
biomolecules

Review

On the Role of Paraoxonase-1 and Chemokine Ligand 2
(C-C motif) in Metabolic Alterations Linked to Inflammation
and Disease. A 2021 Update

Jordi Camps 1,* , Helena Castañé 1 , Elisabet Rodríguez-Tomàs 1,2, Gerard Baiges-Gaya 1,
Anna Hernández-Aguilera 1 , Meritxell Arenas 1,2 , Simona Iftimie 3 and Jorge Joven 1,*

����������
�������

Citation: Camps, J.; Castañé, H.;

Rodríguez-Tomàs, E.; Baiges-Gaya,

G.; Hernández-Aguilera, A.; Arenas,

M.; Iftimie, S.; Joven, J. On the Role of

Paraoxonase-1 and Chemokine

Ligand 2 (C-C motif) in Metabolic

Alterations Linked to Inflammation

and Disease. A 2021 Update.

Biomolecules 2021, 11, 971. https://

doi.org/10.3390/biom11070971

Academic Editor: Vladimir N.

Uversky

Received: 31 May 2021

Accepted: 29 June 2021

Published: 1 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili,
Universitat Rovira i Virgili, 43201 Reus, Spain; helena.castane@urv.cat (H.C.);
elisabet.rodriguez@urv.cat (E.R.-T.); gerard.baiges@iispv.cat (G.B.-G.);
anna.hernadez@grupsagessa.com (A.H.-A.); marenas@grupsagessa.com (M.A.)

2 Department of Radiation Oncology, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere
Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain

3 Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere
Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain; smiftimie@grupsagessa.com

* Correspondence: jcamps@grupsagessa.com (J.C.); jjoven@grupsagessa.com (J.J.); Tel.: +34-310-300 (J.C.)

Abstract: Infectious and many non-infectious diseases share common molecular mechanisms. Among
them, oxidative stress and the subsequent inflammatory reaction are of particular note. Metabolic
disorders induced by external agents, be they bacterial or viral pathogens, excessive calorie intake,
poor-quality nutrients, or environmental factors produce an imbalance between the production of
free radicals and endogenous antioxidant systems; the consequence being the oxidation of lipids,
proteins, and nucleic acids. Oxidation and inflammation are closely related, and whether oxidative
stress and inflammation represent the causes or consequences of cellular pathology, both produce
metabolic alterations that influence the pathogenesis of the disease. In this review, we highlight
two key molecules in the regulation of these processes: Paraoxonase-1 (PON1) and chemokine (C-C
motif) ligand 2 (CCL2). PON1 is an enzyme bound to high-density lipoproteins. It breaks down lipid
peroxides in lipoproteins and cells, participates in the protection conferred by HDL against different
infectious agents, and is considered part of the innate immune system. With PON1 deficiency,
CCL2 production increases, inducing migration and infiltration of immune cells in target tissues
and disturbing normal metabolic function. This disruption involves pathways controlling cellular
homeostasis as well as metabolically-driven chronic inflammatory states. Hence, an understanding
of these relationships would help improve treatments and, as well, identify new therapeutic targets.

Keywords: cancer; cardiovascular disease; chemokine (C-C motif) ligand 2; fatty liver; infection;
inflammation; metabolism; obesity; paraoxonase-1

1. Oxidation, Inflammation and Disease

Tissues produce reactive oxygen species (ROS) as a metabolic by-product in response
to environmental factors such as an imbalanced diet or an infectious process. ROS react
with lipids, proteins, and nucleic acids and result in alterations in cell structure and
function [1]. The organism has enzymatic and non-enzymatic antioxidants to block the
harmful effects of ROS. However, these protective systems can be overwhelmed in disease
states. An inflammatory reaction is generated when oxidative equilibrium is disrupted.
For example, in infectious diseases, ROS production by host macrophages is an important
part of the defense mechanism against infecting bacteria or viruses, and the imbalances
produced can trigger an inflammatory reaction [2]. In turn, inflammation can lead to a
further increase in oxidative stress and thus enter a vicious cycle that can aggravate the
disease [3,4]. Independently of whether oxidative stress and inflammation represent the
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causes or the consequences of cellular alterations, an overwhelming amount of evidence
indicates that both processes contribute to the pathogenesis of many diseases. The role
played by macrophages and their polarization need to be considered in detail in the setting
of chronic inflammatory diseases [5]. These diseases are associated with an increase in M1,
or “classically activated” macrophages, and a decrease in M2, or “alternatively activated”
macrophages [6–8]. Chemokines are involved in macrophage polarization, while directing
the traffic of immune cells to sites of inflammation and activating the production and
secretion of inflammatory cytokines [9]. Monocytes migrate to the site of inflammation and
differentiate into macrophages when the chemokine (C-C motif) receptor (CCR2) interacts
with the chemokine (C-C motif) ligand 2 (CCL2): a key process in the development of
inflammatory diseases [10]. Recent studies indicate that other chemokines and chemokine
receptors also play important roles. For example, the CCL5/CCR5 complex has been
related to cancer and infection [11–14].

2. Paraoxonase-1 Is an Antioxidant Enzyme That Participates in the Innate
Immune System

Paraoxonase-1 (PON1) belongs to an enzyme family composed of three members
(PON1, PON2, and PON3), which are the protein products of a gene that evolved by
duplication of a common precursor. They have high structural homology with each
other [15,16], and the three genes are located in adjacent positions of chromosome 7
(7q21.3) [15,16]. PON1 is a lactonase and an esterase that catalyzes the hydrolysis of thiolac-
tones, organophosphate esters, unsaturated aliphatic esters, aromatic carboxylic esters, and
carbamates [17,18]. PON2 and PON3 do not degrade esters but have lactonase activity [19].
PON1 and PON3 degrade lipid peroxides in low-density lipoproteins (LDL) and high-
density lipoproteins (HDL) [19]. In humans, PON1 and PON3 are mainly synthesized by
the liver, and the enzymes are found in blood bound to HDL [20–22]. The enzymatic action
of PON1 is exerted in the circulation within HDL particles, but they can also be transported
from these particles to the cell membranes [23], especially of epithelial and endothelial
cells [24–26]. Conversely, PON2 gene expression is exclusively intracellular [27].

