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Abstract: Cataracts are a leading cause of blindness worldwide. Surgical removal of cataracts is a safe
and effective procedure to restore vision. However, a large number of patients later develop vision
loss due to regrowth of lens cells and subsequent degradation of the visual axis leading to visual
disability. This postsurgical complication, known as posterior capsular opacification (PCO), occurs in
up to 30% of cataract patients and has no clinically proven pharmacological means of prevention.
Despite the availability of many compounds capable of preventing early steps in PCO development,
there is currently no effective means to deliver such therapies into the eye for a suitable duration. To
model a solution to this unmet medical need, we fabricated acrylic substrates as intraocular lens (IOL)
mimics scaled to place into the capsular bag of the mouse lens following a mock-cataract surgery.
Substrates were coated with a hydrophilic crosslinked acrylate nanogel designed to elute Sorbinil, an
aldose reductase inhibitor previously shown to suppress PCO. Insertion of the Sorbinil-eluting device
into the lens capsule at the time of cataract surgery resulted in substantial prevention of cellular
changes associated with PCO development. This model demonstrates that a cataract inhibitor can be
delivered into the postsurgical lens capsule at therapeutic levels.
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1. Introduction

Posterior capsule opacification (PCO) is a condition that develops in as many as 50%
of cases following surgery for senile cataract, the most common cause of lens opacifica-
tion [1]. PCO develops from a process of epithelial-to-mesenchymal transition (EMT) of
lens epithelial cells left behind after surgical removal of the cataractous lens, either through
phacoemulsification or bulk removal of the lens mass mediated by hydrodissection. After
going through EMT, lens epithelial cells deposit extracellular matrix components that cause
contraction, wrinkling of the lens capsule, and interruption of the light path that would
otherwise focus on the retina to stimulate photoreceptors. Restoration of a clear light path
can be achieved by creating a capsulotomy with use of a Nd:YAG laser. While the YAG
procedure is usually successful and uneventful, eyes with such capsulotomies are at higher
risk for retinal detachment, cystoid macular edema, and increased ocular pressures [2].
Therefore, academic and industry teams are actively working to develop therapeutic agents
to reduce the need for YAG therapy.

Many studies have shown that growth factors such as TGF-β play an important role
in regulating the development of PCO [3]. Studies have demonstrated in cell culture
and preclinical animal models that inhibitors of TGF-β signaling can suppress EMT and
changes in lens epithelial cells involved in PCO [4–6]. In the ideal case, such inhibitors
would be deposited into the lens capsular bag at the time of surgery and inhibit TGF-β
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signaling either acutely or in an extended time-dependent fashion through slow release
from a drug depot fabricated from nanogel materials.

In the current study, we created a nanogel-based drug delivery matrix to slowly
release a small molecule PCO inhibitor into the capsular bag in a mouse cataract model.
Profiling of the post-surgical mouse eye showed that the drug delivery device was capable
of delivering amounts of the PCO inhibitor sufficient to suppress markers of PCO over a
5-day period. These results suggest that nanogel-facilitated delivery of therapeutic agents
into the postsurgical lens capsule may provide an effective means to delay or prevent
development of PCO.

2. Materials and Methods
2.1. Materials

2-Hydroxethyl acrylate (HEA) 96%, 2,2′-azobis(2-methylpropionitrile) (AIBN) 98%,
and 2-hydroxyethyl methacrylate (HEMA) were all obtained from Sigma-Aldrich (St. Louis,
MO, USA). Tetraethylene glycol dimethacrylate (TTEGDMA-pure grade with MEHQ) and
urethane dimethacrylate (UDMA) were both purchased from Esstech Inc. (Essington, PA,
USA), whereas acrylic acid (AA) > 99.0% was purchased from Tokyo Chemical Industry
Co., Ltd. (Tokyo, Japan). 2-mercaptoethanol (ME) 99% was purchased from Acros Organics
(Fair Lawn, NJ, USA). Ebecryl 270™ (EB270) and Genocure* LTM were kindly donated by
Allnex (Alpharetta, GA, USA) and RAHN USA Corp. (Aurora, IL, USA), respectively, and
all solvents used were obtained from Fisher.

