiple plant physiological processes [117]. In
the same way, the FAAH-dependent NAE signaling terminating role, has been proposed as
the common catabolic mechanism operating both in mammals and plants [112]. Consistent
with the elevated contents of NAEs in desiccated seeds [111], as well as their later depletion
as imbibition and germination occur [48,118,119], the growth inhibiting properties of NAE
derivatives have been extensively demonstrated.

Specifically, micromolar concentrations of exogenously applied NAE 12:0 and NAE
18:2, not only exert a dose-dependent reduction in seedling growth, but also provoke
root cell and cytoskeletal organization alterations [119–121]. As expected, these triggered
growth inhibitory effects were significantly attenuated in AtFAAH overexpressing seedlings
compared to wt, with concordant reduction of endogenous NAE levels, and in contrast to
loss-of-function AtFAAH lines, which exhibited enhanced sensitivity to NAE [119,122–124].
So, the resulting increased NAE hydrolytic activity by means of FAAH overexpression,
was translated into enhanced overall seedling growth and early flowering [48,119,124],
whereas AtFAAH knockouts did not display any other phenotype than the increased sensi-
tivity to exogenous NAE [119]. Nevertheless, the counterpart to this increased growth of
AtFAAH overexpressors was the jeopardized innate immunity to usually non-pathogenic
organisms [125]. On the other hand, the early flowering AtFAAH overexpressing mu-
tants displayed an associated induction of the flowering master regulator FLOWERING
LOCUS (FT), under both inductive long day (LD) and non-inductive short day (SD) condi-
tions [124,126–129]. Concretely, up to 30% content reductions in the specific derivatives
NAE 12:0 and NAE 18:2 have been reported in AtFAAH overexpressors under 14 SD condi-
tions growth, comprising a 9% less total NAE than wt. Moreover, wt Arabidopsis plants
exogenously treated with NAE 12:0 showed a significant delayed flowering [124].

Convergent and Bifurcating Pathways at the NAE-ABA Signaling Crossroads

Over the past years, primarily based on Arabidopsis genetic research with ABA biosyn-
thesis and ABA-insensitive (ABI) mutants, the negative regulating role of the ABA sig-
naling cascade, inhibiting seed germination and arresting seedling growth, have been
robustly established [130–136]. Thus, ABA triggers a myriad of instantaneous cellular
responses [50,137,138] and gene expression changes [132,133,139], which include, e.g., the
channel-mediated release of calcium and potassium, increased reactive oxygen species,
nitric oxide release, sphingolipids and Glu receptors [137,138,140,141], as well as the acti-
vation of numerous genes by ABA-responsive elements (ABREs) [142]. Within the latter
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group, it is remarkable that some of these components have proven to be targets of NAEs,
being the case, e.g., of certain ABA-mediated effects on seed germination physiology
by binding to heterotrimeric G proteins [143–146], or the PLD-conversion derived by-
product, phosphatidic acid (PA), involved in the regulation of ABA responses in guard
cells [147–149] and seed germination [150]. Indeed, jointly with the increased growth
of AtFAAH overexpressors, these lines display an enhanced sensitivity to ABA, likely
due to elevated PA levels [122,123]. Notably, the effect of low concentrations of NAE in
the nanomolar range were proven to effectively inhibit the in vitro PLD-α activity in a
non-competitive fashion. In fact, later in vivo experiments showed that, specially, NAE
short-chain saturated species, such as NAE 12:0, were the strongest PLD-a inhibitors [151].

Furthermore, even more compelling experimental results point towards the crosstalk
between NAE and ABA signaling pathways to negatively regulate early seedling devel-
opment [117,122,123]. In this line, either desiccation stress or exogenous ABA treatments
arrest early seedling development, as evidenced by plants showing a significant root length
reduction and smaller general seedling size, largely reminiscent to those of NAE supplied
lines [120–122,130,131,133]. So, as expected, the combined treatment of NAE 12:0 and ABA
exerts a synergistic effect on seedling growth arrest, for which it is essential a functionally
unaltered ABA signaling pathway (involving ABI1, ABI2, ABI3, and ABI5), as well as
associated upregulation of usual ABA-responsive genes [122,123]. Moreover, the levels of
both growth-repressing metabolites, initially elevated in desiccated seeds, are gradually
depleted over the course of germination and later during seedling development, following
similar time course dynamics [118,119,152,153]. Besides, in the same manner, the tissues
sensitivity to either ABA or NAE is gradually reduced as seedling growth progresses, con-
comitantly with upregulation of ABI3 transcripts. However, a higher level of complexity
has been proposed to operate in controlling seedling development, since NAE can modu-
late the expression of genes other than those of the ABA-responsive cluster. In addition,
since plants with an impaired ABA signaling pathway, as in the case of abi3-1 seedlings,
displayed arrested seedling growth in response to higher NAE 12:0 concentrations, but not
to supplied ABA, it has been postulated that alternative ABA-independent mechanisms op-
erate in regulating seedling development [122,123]. For instance, a clear evidence thereof,
is either the ABA- or NAE-induced expression of the RD29 drought response gene in
absence of its major activator, the ABI3 transcription factor, within a narrow developmental
window. Remarkably, even without growth inhibition effects, and outside this sensitivity
time frame, there was only an ABA-responsive upregulation of RD29B, but not to NAE
treatment, thus reinforcing the divergences between both metabolites in the regulation of
growth [123].

3. Concluding Remarks and Future Perspectives

In the basis of the recapitulated literature, it becomes clear that, both NAE and IAM
signaling metabolites, can negatively impact plant growth processes, such as germination
or early seedling development, either through the regulation of ABA-responsive or -non
responsive genes. Thus, their common growth inhibiting roles, derived from elevated
contents of either NAE or IAM, drive proper adaptive responses by means of modulating
the growth-defense trade-off, as schematized in Figure 4. However, despite the remarkable
differences between both amidases, majorly concerning to their source substrates [44], the
AMI1 main role has been proposed as largely comparable to that of FAAH, regarding the
interruption of IAM action by its catalysis to free IAA and NH4

+ [37]. Thereby, unveiling
the molecular basis and transcriptional networks involved in the integration of the IAM
signal, by which the AMI1-dependent shunt connects auxin-regulated growth processes
with plant adaptive responses to stress, will be comprehensively addressed in the short
term. In the same way, it will be compelling to unravel the so far unknown mechanism of
NAE perception, e.g., by means of particular receptor binding, or through both regulation
of PLDa1 and PA levels. Indeed, beyond the reviewed FAAH role in seedling development,
future experimental efforts will shed light on the FAAH-substrate platform as a plant-
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microbiota communication system, or serving as an alternative floral transition pathway
by direct or indirect FT interaction. In this manner, all the data integrated herein mark a
thrilling way towards a more productive agriculture, based on the potential use of overex-
pressing or knockout AMI1 and/or FAAH mutants, either to increase the productivity, or
the resistance of these plants to adverse environmental conditions, respectively.

Figure 4. Schematic model integrating the converging growth inhibiting roles derived from NAE
and IAM accumulated levels to trigger proper stress tolerance responses through ABA-dependent
and -independent pathways.
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