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Abstract: Vascular endothelial growth factor (VEGF) is a major therapeutic target for blood–retina
barrier (BRB) breakdown in diabetic retinopathy (DR), age-related macular degeneration (AMD),
and other hypoxic retinal vascular disorders. To determine whether VEGF is a direct regulator of
retinal neuronal function and its potential role in altering vision during the progression of DR, we
examined the immediate impact of recombinant VEGF (rVEGF) on photoreceptor function with
electroretinography in C57BL6 background wild-type (WT) and Akita spontaneous diabetic mice.
Shortly after intravitreal injections, rVEGF caused a significant reduction of scotopic ERG a-wave
and b-wave amplitudes and photopic ERG b-wave amplitudes in a dose-dependent manner in dark-
adapted 1.5-mo-old WT mice. Compared with WT controls, 5-mo-old Akita spontaneous diabetic
mice demonstrated a significant reduction in scotopic ERG a-wave and b-wave amplitudes and
photopic ERG b-wave amplitudes. However, the effect of rVEGF altered photoreceptor function in
WT controls was diminished in 5-mo-old Akita spontaneous diabetic mice. In conclusion, our results
suggest that VEGF is a direct functional regulator of photoreceptors and VEGF up-regulation in DR
is a contributing factor to diabetes-induced alteration of photoreceptor function. This information
is critical to the understanding of the therapeutic effect and to the care of anti-VEGF drug-treated
patients for BRB breakdown in DR, AMD, and other hypoxic retinal vascular disorders.
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1. Introduction

Diabetic retinopathy (DR), a leading cause of blindness in the developed countries, is
regarded as a diabetes-induced disorder of retinal neurons and blood–retina barriers (BRBs).
Previous studies have demonstrated that the changes in retinal function and neuronal
viability occur before the onset of BRB abnormalities in diabetic patients and animal mod-
els [1–5]. In both diabetic humans and animals, retinal function is impaired [6], as measured
by changes in electroretinography (ERG) components. The viability of retinal neurons is
reduced during early diabetes in streptozotocin-injected rodent models, as demonstrated
by increasing neuronal apoptosis and retinal thinning, including the thinning of the inner
nuclear layer (INL) and outer nuclear layer (ONL) [1,5]. These results indicate that diabetes
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induces the loss of neurons in all retinal layers, including photoreceptors. Diabetic patients
also demonstrate a loss in green–blue color discrimination, early transition times in dark
adaptation, and S-cone sensitivity [3,4]. While these observations are impactful to the
field, the mechanisms of diabetes-induced alterations of visual function remain largely
uninvestigated, except formulating a clear consensus that diabetes induced alterations of
visual function may act as neuronal survival-dependent or -independent fashion [3,4,7].

A major accomplishment in retinal pathobiology in recent decades is the identification
of vascular endothelial growth factor (VEGF or VEGF-A) as a cardinal pathogenic factor in
retinal neovascularization and vascular leakage in DR and retinopathy of prematurity (ROP)
and in choroidal neovascularization in age-related macular degeneration (AMD) [8–12],
which leads to the development of anti-VEGF drugs as a major therapeutic strategy for DR,
AMD, ROP, and other hypoxic ocular vascular disorders. While VEGF has been shown
to act as a positive or negative regulator for neuronal function directly in the brain and
peripheral neurons [13–17], its role as a direct functional regulator of retinal neurons has
never been addressed. Potentially, elevated VEGF levels could upregulate its downstream
signaling cascade and play an important role in altering neuronal function in the retina
during the progression of diabetes, such as impairing visual function through alteration of
visual cycle and phototransduction machinery in DR [18]. This assumption is supported
by well-established observations that both VEGF receptor-1 (VEGFR1) and VEGFR2 are
present in the neural retina, including photoreceptors [19,20], in which the role of VEGF as
a trophic factor for retinal neurons under stress conditions has been identified [7,20–23]. To
determine if VEGF plays a direct role in regulating photoreceptor function, we developed
a procedure to evaluate the immediate effect of rVEGF on retinal neuronal function with
ERG, based on similar approaches used in dissecting the direct role of VEGF in neuronal
function in the rat hippocampus [14]. This article summarizes our work in revealing the
role of VEGF in photoreceptor function using wildtype (WT) or Akita spontaneous diabetic
mice [24].