2.2. Synthesis of Nanogel

A previously published synthetic protocol was adapted for synthesis of the nanogel [7].
Briefly, a 60:20:20 molar ratio of HEA:TTEGDMA:AA using 15 mol % of ME as a chain
transfer agent was initially synthesized herein denoted as HTA NG. Next, 1 wt.% of
the thermal initiator 2,2′-azobis(2-methylpropionitrile) (AIBN) was added and stirred at
200 RPM (80 ◦C) using 4×methyl ethyl ketone (MEK) as the solvent and stopped at 70%
conversion. The double bond conversion of the acrylate groups was monitored via FTIR
spectroscopy (mid-IR, 814 cm−1). Once the 70% double-bond conversion was achieved
the nanogel was terminated by precipitating in 10-fold excess hexanes. Subsequently,
the nanogel was dispersed in dichloromethane and a stoichiometric quantity of ME was
added to the nanogels such that 20% of the remaining double-bonds could undergo a
thiol-Michael reaction. The reaction would provide the nanogels with OH functionality on
the surface, thereby increasing their hydrophilicity while still retaining residual acrylates
which could enable the nanogels to covalently link onto a substrate. Any residual solvent
was then removed completely via a rotary evaporator until a gel-like NG was achieved.

The molecular weight and size of the NG was analyzed via the Viscoteck-270 gel
permeation chromatograph (GPC) with tetrahydrofuran (THF) (0.35 µL/min) as the mo-
bile phase.

2.3. Eb270/HEA Substrate Fabrication

For benchtop experiments, circular substrates of 6 mm in diameter and 1 mm in
thickness were fabricated by casting a 2:1 weight ratio of Eb270:HEA into silicon molds
and photopolymerizing them at room temperature. The samples were clamped between
two glass slides that were cured with a broad spectra lamp (365–600 nm, 36 W/cm2) using
1 wt.% Genocure* LTM as the photo initiator. Substrates used for in vivo testing were
fabricated with dimensions of 1 mm in diameter by 0.5 mm in thickness using the same
method described above.

The modulus of elasticity of the IOL before and after the coating was placed was
characterized on a Materials Testing System (MiniBionix II, MTS, Eden Prairie, MN, USA)
by generating stress-strain graphs. Bar specimens (25 mm × 2 mm × 2 mm, n = 5) of the
polymerized IOL with and without the coating were subject to flexural loading using a
100 N load cell at a rate of 1 mm/min and the modulus of elasticity was calculated.
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2.4. Encapsulating Sorbinil in Nanogels

A 2 mg/mL Sorbinil solution was prepared by sonicating 10 mg of Sorbinil with
0.75 mL of 0.1 M NaOH until dissolved completely. Next, 4 mL of phosphate-buffered
saline was added to solution and then separated into 1 mL aliquots. When ready to use,
samples were thawed via sonication and 10 uL of 0.1 M HCL was added to the 1 mL
aliquot.

A 1:2 w/v of the nanogel was dispersed in the Sorbinil solution described above
and incubated overnight at ambient temperature. The mixture was centrifuged with a
centrifugal concentrator (MWCO 10 kDa, polyether sulfone membrane) at 4300 RPM fol-
lowed by a Milli-Q wash. The filtrate was collected and diluted from this sample where the
encapsulation efficiency of the nanogel was then calculated given the following equation:

Encapsulation E f f iciency (%) =
Total Sorbinil Mass−Qunati f ied f ree Sorbinil

Total Sorbinil Mass
× 100

The optical clarity of the Sorbinil-encapsulated nanogel was studied via UV-Visible
spectroscopy on a 96-well plate using Biotek Synergy 4 microplate reader (BioTek Instru-
ments, Inc., Winooski, VT, USA), in which 3 µL of the Sorbinil-encapsulated nanogel was
added in each well plate well (n = 3) to confirm Sorbinil was encapsulated and no absorbace
was detected in the visible region (400–700 nm).

2.5. Drug Elution from NG Devices

To measure Sorbinil release from the HTA NG, 3 µL of the Sorbinil-loaded NG was
spin coated on top of the benchtop substrates then cured with a broad spectra lamp (365–
600 nm, 36 W/cm2) using 0.1 wt.% Genocure *LTM as the photo initiator. To monitor
drug release, coated substrates were submerged in a 10 mL 1×-PBS reservoir at 24 ◦C.
For each reading, 1 mL samples were collected from the reservoir at 30 min, 1 h, 3 h, 7 h,
and 1, 2, 3, 5, and 7 days. This benchtop study was designed to baseline the maximum
amount of Sorbinil that could be removed from the nanogels into the reservoir via diffusion,
therefore the reservoir (10 mL) was replaced at the 7 h mark and subsequently at days 1, 2,
3, 5, and 7. Additionally, the reservoir was stirred at 100 RPM to expedite the removal of
Sorbinil from the nanogels. Sorbinil was detected by measuring absorbance of 280 nm light.
The readings were then normalized relative to the theoretical maximum concentration of
Sorbinil released given by that encapsulation efficiency calculated earlier.