In addition to degrading oxidized lipids, PON1 inhibits CCL2 synthesis [28,29].
In vitro treatment of oxidized LDL with purified PON1 reduces the degree of lipid oxi-
dation and the ability of this lipoprotein to induce interactions between monocyte and
endothelial cells [30]. Further experimental studies have shown that HDL particles obtained
from PON1 deficient mice lacked the ability to protect LDL from peroxidation [31], and that
PON1 and apolipoprotein-E double deficient mice had higher levels of lipid peroxidation
products in vivo than the animals that were deficient in apolipoprotein-E alone [32].

PON1 can also protect the organism from bacterial biofilm formation through its
lactonase activity [33]. A biofilm is an aggregation of bacteria, embedded within a matrix
of polysaccharides, proteins, and DNA. Being embedded within biofilms provides bacteria
with protection and, by developing antibiotic resistance, can make successful treatment dif-
ficult [34–36]. Quorum sensing is essential for the formation of biofilms. This phenomenon
is defined as the coordination of bacterial behavior through the accumulation of signaling
molecules, i.e., when the concentrations of signaling molecules reach a critical threshold,
the result is modulation of certain target genes that trigger the formation of biofilms [37].
In Gram-negative bacteria, N-acyl-homoserine lactones (AHL) have been identified as the
major signaling molecules in this communication system [38–40]. Considerable evidence
suggests that PON1 plays an important role against biofilm formation. Lung epithelial
cells and resident macrophages are important defense mechanisms against airborne mi-
croorganisms. PON1 protein is strongly expressed in lung epithelial cells and, as described
above, it has lactonase activity [25,26]. Thus, it seems logical to infer that PON1 is able to
hydrolyze AHL and interrupt quorum sensing signals. This hypothesis was demonstrated
by investigators who found that a lactonase present in lung epithelial cells inactivates
3-oxo-C12-AHL [41–44]. These researchers also reported that wild-type mouse serum, rich
in PON1, degraded 3-oxo-C12-AHL and decreased P. aeruginosa biofilm formation, and
that this capacity was lost when serum from PON1 deficient mice was employed instead.
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In addition, adding purified PON1 to serum from PON1 deficient mice restored the ability
to degrade 3-oxo-C12-AHL and inhibited biofilm growth [44]. These data demonstrate that
PON1 efficiently degrades 3-oxo-C12-AHL and reduces the growth of bacterial biofilms.
Currently, it is widely accepted that PON1 is an enzyme with multiple hydrolytic capacities
causing lipoperoxide degradation and counteracting oxidative stress in the circulation and
within cells. PON1 also inhibits the synthesis of CCL2 and the subsequent inflammatory
reaction, and protects against the formation of bacterial biofilms. Overall, these results
indicate that PON1 can be considered part of the organism’s innate immunity system [45].

3. The Protective Role of Paraoxonases on CCL2 Expression, Mitochondrial Function,
and Metabolism

Several lines of research suggest that the PON family of enzymes play a prominent
role in the protection of cells against mitochondrial dysfunction and metabolic alterations.
Most studies in this field have been conducted on PON2 because the general consensus is
that this is the major intracellular enzyme. For example, PON2 has been reported to reduce
the unfolded protein response (UPR) accompanying oxidative stress and UPR-derived
caspase activation in human vascular cells [27,46,47]. In addition, the expression of genes
related to endoplasmic reticulum stress was increased in macrophages from apolipoprotein
E and PON2 double deficient mice, compared to those that were only apolipoprotein E
-deficient [48]. These authors observed that treatment of macrophages from apolipoprotein E
and PON2 double deficient mice with an inducer of endoplasmic reticulum stress resulted
in mitochondrial dysfunction, increased oxidative stress, and increased cell apoptosis.
Further studies in several experimental models have added more evidence that PON2
protects mitochondrial function and prevents apoptosis [49–51].

From the above-mentioned data, it is inferred that PON2 does indeed play a protective
role in mitochondrial function, but this is not so clear regarding PON1. Data suggest that
this enzyme also protects cells from oxidation, and that this effect involves the inhibition of
CCL2 synthesis. Studies from our research group have shown that PON1 deficient mice
fed an atherogenic diet had increased hepatic fat depots and a marked depression of the
tricarboxylic acid (TCA) cycle. In addition, the hepatic concentrations of several markers of
oxidative stress and CCL2 expression were increased [52]. Further experimental data [53]
showed that dietary fat caused liver steatosis, oxidative stress, and the accumulation of
pro-inflammatory macrophages in the livers of LDL-receptor and PON1 double deficient
mice, together with alterations in energy metabolism, in the methionine cycle, in the
glutathione reduction pathway, and autophagy. Conversely, when we established a line
of LDL-receptor, PON1, and CCL2 triple deficient mice, we observed that the deletion of
this chemokine normalized the metabolic disturbances and increased lysosome-associated
membrane protein 2 expression, which suggests enhanced chaperone-mediated autophagy.
In humans, studies have observed that individuals with obesity have impaired PON1
activity and impaired mitochondrial function [54,55]. Our group has a special interest in
evaluating the hepatic alterations in patients with morbid obesity treated with bariatric
surgery and, as well, in observing the metabolic effects of the treatment. To date, results
have shown that one-year post-surgery, the hepatic histology of all patients was improved,
especially in those who had severe steatohepatitis, bridging fibrosis, and/or cirrhosis.
Additionally, we observed pre-surgery differences in plasma and liver markers of oxidative
stress and inflammation (including CCL2 and PON1), which were corrected one-year post-
surgery [56]. In addition, patients with steatohepatitis presented pre-surgery alterations in
energy metabolism, especially in plasma concentrations of α-ketoglutarate and oxaloacetate,
which reverted one-year post-surgery [57]. Overall, these results suggest an entanglement
of PON1 and CCL2 in the regulation of metabolism and mitochondrial function in the liver
of experimental animals, and in humans (Figure 1).
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Figure 1. Oxidation, inflammation, and disturbances in energy metabolism are closely related.
To date, the evidence reported suggests that excessive production of reactive oxygen species (ROS)
would inhibit paraoxonase-1 (PON1) activity in high-density lipoprotein (HDL) particles and in
the mitochondrial membranes of somatic cells. At the same time, it would stimulate the synthesis
of chemokine (C-C motif) ligand 2 (CCL2) through several pathways, notably that of pathogen-
associated molecular patterns/damage-associated molecular patterns/pattern-recognition receptors
(PAMP/DAMP/PRR). The decrease in PON1 activity and the increase in CCl2 would cause alterations
in mitochondrial metabolism and an inhibition of autophagy. At the same time, CCL2 would interact
with its receptor (CRR2) and present on monocytes, promoting their migration to sites of injury,
their differentiation to macrophages, and their synthesis of new ROS, producing a vicious circle that
would trigger and aggravate the disease.