2. Materials and Methods
2.1. Animals

All animal procedures were performed according to the Association for Research in
Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and
Vision Research and were approved by the Institutional Animal Care and Use Committee
at the University of Oklahoma Health Sciences Center. Animals were kept in temperature
controlled (25 ◦C) rooms with 12/12 h dark-light cycle. Akita spontaneous diabetic mice
in C57Bl6 background were purchased from Jackson Laboratory (Bar Harbor, ME, USA).
Genotyping of Akita mice were performed based on the instruction from the animal
supplier. Heterozygous Akita mice were used in maintaining the line. Animals with
blood glucose concentration over 350 mg/dL were defined as diabetic. Blood glucose
concentration in diabetic animals was reconfirmed at the end-point of our experiments.

2.2. Electroretinography (ERG)

For measurement of retinal function with ERG, mice were dark-adapted overnight.
Recombinant human VEGF (Santa Cruz Biotechnology, Dallas, TX, USA; R&D Systems,
Minneapolis, MN, USA) and vehicle control solutions, which contained exactly the same
PBS buffer and carrier protein (bovine serum albumin, without rVEGF) in the same volume
(1 µL), were delivered to the retina intravitreally under long-wavelength illumination,
according to a previous procedure [25]. Retinal function was measured with ERG using
a Colordome Espion ERG recording system (Diagnosys, Lowell, MA, USA), as described
previously [26,27]. Scotopic ERG was recorded using a series of flashes with increasing
light intensities (from 0.002 to 400 cd·s/m2). Photopic ERG was performed after the mice
were light-adapted in 50 cd/m2 background dome for 10 min. Photopic ERG was recorded
with a 2000 cd·s/m2 flash.
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2.3. Immunohistochemistry

To assess VEGF distribution in the mouse retina, immunohistochemistry (IHC) was
performed using cryo-protected retinal sections according to a previous method [28] with
the following primary antibodies: polyclonal rabbit anti-VEGF-A antibody (#ABS82 Sigma,
St. Louis, MO, USA) and monoclonal rabbit anit-VEGFR2 antibody (#55B11, Cell Signaling
Technology, Beverly, MA, USA) in conjunction with respective fluorescent–secondary anti-
bodies (Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s
instruction. For nuclear staining, 4′,6-diamidino-2-phenylindole (DAPI) and mounting me-
dia were used according to the manufacturer’s instruction (Vector, Burlingame, CA, USA).
IHC results were observed and imaged with computer-directed fluorescent microscopy.

2.4. Statistical Analaysis

All data required statistical analysis were expressed as mean ± SD or SEM. Statistical
analysis was performed with student t-test or one-way ANOVA. p-value < 0.05 was consid-
ered statistically significant. For in vivo studies, at least eight samples were used for each
experimental data point. Statistical analysis and graphic figures were made with Prism
GraphPad software (San Diego, CA, USA).

3. Results
3.1. Effect of VEGF on Phtoreceptor Function

To determine if VEGF-A or VEGF played a directly role in regulating photoreceptor
function, we intravitreally injected human rVEGF to overnight dark-adopted C57BL6
background mice (1.5-mo-old) under long-wavelength illumination and recorded ERG
shortly after the injection (20 min, for sufficient diffusion of injected rVEGF). While rVEGF
did not appear to alter the time to reach the trough or peak for both scotopic ERG a-wave
and b-wave, rVEGF-injected animals demonstrated a dose-dependent (0.1, 0.3, or 0.5 µg
rVEGF/eye) reduction of both scotopic ERG a-wave and b-wave amplitudes (Figure 1),
suggesting that rVEGF was capable of downregulating rod photoreceptor function imme-
diately after it diffused to photoreceptors and retinal neurons. The relative rVEGF-altered
changes in scotopic ERG a-wave and b-wave amplitudes were reduced with time (data
not shown). This observation supports that the VEGF-downregulated scotopic ERG a-
and b-wave amplitudes recorded shortly after the intravitreal injection are most likely the
primary responses by photoreceptors and other retinal neurons. To determine if VEGF
played a directly role in regulating cone photoreceptor function, we also recorded photopic
ERG in mice injected with rVEGF intravitreally. The rVEGF-injected animals demonstrated
a reduction of photopic ERG b-wave amplitudes in a dose-dependent (0.1, 0.3, or 0.5 µg
rVEGF/eye) manner (Figure 2), while there was no apparent change in the time-to-peak
for photopic b-wave. This result suggests that VEGF may also play a similar role as a direct
regulator of cone photoreceptor function.
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Figure 1. Direct effect of rVEGF on rod photoreceptor function in dark-adapted 1.5-mo-old 