2.6. Sterile Sample Preparation

Substrates were sterilized in an autoclave (Tuttnauer, 2540 M-B/L Heiddolph, Alexan-
der, AK, USA) at 265 ◦F for one hour followed by a dry cycle at the same temperature and
duration. Then, 1 µL of the Sorbinil loaded NGs, filter sterilized using a Celltreat 0.22 µm
filter (Pepperell, MA, USA), was pipetted on top of the substrate and cured with a broad
spectra lamp (365–600 nm, 36 W/cm2) using 0.1 wt.% Genocure *LTM as the photo initiator.
Samples were prepared 24 h before surgery.

2.7. Mouse PCO Model

For animal studies of PCO, we utilized our previously published mouse model
wherein a transgene encoding human aldose reductase (AKR1B1) accelerates the onset
and progression of PCO following lens extraction [6,8]. Animals were anesthetized using
90 mg/kg ketamine (VetOne, Cambridge, ON, Canada) and 10 mg/Kg xylazine (VetOne,
Cambridge, ON, Canada), and given 1 mg/kg buprenorphine SR (ZooPharm, Laramie, WY,
USA). The pupils were then dilated with one eye drop of 0.2% tropicamide (Akron, Lake
Forest, IL, USA), 0.5% phenylephrine (Akron, Lake Forest, IL, USA), and the cornea anes-
thetized with one drop of ophthalmic proparacaine (Alcon, Geneva, Switzerland) and 5%
ophthalmic betadine (Alcon, Geneva, Switzerland). Extra capsular lens extraction (ECLE)
was performed by making an incision through the cornea and the lens capsule using a
1 mm slit scalpel (Alcon, Geneva, Switzerland) followed by hydrodissection of the lens
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fiber mass using saline in a 5 mL syringe with a bent cannula (Alcon, Geneva, Switzerland).
For animals that received EB270:HEA substrates, nanogel loaded with or without Sorbinil
combinations was placed through the anterior chamber into the lens capsule. The anterior
chamber volume was restored using viscoat (Alcon, Geneva, Switzerland) if needed and
the cornea opening was sealed using Resure™ (Ocular Therapeutix, Bedford, MA, USA). A
drop of dexamethasone, polymyxin B, and neomycin ophthalmic gel (Bausch and Lomb,
Bridgewater, NJ, USA) was placed over the corneal incision. The animals recovered for
5 days before imaging, then the lens capsule was recovered for RNA analysis or the whole
eye fixed for immunohistochemistry studies.

2.8. Histology

Whole eyes were fixed in 4% paraformaldehyde for 10 min at 4 ◦C followed by 4 h
per each sucrose (Sigma, St. Louis, MO, USA) gradient 10%, 20%, 30%, and then frozen
into optimal cutting temperature (OCT, Tissue Tek, Torrance, CA, USA). The sections were
stained with 1:500-diluted αSMA A488 antiserum (Abcam, ab202295, Cambridge, MA,
USA) in 1% BSA (Sigma, St. Louis, MO, USA) and 0.1% Tween 20 (Fisher, Waltham, MA,
USA) in saline for 1 h at room temperature. The slides were then washed and counter-
stained with fluoromount (Fisher, Waltham, MA, USA) containing DAPI. They were imaged
on a Nikon Eclipse Ti confocal microscope (Nikon, Tokyo, Japan).

2.9. qRT-PCR

RNA was extracted from the lens capsule which was placed into 500 µL Qiazol
(Qiagen, Austin, TX, USA):100 µL chloroform which was immediately frozen to −80 ◦C
following extraction using RNeasy micro kit (Qiagen, Austin, TX, USA) according to
the manufacturer’s instructions. Complimentary DNA was created using iScript reverse
transcription supermix for qRT-PCR (Biorad, Hercules, CA, USA) and the qPCR was
performed with iTaq Universal SYBR green supermix (Biorad, Hercules, CA, USA). We
used four sets of primers (Integrated DNA Technologies, Coralville, IA, USA) for gene
expression markers of EMT αSMA, fibronectin, vimentin, and E-cadherin, and GAPDH
was used as the internal ubiquitous control. The primer sequences are listed in Table 1.
Reactions were performed in triplicate using the CFX (Biorad, Hercules, CA, USA).