4. Mechanism of Action of CCL2 in the Immune Response and Inflammation and Its
Relationship with Multiple Metabolic Alterations

One of the proposed mechanisms by which oxidative stress would enhance the inflam-
matory response is the induction and assembly of multiprotein complexes called inflam-
masomes. ROS activate the NOD-like receptor Pyrin domain 3 (NLRP3) in macrophages,
triggering the formation of inflammasomes and an immune reaction that involves the
synthesis of pro-inflammatory chemokines, from which CCL2 is, probably, the most repre-
sentative [58–61]. This chemokine is upregulated following tissue injury and is expressed
by both inflammatory and stromal cells. CCL2 has been reported to promote endoplasmic
reticulum (ER) stress and autophagy and to regulate NF-kB expression by catalyzing de-
ubiquitination [62]. The main pathway triggering inflammation is, probably, the activation
of pattern-recognition receptors (PRRs), which recognize pathogen-associated molecu-
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lar patterns (PAMPs), synthesized as a response to pathogens, or damage-associated
molecular patterns (DAMPs), which are products of damaged cells [63–65]. The binding
of PAMP/DAMP to a PRR leads to NF-kB activation and the production of adhesion
molecules and chemokines that lead to infiltration of immune cells into the sites of tissue
damage [66]. Other alternative pathways also result in similar outcomes, particularly
the phosphoinositide 3-kinase-related signaling pathway, the mitogen-activated protein
kinase pathway, and the Janus kinase/signal transducers and activators of transcription
signaling pathway [67–69]. These changes induce the UPR, essentially by three ER-related
transmembrane proteins, i.e., the inositol-requiring enzyme 1, the protein kinase RNA-like
endoplasmic reticulum kinase, and the activating transcription factor 6 [70–73]. CCL2 and
other chemokines, together with oxidative stress, trigger ER stress. In addition, the UPR
may regulate inflammation through several pathways, such as the regulation of oxidative
stress or the upregulation of CCR2 expression [74]; the UPR links ER stress with cell death
and autophagy [75]. When cell damage is moderate, autophagy helps cells survive the
injury, allowing them to heal and thus preventing cell death by removing toxic protein
aggregates. However, when cell damage is high, the result is a non-apoptotic form of cell
death that can be detrimental. The role of autophagy in the maintenance of mitochondrial
integrity seems to be paramount [76]. Mitophagy increases cell lifespan, while repression
of autophagy reduces lifespan. Several studies have linked mitochondrial dysfunction,
autophagy, and age-related diseases with the activity of the inflammasomes [77–80]. Taken
together, these results define a clear relationship between oxidative stress, chemokines,
and mitochondrial impairment, resulting in metabolic alterations and their involvement in
diseases.

Activation of the immune response and chronic inflammation has been associated with
aging and age-related diseases [81–83]. Senescent cells secrete chemokines, which influence
the trafficking of immune cells [84,85]. Epidemiological studies have suggested that CCL2
levels are increased in older individuals, independently of metabolic alterations. Moreover,
in vitro studies have shown that chemokines appear to confer senescence to neighboring
normal cells in an autocrine and paracrine fashion [86–88]. A recent study by our research
group in mice with accelerated aging is a good example of such relationships [89]. We
crossbred mice that overexpressed CCL2 with progeroid mice bearing a mutation in the
lamin A gene. Wild-type animals and progeroid mice not overexpressing CCL2 were used
as controls. We observed that progeroid mice lost weight (relative to the wild-type animals)
and developed lordokyphosis and lipodystrophy. The lifespan was significantly reduced in
both strains of progeroid mice, but this reduction was higher in those overexpressing CCL2.
These mice also presented specific characteristics of metabolic dysregulation in skeletal
muscle, including alterations in the glucose and TCA cycles, and in one-carbon metabolism.
These data suggest that mitochondrial metabolites play major roles in pathological aging.
Consequently, we investigated the mitochondrial respiratory complexes in skeletal muscle,
and observed that the expressions of complexes I and V were lower in mice overexpressing
CCL2. In addition, the protein concentrations of translocase of outer membrane 20 (TOM20)
and mitofusin 2 (MFN2) in the muscles of the progeroid mice were decreased, indicating
alterations in the correct formation of the mitochondrial network. We also observed an
increase in p53, which would indicate the triggering of aging through a p53-mediated
transcriptional program involving the mechanistic target of rapamycin. Indeed, we found
inhibition of phosphorylation of phosphoinositide 3-kinase, indicating a mechanistic target
of rapamycin inhibition. Finally, the higher microtubule-associated proteins 1A/1B light
chain 3B (LC3) II/I ratio, and lower lysosome-associated membrane protein 2 (LAMP2A)
and sequestosome 1 (p62) expressions suggested the involvement of chaperone-mediated
autophagy as a consequence of the CCL2 overexpression in the progeroid animals.

Following on from the actions described above, in many infectious and non-infectious
diseases, the adaptive immunity deteriorates, whereas the innate immunity is more respon-
sive to stimuli; the consequence is the development of an inflammatory reaction. Several
studies have linked the activation of NLRP3, which is dependent on increased generation
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of free radical species by mitochondria, with metabolic disturbances [90–92]. Hence, it
is of note that awareness of the origin of free radicals and the putative mechanisms of
prevention (i.e., PON1) is critical when establishing possible therapeutic interventions in
order to preempt an inflammatory reaction. Within this context, the interaction of PON1
with CCL2 can play a key role.