C57BL6 mice. (A): Representative scotopic ERG tracers with progressive flash intensities from 

0.002 to 400 cd.s/m2 in mice 20 min after injected intravitreally with human rVEGF (vehicle, 0.1, 

0.3, or 0.5 µg/µL/eye). (B): Analysis of rVEGF-induced reduction of scotopic ERG a-wave ampli-

tudes. (C): Analysis of rVEGF-induced reduction of scotopic ERG b-wave amplitudes. Error bar: 

SEM (omitted if the value was smaller than the size of the corresponding symbol in the diagram). 

N > 8 for all data points. ***: p < 0.001; **: p < 0.01; *: p < 0.05. p-Value < 0.05 was considered signifi-

cant. rVEGF downregulated both scotopic a-wave and b-wave amplitudes in a dose-dependent 

manner in 1.5 mo-old WT mice. 
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Figure 2. rVEGF-induced reduction of cone photoreceptor function in 1.5-mo-old C57BL6 mice in a dose-dependent man-

ner. (A) Representative photopic ERG tracers with a flash intensity of 2000 cd.s/m2 after light adaptation at 50 cd.s/m2 for 

10 min, which equaled to 30 min after the mice injected with human rVEGF (vehicle, 0.1, 0.3, or 0.5 µg/µL/eye) intravitre-

ally. (B) analysis of rVEGF-induced reduction of photopic ERG b-wave amplitudes. Error bar: SEM. N > 8 for all data 

points. ***: p < 0.001; **: p < 0.01. p-Value < 0.05 was considered significant. rVEGF downregulated photopic b-wave am-

plitudes in a dose-dependent manner in 1.5 mo-old WT mice. 

Figure 1. Direct effect of rVEGF on rod photoreceptor function in dark-adapted 1.5-mo-old C57BL6 mice. (A): Representative
scotopic ERG tracers with progressive flash intensities from 0.002 to 400 cd·s/m2 in mice 20 min after injected intravitreally
with human rVEGF (vehicle, 0.1, 0.3, or 0.5 µg/µL/eye). (B): Analysis of rVEGF-induced reduction of scotopic ERG a-wave
amplitudes. (C): Analysis of rVEGF-induced reduction of scotopic ERG b-wave amplitudes. Error bar: SEM (omitted if
the value was smaller than the size of the corresponding symbol in the diagram). N > 8 for all data points. ***: p < 0.001;
**: p < 0.01; *: p < 0.05. p-Value < 0.05 was considered significant. rVEGF downregulated both scotopic a-wave and b-wave
amplitudes in a dose-dependent manner in 1.5 mo-old WT mice.
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Figure 2. rVEGF-induced reduction of cone photoreceptor function in 1.5-mo-old C57BL6 mice in a dose-dependent man-
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Figure 2. rVEGF-induced reduction of cone photoreceptor function in 1.5-mo-old C57BL6 mice in a dose-dependent manner.
(A) Representative photopic ERG tracers with a flash intensity of 2000 cd·s/m2 after light adaptation at 50 cd·s/m2 for
10 min, which equaled to 30 min after the mice injected with human rVEGF (vehicle, 0.1, 0.3, or 0.5 µg/µL/eye) intravitreally.
(B) analysis of rVEGF-induced reduction of photopic ERG b-wave amplitudes. Error bar: SEM. N > 8 for all data points.
***: p < 0.001; **: p < 0.01. p-Value < 0.05 was considered significant. rVEGF downregulated photopic b-wave amplitudes in
a dose-dependent manner in 1.5 mo-old WT mice.