Table 1. PCR primer sequences.

Gene Forward Primer Reverse Primer

αSMA 5′-CTGTTATAGGTGGTTTCGTGGA-3′ 5′-GAGCTACGAACTGCCTGAC-3′

Fibronectin 5′-TTGTTCGTAGACACTGGAGAC-3′ 5′-GAGCTATCCAATTTCACCTTCAGA-3′

Vimentin 5′-TCAACATCCTGTCTGACTG-3′ 5′-ATCAGCTCACCAACGACAAG-3′

E-Cadherin 5′-AGTCTCGTTTCTGTCTTCTGAG-3′ 5′-GAGCTGTCTACCAAAGTGACG-3′

GAPDH 5′-AATGGTGAAGGTCGGTGTG-3′ 5′-GTGGAGTCATACTGGAACATGTAG-3′

2.10. Statistical Analysis

Statistical analysis was performed using GraphPad Prism software 5.03 (GraphPad
Software, La Jolla, CA, USA). Power calculations to estimate sample sizes to achieve 95%
confidence intervals carried a maximum error of 4.615.

3. Results
3.1. Characterization of HTA Nanogel and Eb270/HEA Substrates

The HTA nanogel synthesis followed a previously published procedure and was
monitored by tracking the double bond conversion of the acrylate groups until 70% con-
version was achieved. Residual 10% acrylate functionality was confirmed via mid-FTIR
after the addition of ME. The molecular weight and hydrodynamic radius of the HTA NG
were measured to be 57,000 Da and 9.3 nm, respectively. Encapsulation efficiency was
calculated to determine the Sorbinil encapsulated by the nanogel. A standard curve of
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Sorbinil ranging from 0–10 µg/mL was prepared to relate absorbance to concentration
on a 96-well microplate (λabs = 280 nm). After the Sorbinil was loaded into the nanogel,
washed, and centrifuged, the free Sorbinil was collected, and the encapsulation coefficient
was determined to be 83 ± 5%. For in vivo substrates, the amount of Sorbinil encapsulated
was calculated to be 0.33 ± 0.06 µg.

Several other formulations were fabricated before finalizing the use of the HTA
nanogel. These formulations utilized various ratios of hydrophobic/hydrophilic monomers
such as urethane dimethacylate (UDMA) and 2-hydroxyethyl methacrylate (HEMA). These
nanogel systems (40:60 UDMA:HEMA NG) however, only had encapsulation efficiencies
of approximately 30% and almost all Sorbinil was released within two hours. The covalent
addition of the 2-mercaptoethanol on the outer surface of the HTA nanogel allowed for
pendent OH groups which in turn, led to more diffusion of the Sorbinil within the nanogel
yielding a higher encapsulation efficiency [9]. The Sorbinil-loaded nanogels were coated
on substrates, and photopolymerized in place with a broad spectra lamp (365–600 nm,
36 W/cm2) again for 5 min. To baseline the maximum amount of Sorbinil eluting that
could be removed from the nanogels into the reservoir via diffusion, the reservoir (10 mL)
was replaced at the 7 h mark and subsequently at days 1, 2, 3, 5, and 7. While it is noted
that the flow of aqueous humor can affect the elution rate of the drug in vivo and that
simple drug diffusion varies as a function of temperature, the initial tests conducted under
set conditions helped us baseline the release of the nanogels for this study. The residual
acrylate groups on the nanogel covalently crosslink, both onto the outer surface of the
nanogel and with each other, thereby creating a crosslinked mesh work that can curb the
burst release and deliver [7,9] the sustained release of Sorbinil shown in Figure 1.
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Figure 1. Sorbinil release in phosphate buffered saline from HTA NG over a period of 7 days compared to the burst release
of Sorbinil from the UDMA:HEMA NG over a 7 h period. These drug release averages n = 3 experimental replicates as well
as N = 3 technical replicates.