In the following sections we summarize the current knowledge on the roles that PON1,
CCL2, and metabolic alterations play in some of the more frequently-occurring diseases.

5. Obesity and the Associated Liver Disease

The prevalence of obesity has increased in recent decades, and the phenomenon consti-
tutes a serious health problem worldwide [93]. Non-alcoholic fatty liver disease (NAFLD)
is an important comorbidity of obesity. The most severe form of NAFLD is non-alcoholic
steatohepatitis (NASH), which is often the main clinical reason for liver transplantation [94].
Excessive and unbalanced nutrient intake is a fundamental contributor to obesity, and
related metabolic liver disease. Several mechanisms have been proposed to explain the
metabolic alterations resulting from excessive food consumption and obesity. The capacity
of adipose tissue to store and process lipids is limited and, when this limit is exceeded,
adipocytes exhibit several signs of stress linked to metabolic dysfunction. Among these
factors are: free radical production, mechanical stress, ER stress, hypoxia, mitochondrial
dysfunction, altered chemokine and adipokine signaling, and inflammation [95,96]. Al-
tered concentrations of circulating cytokines and chemokines are strongly associated with
obesity [97–101]. In obese mice, all cell types within adipose tissue could, potentially,
secrete cytokines. Increased expression of inflammatory mediators has been observed in
the visceral fat of individuals with obesity [102,103]. Other metabolic tissues, apart from
adipose tissue, contribute to the severity of the disease and, in consequence, to macrophage
trafficking and infiltration mediated by chemokines [99,104,105]. Generally, the concept of
abnormal nutrient intake should consider not only the total amount of calories consumed,
but also their quality. Recently we reported that normal mice fed a high-fat diet develop
hepatic steatosis, but if they were fed an isocaloric diet rich in fat and sucrose they devel-
oped NASH [106]. This derangement was accompanied by oxidative stress and an increase
in the hepatic expression of CCL2. Additionally, we observed alterations in the TCA cycle,
glycolysis, and amino acid and pentose-phosphate pathways in the liver, as well as an
increase in autophagy. We concluded that, overall, the addition of sucrose to a high-fat
diet promotes an oxidative and inflammatory environment, and also negates the ability to
restore damaged hepatic mitochondria.

Abdominal obesity, whether in adults or children, is a risk factor for metabolic syn-
drome and, within which, is the reduction if serum PON1 activity [107,108], while exercise
increases the activity [109–111]. In sedentary children and adolescents with obesity, we
found that decreased PON1 activities were associated with hyperinsulinemia and insulin
resistance, as well as higher triglycerides and lower HDL-cholesterol concentrations. This
suggested that PON1 may be involved in the metabolic alterations leading to the future
development of diabetes mellitus and/or cardiovascular disease [107]. Serum PON1 ac-
tivity is low in chronic liver diseases [112]. Oxidative stress and decreased PON1 activity
result in an increased production of pro-inflammatory cytokines such as CCL2 and tumor
necrosis factor-α (TNF-α) [112]. In patients with liver impairment, the circulating levels of
these cytokines correlate with the severity of the hepatic inflammation [113,114], while the
pharmacological inhibition of CCL2 results in improved liver function [115]. The role of
CCL2 in the development of liver disease is schematized in Figure 2.

In humans, body mass index correlates well with adipose tissue CCL2 expression [116,117].
CCL2 has been suggested to influence the function of adipocytes and to be the link between
adipose tissue inflammation, insulin resistance, and liver impairment [99,118,119]. The inflam-
matory reaction induced by CCL2 could contribute to deterioration of cell homeostasis and
energy requirements in metabolic organs [53,118]. A recent study reported that the overexpres-
sion of CCL2 in mice was associated with increased liver and decreased muscle weights and, as
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such, mimicked a phenotype frequently found in obesity, liver disease, and aging [120]. The
animals also displayed distinct alterations in the liver and muscles, including concentrations
of metabolites from energy and one-carbon metabolism, mitochondrial fusion, and autophagy.
The study concluded that mice overexpressing CCL2 had an anabolic profile in the liver, with
decoupling of oxidative phosphorylation components, and alterations in mitochondrial fusion;
a phenomenon related to liver disease [121,122]. Of note is that skeletal muscle had a differ-
ent, catabolic, profile, with increased expression of oxidative phosphorylation components
and increased levels of lactate and ketone bodies, without alterations in mitochondrial fusion
markers.

Figure 2. Role of the chemokine (C-C motif) ligand 2 (CCL2) in the development of liver disease. Reactive oxygen
species (ROS) and decreased paraoxonase-1 (PON1) activity increase the synthesis of CCL2, which activates monocytes that
cross the endothelial barrier by diapedesis and differentiate into macrophages. These cells synthesize pro-inflammatory
cytokines, such as tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6), contributing to fat
accumulation and apoptosis of hepatocytes. Further, monocytes and macrophages synthesize tumor growth factor-β
(TGF-β) that induces differentiation of stellate cells into myofibroblasts that synthesize collagen.

Bariatric surgery is a common treatment in patients with morbid obesity, and of-
fers a unique opportunity to investigate the metabolic derangements associated with
NAFLD, especially when comparing the data obtained from a peri-surgical liver biopsy
with those obtained from a percutaneous biopsy obtained post-surgery [123]. Recent
results from our research group [124–127] showed that, one year post-bariatric surgery
(laparoscopic sleeve gastrectomy), the prevalence of diabetes, hypertension, and NAFLD
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significantly decreased in patients with pre-surgery morbid obesity; the improvements in
hepatic histology and function were greater in patients with NASH. We found significant
pre-surgery differences in liver markers of oxidative stress and inflammation (including
CCL2 and PON1) between patients with, and those without, NASH, which suggested
a regulatory role of mitogen-activated protein kinases. In addition, we observed an al-
teration in the mitochondrial function associated with a dysregulation of glutaminolysis
and increased hepatic and plasma concentrations of α-ketoglutarate. Bariatric surgery
was associated with consistent improvements in these parameters. These changes influ-
enced the adenosine monophosphate-activated protein kinase/mammalian target of the
rapamycin-driven pathways that modulated hepatocyte survival by coordinating apoptosis
and autophagy. Finally, we reported that α-ketoglutarate and the associated metabolites
affected methylation-related epigenomic remodeling enzymes. Integrative analysis of hep-
atic transcriptome signatures and differentially-methylated genomic regions distinguished
patients with NASH from those without.