3.2. Effect of VEGF on Phtoreceptor Function in Mouse Model of DR

As VEGF is gradually upregulated in the retina of diabetic mice, we asked the question
whether VEGF upregulation is a contributing factor for the reduction of photoreceptor
function in diabetes. We examined both scotopic and photopic ERG after intravitreal
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injection of rVEGF (0.3 µg/eye) or vehicle to 5-mo-old Akita spontaneous diabetic mice,
which have been suggested as a suitable model for experimental DR research [24]. As
expected, the Akita spontaneous diabetic mice (in C57BL6 background) demonstrated
a significant loss of both scotopic ERG a- and b-wave amplitudes compared with age-
matched C57BL6 WT counterparts (Figure 3). However, the effect of intravitreally delivered
rVEGF on scotopic ERG a- and b-wave amplitudes was diminished in 5-mo-old Akita mice
(Figure 3), which was contrary to that in WT control animals that demonstrated a similar
reduction of scotopic ERG a- and b-wave amplitudes after intravitreal rVEGF injection
(Figure 3), as observed in younger animals (Figure 1). Likewise, the effect of intravitreally
delivered rVEGF (0.3 µg/eye) on photopic ERG b-wave amplitude was also diminished
in these Akita mice (Figure 4). We then verified if retinal VEGF is gradually upregulated
during the progression of diabetes in Akita mice with IHC. While the 5-mo-old WT mice
demonstrated VEGF signals in the retinal pigment epithelium (RPE), photoreceptor inner
segments (PIS), Müller glia (MG) cell bodies in ONL, outer plexiform (OPL), INL, ganglion
cell layer (GCL), the age-matched Akita mice had a significant elevation of retinal VEGF,
particularly in areas of the RPE, PIS, MG in ONL, OPL, INL, and GCL. In addition, the
number of VEGF-positive cells in INL and GCL were substantially increased (Figure 5,
of note, diabetic animals may be more vulnerable for detaching the RPE and sclera from
photoreceptor cells due to the loss of RPE structural integrity [29]). This result suggests
that the elevated level of retinal VEGF is likely a major contributing factor for diabetes-
downregulated photoreceptor function in aging Akita mice. To address if VEGF receptors
or/and co-receptors regulate neuronal function in photoreceptors, we also perform IHC
and found that in addition to the commonly known presence in the RPE, MG, and GCL,
VEGFR2, the most likely VEGF receptor for regulating neuronal function, was present in
the nuclear envelops of photoreceptors (arrows in ONL), OPL (location of photoreceptor
synaptic terminals), and INL neurons (arrows in INL) in 3-mo-old adult mice (Figure 6).
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Figure 3. Diabetes nullified the effect of rVEGF-induced reduction of rod photoreceptor function in 5-
mo-old male Akita spontaneous diabetes mice (in C57BL6 background). (A) Representative scotopic
ERG tracers with flash intensity of 20 cd·s/m2 from age-matched Aktia and C57BL6 control mice
20 min after injected intravitreally with human rVEGF (vehicle or 0.3 µg/µL/eye). (B,C) Analysis of
rVEGF-induced reduction of scotopic ERG a- and b-wave amplitudes. Error bar: SEM (omitted if
the value was smaller than the size of the corresponding symbol in the diagram). N > 8 for all data
points. ***: p < 0.001; **: p < 0.01; *: p < 0.05. p-Value < 0.05 was considered significant. Compared
with WT controls, the effect of rVEGF downregulated both scotopic a-wave and b-wave amplitudes
was diminished in 5-mo-old male Akita spontaneous diabetes mice.
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Figure 4. Diabetes nullified the effect of rVEGF-induced alteration of cone photoreceptor function in
5-mo-old male Akita spontaneous diabetes mice in C57BL6 background. (A) Representative photopic
ERG tracers with a flash intensity of 2000 cd·s/m2 after light adaptation at 50 cd·s/m2 for 10 min,
which equaled to 30 min after the mice injected with human rVEGF (vehicle or 0.3 µg/µL/eye) in-
travitreally. (B) Analysis of rVEGF-induced reduction of photopic ERG b-wave amplitudes. Error bar:
SEM. N > 8 for all data points. **: p < 0.01. p-Value < 0.05 was considered significant. Compared with
WT controls, the effect of rVEGF downregulated photopic ERG b-wave amplitudes was diminished
in Akita spontaneous diabetes mice.
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Figure 5. IHC detection of retinal VEGF distribution in 5-mo-old Akita spontaneous diabetes mice in (C57BL6 background)
and WT controls. Scale bar: 50 µm. VEGF levels were significantly increased in the retina, particularly in the RPE, PISs, MG
cell bodies, INL, ONL, and GCL. The number of VEGF-positive cells in the INL and GCL was substantially increased.
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Figure 6. IHC detection of retinal VEGFR2 distribution in 3-mo-old C57BL6 background mice. Scale
bar: 50 µm. In addition to the commonly known presence in the RPE, MG, and GCL, VEGFR2 was
present in photoreceptor nuclear envelops (arrows in ONL), OPL (location of photoreceptor synaptic
terminals), and INL neurons (arrows in INL) in adult WT mice.