To further characterize nanogel coated and uncoated substrates, elastic modulus
and swelling were tested. As shown in Figure S1, the tested bar specimens showed no
significant difference in elastic modulus between coated (8.89 ± 0.52 MPa) and uncoated
samples (9.07 ± 0.46 MPa). The swelling of coated and uncoated substrates in distilled
water indicated that there is no significant difference between both coated and uncoated
sample types (Figure S2). The weights of the substrates (n = 3) were taken before being
placed in 5 mL of distilled water at 37 ◦C, then weighed again at both the 24 and 48 h time
points. As the substrates have high double-bond conversions ((meth) acrylate conversion
of 99.20 ± 0.37), only 9.3 ± 2.3% and 10.2 ± 1.8% was observed for uncoated and coated
substrates, respectively. The HTA nanogel showed negligible absorbance of light across
visible and ultraviolet wavelengths. As expected, HTA nanogel with encapsulated Sorbinil
showed an absorbance peak at approximately 280 nm corresponding to Sorbinil (Figure S3).
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3.2. Post-Surgical Tolerability of Drug Delivery Device in the Mouse Eye

Since we were unaware of published work describing deployment of an intraocular
device fabricated from EB270/HEA, we first tested the tolerability of our substrates placed
into the lens capsule following removal of the native lens mass. As shown in Figure 2, no
obvious signs of inflammation or irritation were observed in the mouse eye 5 days after
placement of an EB270/HEA substrate.
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Figure 2. Tolerability of the EB270/HEA drug delivery substrate in the mouse eye. Eyes were examined 5 days following
surgical removal of the native lens mass. In comparison with the unoperated eye (panel A), eyes with the native lens
replaced with the EB270/HEA substrate (panel B) or following lens extraction alone (panel C) showed no obvious signs of
inflammation or irritation. The intraocular location of the substrate is outlined by a dashed line in panel (B).

3.3. Efficacy of Anti-Cataract Drug Delivered via Nanogel-Based Device

To assess the efficacy of Sorbinil released via our nanogel-based materials, we im-
munostained for αSMA, a marker for EMT associated with early stages of PCO. In all cases,
we studied lens capsular bags harvested from the eyes of mice 5 days after lens extraction
surgery. Immunostaining intensity, which is semiquantitative for the abundance of αSMA
in this case, provides a reasonable indication for the abundance of this marker. We included
three therapeutic control conditions for our study, each comprising postsurgical capsular
bags treated with increasingly complex therapeutic components. These controls included
capsular bags with no external components inserted and capsular bags containing a naked,
uncoated substrate, as well as capsular bags treated with a nanogel-coated substrate. These
controls were compared with capsular bags treated with substrates coated with Sorbinil-
loaded nanogel. As shown in Figure 3, a strong immunostaining signal was observed
in capsular bags containing the naked substrate, with progressively less intense staining
observed in capsules treated with nanogel-coated substrates and even less staining with
substrates coated with Sorbinil-loaded nanogel. In the latter case, reduced staining for
αSMA in animals treated with nanogel-facilitated delivery of Sorbinil was similar to our
previous studies involving systemic treatment with Sorbinil via drinking water [6].
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DAPI (panels A–D) and for αSMA (panels E–H). Panels (I–L) show merged signals. Scale bar is
50 µm.

We used qRT-PCR to estimate changes in expression of genes associated with the
EMT process in mice, including αSMA, fibronectin, vimentin, and E-cadherin. As with
our immunostaining experiments, we included three treatment controls in our comparison
groups in order to uncover possible treatment effects of each of the drug delivery compo-
nents on the induction of EMT markers in our model system. As shown in Figure 4, lens
extraction led to a dramatic increase in the abundance of αSMA gene transcripts in RNA
extracted from lens capsular bags. Animals treated with the placement of substrates with
increasingly complex components of the Sorbinil-delivery system showed progressively
less but statistically insignificant changes in αSMA gene expression. However, substrates
containing Sorbinil-loaded nanogel showed significantly reduced levels of αSMA gene
transcripts (p < 0.001). A similar pattern of greatest reduction in EMT marker expres-
sion in eyes treated with substrates coated with Sorbinil-loaded nanogel was observed
in experiments targeted for fibronectin gene transcripts (p < 0.01). We observed a partial
recovery of E-cadherin gene expression in eyes treated with substrates coated with Sorbinil-
encapsulated nanogel, consistent with previous experiments demonstrating that Sorbinil
treatment helps to suppress the transition of lens epithelial cells toward the mesenchymal
phenotype in this surgical model.
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4. Discussion