6. Cardiovascular Diseases

Atherosclerosis and cardiovascular diseases (CVD) are closely associated with obe-
sity [128]. Perivascular inflammation plays a major role in the onset and development
of atherosclerosis [129,130]. Indeed, experimental studies in apolipoprotein E-deficient
mice reported that perivascular inflammation precedes oxidative stress and endothelial
dysfunction [129]. This experimental model is characterized by increased production
of chemokines such as CCL2 [131], macrophage inflammatory protein 1-α (MIP-1α or
CCL3), and CCL5 [132]. A considerable body of evidence indicates that activation of
the CCL2/CCR2 axis is important in the pathogenesis of atherosclerosis [133,134]. Lipid
peroxides, interleukins, angiotensin II, homocysteine, activated platelets, and shear stress,
among other mediators of atherosclerosis, induce CCL2 synthesis and secretion by en-
dothelial cells and smooth muscle cells [134]. Increased CCL2 expression has been found
in macrophage-rich atherosclerotic lesions [135]. Moreover, in autopsy-derived arterial
specimens from patients, CCL2 was shown to be present in the early phases of atheroscle-
rosis; the suggestion being that this chemokine contributes to the early influx of monocytes
into the vessel wall [136]. In human carotid endarterectomy specimens, a high CCL2
expression was observed in macrophage-rich areas bordering the necrotic lipid core of the
atheromatous plaque; the implication being that chronic monocyte infiltration and lipid
accumulation promoted by CCL2 contribute to plaque vulnerability [137]. A study by our
research group [138] showed that CCL2 (observed with immunohistochemical staining),
was 9-fold higher in coronary arteries obtained by autopsy from patients with coronary
artery disease, compared to those of healthy individuals who died in a traffic accident.
CCL2 expression was observed in only 26% of normal arteries, and was mostly restricted
to smooth muscle cells with an almost negligible staining in the intima and adventitia.
Conversely, CCL2 was detected in all specimens of affected arteries, and in all arterial lay-
ers, particularly those of the adventitia. Moreover, the quantitative measurement of CCL2
expression discriminated healthy artery tissue samples from that of coronary artery disease
samples in a mild, moderate, or severe state with >85% sensitivity and specificity. High
plasma CCL2 concentrations have been shown to be associated with increased long-term
risk of stroke [139,140], while CCL2 signaling pathways have been shown to be responsible
for ischemic stroke progression and atrial fibrillation [141,142].

In the above sections, we have discussed the close relationships between increased con-
centrations of CCL2, oxidative stress and decreased PON1 activity. Low PON1 activities are
known to increase oxidative stress as well as CCL2 synthesis and the generation of inflam-
matory processes. However, the opposite is also true. For example, chronic inflammation
causes profound changes in the structure and in the circulating levels of HDL, among
which are decreases in concentrations of PON1, apolipoprotein AI, lecithin:cholesterol
acyltransferase, and cholesterol ester transfer protein, together with an increase in the
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concentration of serum amyloid A (Figure 3). All these changes influence the intracellular
metabolism of cholesterol and increase the risk of CVD [143–145].

Figure 3. Changes in the structure of high-density lipoproteins (HDL) produced by inflammation. Chronic inflammatory
processes cause a decrease in the content of paraoxnase-1 (PON1), apolipoprotein AI (Apo AI), lecithin:cholesterol acyltransferase
(LCAT), and cholesterol ester transfer protein (CETP), and an increase in the concentration of serum amyloid A (SAA).

The mechanisms by which the decrease in PON1 concentrations associated with
chronic inflammation can promote pro-atherogenic changes in the arterial system have
received considerable research attention recently. The association of PON1 with HDL parti-
cles facilitates the binding of the particles to macrophages and, subsequently, the enzyme
can hydrolyze membrane phospholipids to generate lysophosphatidylcholine, which regu-
lates the expression of cholesterol transport proteins. Further, PON1 inhibits the formation
of free radical species in macrophages by preventing the activation of NADPH oxidase
and by stabilizing mitochondria. PON1 also promotes the differentiation of macrophages
into an anti-inflammatory phenotype [146]. An interesting study [147] demonstrated that
genetically reduced PON1 concentration induces proatherogenic changes in plasma pro-
teomes in humans and mice. The study investigated the influence of the least efficient
isoforms of PON1 genetic polymorphisms in humans and Pon1−/− genotype in mice and
found that both genetic modifications induce changes in the plasma proteome that affect
biological networks involving proteins participating in lipoprotein metabolism, in CVD in
neurological diseases, in immune response, inflammatory response, in cell-to-cell signaling,
and immune-cell trafficking. In general, clinical studies have found low circulating PON1
activities in patients with CVD [148–152]. However, its usefulness as a risk marker has
not been clearly demonstrated. A recent trial (the Dutch PREVEND study) reported an
association between low serum PON1 activities in 7766 subjects with high HDL and C-
reactive protein levels [153], but this association was not sufficiently robust in the general
population when adjusted for other confounding factors [154].

Metabolomics has enabled the identification of metabolic alterations in patients with
CVD. In addition, associated comorbidities (diabetes, obesity, metabolic syndrome) can
modify systemic and myocardial metabolism and worsen cardiac function [155–158]. The
earliest study conducted almost 20 years ago was promising, but the low number of
cases precluded definitive conclusions [157]. More recently, a lipidomics analyses in a
population-based 10-year follow-up study in Sweden showed an association between
CVD and lysophosphatidylcholine, monoglycerides, and sphingomyelin, independently of
traditional risk factors. Of note is that these alterations were associated with biochemical
markers of oxidative stress and inflammation [159]. Another lipidomics population-based
study in Italy showed that eight lipid classes (cholesterol esters, lysophosphatidylcholines,
lysophosphatidylethanolamines, phosphatidylcholines, phosphatidylethanolamines, phos-
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phatidylserines, sphingomyelins, and triacylglycerols) predict future development of my-
ocardial infarction, stroke, and sudden death [160]. Some patient-based studies have also
been conducted. Shah et al. [161] studied 2023 consecutive patients undergoing cardiac
catheterization and found that five different metabolite classes were independently associ-
ated with mortality; these were branched-chain amino acids (BCAA), dicarboxylacylcar-
nitines, fatty acids, long-chain dicarboxylacylcarnitines, and medium-chain acylcarnitines.
Of those, three lipid profiles significantly predicted fatal events, independent of other
standard predictors. More recent studies found that the serum concentrations of several
energy balance-related metabolites are increased in patients with dilated cardiomyopa-
thy [162], and alterations in NO metabolism were shown to be associated with severe aortic
stenosis [163].