4. Discussions

The biomolecule VEGF has been identified as a direct functional regulator for a variety
of neuronal activities in the brain and peripheral neurons. It serves as a depressor for
synaptic transmission in hippocampus neurons and stimulus-evoked depolarization of
hypoglossal motor neurons to modulate uncontrollable neurological activities, whereas
its effect on sensory neurons in the brain is to promote chronic neuropathic pain [13–17].
These studies suggest that VEGF is capable of acting as a positive or negative regulator for
neuronal functions. Since VEGF is considered as a major pathogenic factor and therapeutic
target for the breakdown of BRBs in DR, AMD, and ROP, and other hypoxic retinal vascular
disorders [8–11], revealing if VEGF is a direct functional regulator of retinal neurons is not
only important to addressing a major knowledge gap in retinal neurobiology but is also
critical to the understanding of the therapeutic effect(s) of anti-VEGF drugs. The latter is
necessary to the improvement of patient care procedures during anti-VEGF therapies for
these leading causes of blindness. With this in mind, we took advantage of long-wavelength
illumination for intravitreal rVEGF delivery, which does not affect ERG recording for dark-
adapted animals immediately after intravitreal injection. As the relative rVEGF-altered
changes (percentage-wise) in scotopic ERG a-wave and b-wave amplitudes were reduced
with time in our hands if we repeated the ERG hours after the initial recording (data
not shown), the observed VEGF-induced reduction of scotopic ERG a- and b-waves and
photopic ERG b-wave are most likely the primary responses from photoreceptors. Our
method to expose rVEGF briefly to neuronal tissue is a conventional approach for dissecting
specific neuronal function in the brain [14]. As rod photoreceptors comprise a majority of
retinal cells in mice, the scotopic ERG results obtained with our approach is of high fidelity
after allowing a short period of rVEGF diffusion. In our experimental setting, we were
able to detect rVEGF-induced alteration of photoreceptor function almost immediately
after intravitreal injection. In general, ERG recording with a shorter waiting time after
intravitreal injection resulted in a higher variation, which is likely caused by insufficient
or uneven rVEGF diffusion. The amounts of rVEGF used in our experimental setting
are comparable to that in studies with transgenic VEGF expression or intraocular VEGF
delivery in rodents [23,30].