Cataracts are responsible for almost 11 million cases of blindness and 35 million
cases of visual impairment worldwide [10]. The surgical treatment of cataracts involves
removal of the cloudy lens mass and usually replacement of the native lens with an
artificial device called an intraocular lens (IOL). While this procedure is usually safe and
uneventful, in up to 30% of cases, and even more depending on time, patients develop
a secondary cataract called posterior capsule opacification (PCO), which causes visual
impairment [11]. Removal of the secondary cataract and restoration of the visual light
path is most often accomplished with Nd:YAG laser capsulotomy. Because YAG laser adds
expense and potential complications such as secondary glaucoma, macular edema, and
retinal detachment [12], there is considerable need to prevent PCO in the first place.

PCO develops as a result of epithelial-to-mesenchymal transition (EMT) of lens epithe-
lial cells that remain adherent to the lens capsule following cataract extraction [3]. TGF-β is
thought to be a key regulator of PCO through its role in signaling downstream from its cell
surface receptor to SMAD proteins [13–15]. While strategies to prevent PCO have focused
on signaling pathways as well as structural parameters of intraocular lenses, we still do
not have sufficiently durable treatments to overcome the inexorable drive of lens epithelial
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cells to undergo EMT and cause visual impairment in the post-cataract patient [16]. A
major unanswered question is whether blockade of the EMT process that underlies PCO, if
limited as in the present study to the acute period immediately following cataract removal,
will be sufficient to prevent PCO at later times. This question will be addressed in animal
studies to be carried out in the future.

Our previous studies identified aldose reductase (AR), an aldo-keto reductase thor-
oughly studied as a catalyst of sorbitol production in diabetes [17], as a key player in
regulating PCO [5,6,8,17]. Unlike in humans, mouse lenses contain very low levels of
aldose reductase [18]. To make a mouse model more relevant to human cataract, we cloned
the human gene encoding aldose reductase into mice and demonstrated that such mice are
at higher risk for cataracts [19]. We hypothesize that elevation of AR using the transgenic
approach resulted in a more human-like induction of EMT markers following the mock
cataract procedure, and such changes represent measurable and meaningful indices for
discovery of agents to prevent or delay PCO in humans.

Small, orally active AR inhibitors such as Sorbinil substantially prevent EMT of lens
epithelial cells following cataract surgery in mice [6]. In addition, intraocular deposition of
a protein biologic derived from the inhibitory SMAD7 also shows promise against PCO [20].
In both cases, little is known yet about the width of the therapeutic window necessary to
achieve efficacy against PCO pathogenesis. Assuming lens epithelial cells may develop
a fibrotic response long after exposure to the inducing effects of TGF-β [21], it seems
reasonable to assume that blockade of PCO development in human patients may require
delivery of therapeutic agents over an extended period of time. Our previous studies
demonstrated that systemic delivery of Sorbinil suppressed expression of EMT markers
associated with fibrotic PCO but did not affect the expression of proteins typical of lens
fiber cells thought to be responsible for pearl-type PCO [6]. Future studies will be needed
to address the impact of nanogel-delivered inhibitors on the expression of markers for both
fibrotic and pearl-type PCO at longer times following lens extraction in our mouse model.