Our research group has paid special attention to investigating the potential utility of
CCl2, PON1, and associated metabolic alterations as markers in the diagnosis of peripheral
arterial disease (PAD) of the lower extremities. This disease is a frequent complication of
diabetes mellitus and, if not treated expeditiously, may require amputation of the affected
limb. Unfortunately, the disease progresses silently and, although preventive measures
are effective in early stages, PAD is often under-diagnosed when asymptomatic and, con-
sequently, prevention is either applied too late or not at all. Therefore, the search for
laboratory-measured surrogates has an evident clinical interest. Furthermore, a charac-
teristic of PAD is that the extent of the affected area is much greater than that of vascular
diseases of the upper trunk, with which the biochemical alterations measured in the cir-
culation are potentially greater [164]. Our studies showed that patients with PAD had
decreased serum PON1 activities and increased CCL2 concentrations [165–167], together
with significant alterations in energy metabolism, including decreased circulating levels
of branched-chain amino acids and increased levels of glutamate, glutamine, and several
metabolites of the TCA cycle. Additionally, we found that CCL2, isocitrate, and gluta-
mate had a high diagnostic accuracy in predicting PAD, with areas under the curve of
the receiver operating characteristics (AUROC) plots > 0.95 [168]. These studies not only
served to illustrate the close relationships between PON1, CCL2, and energy metabolism
in inflammatory diseases, but also served to highlight new biological markers for the early
diagnosis of PAD.

7. Cancer

Obesity is a long-term risk factor for cancer, and both disorders share deviations in
common metabolic pathways [169]. Cancer is associated with oxidative stress. Experimen-
tal studies have reported that increased production of ROS by cancerous cells can cause
tumor proliferation, promotion of genetic instability, and alterations in cellular sensitivity to
chemotherapy [170]. Currently, serum PON1 activity appears to be decreased in many types
of cancers, and this topic has been the subject of a recent meta-analysis [171]. Our research
group observed decreased PON1 activities in patients with cancers of the breast, lung, head
and neck, and rectum who, fully or partially, recovered post-radiotherapy [172–174]. Some
studies investigated the relationships between serum PON1 activities and tumor stage, and
reported that local progress of the disease was associated with lower enzyme activities in
patients with ovarian [175] and gastroesophageal cancers [176]. However, other studies did
not find any significant differences in PON1 activities in relation to the presence/absence of
metastases [176–178] and, as well, did not find any significant associations between PON1
concentrations and tumor histology stage or location [176,179,180].

Consistent with what has been highlighted in this review is that decreased serum
PON1 activity is associated with inflammation in cancer. For instance, in gastroesophageal
cancers, the decrease in PON1 activity correlates directly with the levels of circulating in-
flammation markers, including C-reactive protein and interleukin-6 [179,181]. Additionally,
we have observed low serum PON1 activities and high CCL2 concentrations in patients
with bladder cancer [182]. CCL2 and other pro-inflammatory cytokines and chemokines re-
leased from tumor or stromal cells act in autocrine and paracrine modes to induce changes
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in tumor cells, recruit bone marrow-derived cells, favor epithelial-mesenchymal-transition,
and form an inflammatory milieu that favors metastatic cell growth [183]. For instance,
interleukin-1β has been shown to promote migration and proliferation of HeLa cells by tar-
geting the NF-κB/CCL-2 pathway [184], while CCL2 was reported as promoting prostate
cancer metastasis [185]. Further, the CCL2/CCR2 axis has been associated with breast
cancer (BC) progression [186], and miR-196a, which activates CCL2, also promotes the
migration and invasion of the lung by cancer cells [187]. In addition, high plasma CCL2
concentrations are associated with poorer response to neoadjuvant radiochemotherapy
in patients with colorectal cancer [188], and with increased risk of prostate cancer [189].
All these data suggest that the CCL2/CCR2 axis could be a promising target for cancer
treatment and prevention.

Cancer cells also have profound changes in energy metabolism. Normal cells mainly
produce energy via oxidative phosphorylation in the mitochondria. However, most cancer
cells produce energy through an enhanced form of glycolysis, followed by lactic acid
fermentation. Aerobic glycolysis is less efficient than oxidative phosphorylation in terms of
ATP production, but aerobic glycolysis facilitates increased production of other metabolites
that are required for the synthesis of lipids, proteins, and nucleic acids, which are factors
in the proliferation of tumor cells [190]. This is termed the “Warburg effect” as a tribute
to Otto Warburg who first described this phenomenon in 1956 [191]. Many studies have
highlighted the importance of the glutaminolysis pathway in converting glutamine to
glutamate and α-ketoglutarate for entry into the TCA cycle. Tumor cells convert 90% of glu-
cose and 66% of glutamine into lactate and alanine. Glutamine and glutamate contribute to
the carbon backbone in the TCA cycle, and this is relevant in conditions of carbon diversion
to glycolysis [192,193]. The transfer of an amino group from glutamate to oxaloacetate via
aspartate aminotransferase results in α-ketoglutarate and aspartate, whereas nitrogen trans-
fer from glutamate to pyruvate via alanine aminotransferase results in α-ketoglutarate and
alanine. Through these enzymatic modifications, glutamate activates several biochemical
pathways that stimulate tumor development, including protein and nucleic acid syntheses,
epigenetic changes, metabolite exchange between the mitochondria and the cytosol, and
the stimulation of antioxidant defense mechanisms [194,195] (Figure 4).