To exclude the possibility that potential contaminants in the commercial rVEGF
resulted in our study, we tested the human rVEGF from two independent commercial
sources, as well as mouse rVEGF. All of them demonstrated a similar effect in reducing
photoreceptor function in WT mice. As experiments were designed to exclude any potential
VEGF-induced indirect effect on visual function and to measure the immediate and direct
effect of VEGF on photoreceptor function, our results clearly support that VEGF plays
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a direct role in downregulating rod photoreceptor function in WT mice, a significant
knowledge gap in retinal neurobiology and VEGF-related retinal pathology and diseases.
However, we also recognize that (1) our work should be considered as an essential piece
of evidence in the beginning of a new area and (2) the data presented were the best
presentation of our work and might not address all potential issues. However, we will
address them in our future work.

The data in 5-mo-old Akita spontaneous diabetic mice certainly support our experi-
mental design. In our hands, ERG analysis suggests photoreceptor function is apparently
reduced in aging Akita spontaneous diabetic mice, compared with that in WT counterparts.
However, the effect of rVEGF on photoreceptor function is diminished in 5-mo-old Akita
mice when there is a clear elevation of retinal VEGF. The increase of VEGF level is partic-
ularly apparent in PISs, MG in NRL, INL, and GCL (Figure 5). This result suggests that
diabetes-induced VEGF upregulation nullifies the effect of intravitreally delivered rVEGF
on the reduction of ERG amplitudes in normal WT mice. Therefore, it is safe to conclude
that VEGF is a significant contributor to diabetes-induced reduction of photoreceptor
function, at least at early stage of DR. This observation provides much needed knowledge
to the understanding of altering visual function in DR and to the therapeutic effect and
patient care for anti-VEGF therapies for BRB disorders.

At present, the mechanism of VEGF-induced reduction of visual function in diabetes
remains elusive. Our observation that elevated VEGF presence in photoreceptor inner
segments in aging diabetic mice suggests a possibility for VEGF to serve as a modulator
for visual function under pathological stresses. Based on current understanding of ciliary
neurotrophic factor (CNTF)- or diabetes-induced depression of visual function [18,31–34],
VEGF might play a role in regulating vision through the fine tuning of phototransduction
and visual cycle machineries. VEGF elevation in DR could serve as a compensatory or
protective mechanism for photoreceptor machinery from uncontrollable and damaging
neurological activities under diabetic and other stress conditions, which is certainly the
case in CNTF-mediated depression of visual function and VEGF-mediated reduction of
synaptic transmission in hippocampus neurons, as discussed above. Mechanistically, the
lessons learned in the rat hippocampus [14] suggest that VEGF could exert its function
through VEGF receptor-mediated signaling by regulating synaptic transmission [15]. Our
observation that an enhanced VEGF level in PISs, RPE, MG, and OPL (location of pho-
toreceptor synaptic terminals) could provide VEGF to photoreceptors and other retinal
neurons for VEGF receptors- and co-receptors-mediated depressing of photoreceptor func-
tion in 5-mo-old Akita spontaneous diabetic mice (Figure 5) is certainly in agreement with
this possibility. This speculation is supported by the presence of VEGF receptors and
co-receptors in photoreceptors [19,20,35]. In addition to the commonly known presence in
the RPE, MG, and GCL neurons, VEGFR2, was present in the nuclear envelops of photore-
ceptors (arrows in ONL) and INL neurons and OPL (location of photoreceptor synaptic
terminals) in adult mice (Figure 6). We previously showed that the presence of VEGFR2 in
photoreceptor nuclear envelops was significantly enhanced if VEGFR2 was disrupted in
MG specifically [7], suggesting that this VEGFR2 IHC signal is relevant to retinal VEGFR2
signaling and is not likely derived from artifacts. More work with photoreceptor-specific
VEGFR2 knockout mice will allow us to address this issue and potential mechanisms of
VEGF-regulated neuronal function.

In conclusion, our work suggests that VEGF is a direct functional regulator for pho-
toreceptors and a significant contributor to diabetes-induced alteration of photoreceptor
function. This information is critical to the understanding of the therapeutic effect and to
the care of anti-VEGF drug treated patients for BRB breakdown in DR, AMD, and other
hypoxic retinal vascular disorders. Our findings provide new avenues to address how
visual functions are affected in the progression of DR, as discussed earlier (above). We are
actively exploring these potential mechanisms.
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