While topical drug delivery accounts for approximately 90% of aqueous ophthalmic
formulations, the biggest disadvantages include limited drug concentration and the barrier
function of the cornea [22,23]. For these reasons, it would be beneficial to develop an
effective system that can deliver therapeutic doses of a PCO-inhibiting molecule to the
lens, which occupies space within the center of the eye and is separated from the ocular
surface by several tissue and aqueous compartments. Many investigators have proposed
using an IOL as a substrate to coat with drug-eluting materials. However, coating the
nonrefractive IOL surfaces with drug formulations could alter the inherent properties
of the IOL and introduce unacceptably complex manufacturing bottlenecks. Some early
IOL-eluting prototypes have shown limited drug delivery windows of approximately
12 h [24]. Other methods, such as the addition of drug releasing capsular tension rings,
have proven to be problematic, as the membrane-controlled system has risk of ruptures
leading to acute toxicity when large quantities of drugs possibly burst into the eye [25].
For our studies, we considered it desirable to derive a mouse eye-sized piece of clinical
IOL for coating rather than the IOL-mimic substrate used in our studies. Unfortunately, it
was not possible to produce IOL fragments of a consistent size and shape which would be
needed for coating and implantation in the mouse eye. Our workaround was to design a
mouse-sized IOL-like substrate for our in vivo studies. Briefly, circular IOL substrates of
1 mm in diameter and 0.5 mm in thickness were generated. Subsequently, nanogel-coated
IOLs were obtained when 1 uL of the Sorbinil-eluting nanogel was polymerized on the
surface of the IOL substrates for the in vivo mouse studies. It is important to point out that
the IOL mimic formulated for this proof-of-concept study was designed to demonstrate
the feasibility of this approach to deliver an inhibitor and not to design an IOL with
the intended refractive power. While drug-eluting contact lenses and intraocular lenses
have been gaining significance over the past decade, to the best of our knowledge, the
current study is unique in focusing on drug-eluting IOLs in which the drug-delivery carrier
is a sub 10 nm pre-loaded nanogel that is covalently linked to the surface of IOL. The
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presence of Sorbinil within nanogel-based coatings in IOLs is also novel and has not been
previously studied.

In terms of flexibility and hydrophilic nature, the EB270/HEA substrate utilized in our
animal studies was designed to be similar to a typical IOL on the market but scaled to be
suitable for implantation in the mouse lens capsular bag (approximately 1 mm diameter).
Furthermore, since the substrate was not designed with a refractive function as would be
expected for a device providing long term correction of visual acuity, we did not assess
whether the materials have significant ocular toxicity. The water contact angle of the
EB270/HEA substrate was measured to be 59.1 ± 3.9 degrees, showing that this substrate
is clearly hydrophilic. While hydrophilic IOLs and hydrophobic IOLs perform the same,
hydrophobic substrates have a higher tendency to adsorb extracellular matrix proteins
and inflammatory cells which may lead to other complications. For these reasons, we
chose to focus on hydrophilic substrates for our model system [26]. Our nanoscale surface
coating has been shown to not affect the inherent properties of the substrate and simply
provide one week of sustained release. Further studies will be required to determine the
duration and boundaries of the therapeutic window for PCO prevention and thus the
requirements for delivery of PCO inhibitors. Ultimately, our goal is to develop a means
to effect sustained release of inhibitor so as to remove the need for multiple surgeries.
As the burden of cataracts will continue to increase in parallel with increases in the aged
population worldwide, so will the need for effective measures to prevent vision loss due to
PCO. Further studies underway will hopefully help to bridge the gap between intraocular
drug delivery technology and this unmet clinical need.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11081150/s1, Figure S1: Elastic Modulus of uncoated and coated IOL substrates. The
modulus of elasticity of the IOL before and after the coating was placed was characterized on a
Materials Testing System (MiniBionix II, MTS, Eden Prairie, MN, USA) by generating stress-strain
graphs. Briefly, bar specimens (25 mm × 2 mm × 2 mm, n = 5) of the polymerized IOL with and
without the coating were subject to flexural loading using a 100N load cell at a rate of 1 mm/min
and the modulus of elasticity was calculated. Results showed no significant difference in elastic
modulus between coated (8.89 ± 0.52 MPa) and uncoated samples (9.07 ± 0.46 MPa). Figure S2:
Swelling of uncoated and coated IOL substrates. The swelling of coated and uncoated substrates
in distilled water are shown below and indicates that there is no significant difference between
all substrates. The weight of the substrates (n = 3 for all groups) were taken before being placed
in 5 mL of distilled water at 37 ◦C, then weighed again at after 24 and 48 h. As the substrates
have high double-bond conversions ((meth)acrylate conversion of 99.20 ± 0.37) only 9.3 ± 2.3%
and 10.2 ± 1.8% was observed for uncoated and coated substrates respectively. Figure S3: Optical
absorbance of encapsulated Sorbinil nanogel coating. The optical clarity of the encapsulated sorbinil
nanogel coating was studied via UV-Visible spectroscopy in which 3 µL the sorbinil encapsulated
nanogel was added in each well of a 96-well microplate (n = 3). Sorbinil has a wavelength absorbance
peak from 260−280 nm which is shown below, but no absorbance is detected in the visible region
(400−700 nm). This was compared to the HTA nanogel without any nanogel, showing the optical
clarity of both systems.
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