Several studies have indicated that glutamate concentrations have a major impact on
the fate of the tumor. For example, in mouse models of lung cancer (LC), the deletion of
autophagy-related gene 7 (Atg7) decreases macroautophagy, suppresses tumor growth,
and promotes cell death [196,197]. LC cells require autophagy to compensate for metabolic
stress that is induced by the hypoxic tumor microenvironment, and autophagy promotes
the degradation of intracellular components that are necessary for the syntheses of fatty
acids, nucleotides, amino acids, and sugars [198]. However, although Atg7 deficiency
decreases TCA cycle intermediates (such as glutamate, aspartate, and α-ketoglutarate),
supplementations of glutamine or glutamate in the diets of these mice cause a restorative
adaptation that increases the survival of LC cells [199]. In addition, NADPH oxidase 4,
an enzyme that is highly expressed in LC tumors, promotes glutaminolysis, increases
glutamate and glutathione concentrations, and contributes to the survival of LC cells [200].
Disturbances in energy metabolism in cancer cells are reflected in changes in plasma.
We recently demonstrated that, in patients with LC or with head and neck cancer (HNC),
plasma concentrations of glutamate are strongly increased, compared to those of the healthy
population [201]. This study also reported that the measurement of plasma glutamate
concentrations has a high diagnostic accuracy in differentiating between patients with LC
or HNC and healthy individuals, so it could be a biomarker of these cancers. Another study
reported that the plasma glutamate concentration has a high sensitivity and specificity
in differentiating between LC and benign lung lesions [202]. Likewise, a high plasma
glutamate concentration is associated with low survival [203], and with the presence
of neurological complications in patients with LC [204]. Furthermore, glutamate and
other glutaminolysis-related products have been proposed as biomarkers of chemotherapy
efficacy in patients with oral squamous cell carcinoma [205]. The measurement of plasma
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concentrations of glutamate via metabolomics, either alone or in combination with other
parameters, has demonstrated its usefulness as a biomarker in patients with pancreatic
cancer as well [206].

Figure 4. Glutaminolysis in cancer. Cancer cells require glutamine from the circulation to convert it into glutamate
and α-ketoglutarate, (α-KG) which enter the tricarboxylic acid (TCA) cycle. These metabolites induce the synthesis of
proteins, glutathione, and fatty acids, as well as epigenetic changes and metabolite exchange between the mitochondria and
the cytosol.

Another alteration that is consistently observed in patients with various types of
cancer is a decrease in the plasma concentrations of serine and branched-chain amino
acids such as valine, leucine, and isoleucine [201,207,208]. This is due, probably, to an
enhanced cellular demand for these amino acids related to increased glutaminolysis. These
amino acids are the major nitrogen source for the biosynthesis of glutamine and gluta-
mate [209]. The increased demand for glutamine by actively replicating tumor cells would
explain the observed reduced serum concentrations of serine and branched-chain amino
acids [210]. LC and HNC patients who had local tumor recurrences or who had died
from the disease had higher plasma concentrations of branched-chain amino acids, ser-
ine, and other metabolites associated with glutaminolysis [201]. These findings could
indicate that a poorer prognosis is associated with a deregulation of glutaminolysis. Sev-
eral other metabolites have been observed to be related to the clinical characteristics of
cancer patients, or to the molecular characteristics of their tumors. Preliminary results
have indicated that LC patients with metastases have higher plasma concentrations of
β-hydroxybutyrate, whereas those patients with local tumor recurrences had higher values
of leucine, valine, and fumarate [201]. Very little is known about the relationships between
these metabolites and prognosis of the cancer; β-hydroxybutyrate has been demonstrated
to increase the expression of forkhead box O, and the mammalian target of rapamycin.
Hence, this factor can stimulate cell growth, proliferation, and longevity [211]. This metabo-
lite also induces the synthesis of metallothioneins, superoxide dismutase, and catalase,
thus increasing the antioxidant capacities of cells [212]. Of note is that radiation therapy
(RT) has been demonstrated to influence and, to some extent, correct these metabolic
disturbances in patients as well as in experimental animals. In mice, RT decreased the
hepatic concentrations of choline, O-phosphocholine, and trimethylamine N-oxide, while
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increasing the concentrations of glutamine, glutathione, malate, creatinine, phosphate,
betaine, and 4-hydroxyphenylacetate [213]. A study in patients with glioblastoma demon-
strated that post-RT concentrations of 28 metabolites were significantly altered from their
pre-RT levels. However, the lack of a control group did not permit identification of the
degree of pre-RT metabolic alterations in these patients, as well as whether the effects of
treatment normalized or aggravated the alterations [214]. In patients with cervical cancer
and radiation-induced acute intestinal symptoms, RT increased the fecal concentrations
of α-ketobutyrate, valine, uracil, tyrosine, trimethylamine N-oxide, phenylalanine, lysine,
isoleucine, glutamine, creatinine, creatine, bile acids, aminohippurate, and alanine, as well
as being accompanied by reduced concentrations of α-glucose, n-butyrate, methylamine,
and ethanol. The authors concluded that metabolomics may be a novel clinical tool for the
diagnosis, or therapeutic monitoring, of radiation-induced acute intestinal symptoms [215].

In earlier studies we have reported that the plasma concentrations of the products of
glycolysis, TCA cycle, and amino acid metabolism were considerably altered in women
with BC, and that RT was associated with a partial rectification of these disturbances [207].
The metabolites that exhibited the strongest pre-RT decreases were serine, valine, leucine,
isoleucine, succinate, α-ketoglutarate, glutamate, and malonyl coenzyme A. The param-
eters that exhibited the strongest increases were pyruvate, aspartate, and aconitate. The
majority of these alterations were reversed following RT; the concentrations of lactate,
alanine, valine, leucine, isoleucine, proline, malonyl coenzyme A, glycine, succinate, serine,
and ketoglutarate were normalized post-RT. The same study also investigated the rela-
tionships between metabolic alterations and other concomitant treatments, as well as the
clinical characteristics of BC patients. The study reported that adjuvant hormone therapy
was associated with lower serum glycine concentrations, and that adjuvant chemotherapy
was associated with lower lactate and glutamine concentrations, as well as higher oxaloac-
etate concentrations, post-RT. In addition, the post-RT plasma concentrations of leucine and
isoleucine were significantly lower in estrogen receptor-positive patients than in estrogen
receptor-negative patients, and these concentrations were higher in triple-negative patients,
in comparison to luminal and Her2 subgroups. Another study in BC patients who received
RT after neoadjuvant chemotherapy [208] reported that patients exhibited increased pre-RT
concentrations of pyruvate, aspartate, aconitate, and citrate, in conjunction with decreased
concentrations of lactate, alanine, valine, leucine, isoleucine, proline, malonyl coenzyme
A, glycine, succinate, serine, ketoglutarate, and glutamate. RT largely corrected these
alterations, and the improvement was significantly superior in patients who achieved a
pathologically complete response than in those patients with partial responses, with serine,
proline, and leucine being the parameters with the highest capacity to discriminate between
the two groups. These effects of RT on energy metabolism in BC patients cannot be fully
extrapolated to other types of cancers. For example, in H&N cancer patients, RT did not
ameliorate metabolic alterations but, conversely, was associated with an increase in plasma
glutamate and TCA cycle intermediates, such as malate, pyruvate, and succinate [201].

8. Infectious Diseases

Bacterial or viral infections cause oxidative stress, inflammation, and metabolic alter-
ations linked to mitochondrial dysfunction as the body’s defense systems respond directly
against external agents, or against the interference of these agents in cell homeostasis. Infec-
tious diseases trigger a cascade of reactions in the host, known as the acute-phase response.
This response is associated with, amongst others, structural and functional changes in HDL
particles that lose their antioxidant and anti-inflammatory properties [216–218]. Many stud-
ies have identified decreased serum PON1 activities and increased CCL2 concentrations in
infectious diseases. A proteomic study reported decreased PON1 expression in patients
with sepsis, compared to healthy individuals [219]. We recently observed that hospitalized
patients carrying an indwelling central venous catheter [220] or a urinary catheter, with
catheter-associated asymptomatic bacteriuria [221] had decreased serum PON1 activities
and increased CCL2 concentrations. Based on our findings, we proposed the measurement
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of the circulating levels of these molecules as useful markers of acute concomitant infection.
We found similar alterations in patients with severe sepsis admitted to the Intensive Care
Unit; the alterations tended to normalize when the sepsis was corrected [222,223]. Serum
PON1 activity was found to be low in several studies in patients infected with Helicobacter
pylori; this alteration may play a role in the high predisposition of these patients to develop
atherosclerosis and CVD [224–228]. Decreased serum PON1 activities were also observed
in patients infected by Brucella [229], or Mycobacterium tuberculosis [230], together with
increased release of pro-inflammatory cytokines.

Viral infections are associated with similar disruptions. Patients with human immun-
odeficiency virus (HIV) infection have decreased circulating levels of HDL-cholesterol and
PON1 activity, and increased CCL2 [231–236]. These patients often develop pro-atherogenic
metabolic alterations, which can be explained by the infection itself, or by the effects of
antiretroviral therapies [237–239]. Higher PON1 activities and lower CCL2 concentrations
have been related to higher CD4+ T lymphocyte counts, which indicate a better immuno-
logical status [233]. Recent studies observed that CCL2 participates in the onset and
development of neurocognitive disorders in HIV-infected patients [240–243]. Similar alter-
ations in PON1 and CCL2 levels have been reported in patients with hepatitis B [244–246],
hepatitis C [247,248], and dengue [249]. Although data on alterations in energy metabolism
in HIV infection are scarce, some studies using metabolomic methods showed significant
associations between CCL2, sphingomyelins, phospholipids, and triglycerides [250], Addi-
tionally, the alterations in glutaminolysis and pro-inflammatory molecules appear to be the
metabolomic signature of late immune recovery post-treatment [251]. Moreover, increased
plasma glutamine levels have been found to be related to CVD in these patients [252].

In this article, which has “A 2021 update” in the title, we must not miss the opportunity
of commenting on the special circumstances in which we currently find ourselves, i.e.,
the COVID-19 pandemic. Available data on this issue are very preliminary. A proteomic
study found decreased PON1 expression in the HDL of COVID-19 patients [253]; the role
of PON1 in COVID-19 may be different depending on whether the enzyme is present in
the circulation or within the cells. Purified native HDL with intact PON1 elicits a potent
antiviral effect against SARS-CoV-2 in cultured monocyte cells, while glycated HDL, with
inactive PON1, lost its antiviral activity [254]. However, an in silico study reported that
PON1 enhances the action of ACE2, the main cell receptor of SARS-CoV-2 [255], and the
inhibition of PON1 activity has been described as being a potent inhibitor of vaccinia
virus early protein synthesis and viral mRNA methylation in mice [256], suggesting that
intracellular PON1 is important in limiting the translation of viral proteins and virus
replication. High CCL2 concentrations have been observed in the circulation [257–262]
in bronchoalveolar lavage fluid [263], and in lung tissue of COVID-19 patients [264].
One study reported that CCL2 expression increases rapidly in the early acute phase of
infection and then progressively decreases as the disease advances [265]. The effects of
this infection on mitochondrial function and energy metabolism deserve further research,
because preliminary data suggest they could be very clinically relevant [266,267].

9. Final Remarks

We make no pretense at an exhaustive review of all the articles that demonstrate
a participation of PON1, CCL2, and metabolic alterations in all known diseases. We
have not addressed neurological, autoimmune, or kidney diseases, or conditions caused
by food poisoning or xenobiotics. Nor have we mentioned the alterations produced in
these parameters by surgical procedures, nor the successful (or unsuccessful) attempts
to modulate these pathways through dietary or pharmacological interventions. Indeed,
such a task is beyond the remit of a review article. Rather, we sought to highlight some
of the common pathophysiological mechanisms of many communicable and/or non-
communicable diseases, particularly with respect to the important roles that PON1 and
CCL2 play in metabolic changes linked to mitochondrial dysfunction. Our goal has been to
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encourage interested readers to undertake their own research in a field that we believe will
have transformational scientific and clinical implications in the near future.
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