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Abstract: Matrix metalloproteinases (MMPs) are proteolytic enzymes that have been associated with
the pathogenesis of inflammatory diseases and obesity. Adipose tissue in turn is an active endocrine
organ capable of secreting a range of proinflammatory mediators with autocrine and paracrine
properties, which contribute to the inflammation of adipose tissue and adjacent tissues. However,
the potential inflammatory effects of MMPs in adipose tissue cells are still unknown. This study
investigates the effects of BmooMPα-I, a single-domain snake venom metalloproteinase (SVMP), in
activating an inflammatory response by 3T3-L1 preadipocytes in culture, focusing on prostaglandins
(PGs), cytokines, and adipocytokines biosynthesis and mechanisms involved in prostaglandin E2

(PGE2) release. The results show that BmooMPα-I induced the release of PGE2, prostaglandin I2

(PGI2), monocyte chemoattractant protein-1 (MCP-1), and adiponectin by preadipocytes. BmooMPα-
I-induced PGE2 biosynthesis was dependent on group-IIA-secreted phospholipase A2 (sPLA2-IIA),
cytosolic phospholipase A2-α (cPLA2-α), and cyclooxygenase (COX)-1 and -2 pathways. Moreover,
BmooMPα-I upregulated COX-2 protein expression but not microsomal prostaglandin E synthase-1
(mPGES-1) expression. In addition, we demonstrate that the enzymatic activity of BmooMPα-
I is essential for the activation of prostanoid synthesis pathways in preadipocytes. These data
highlight preadipocytes as important targets for metalloproteinases and provide new insights into
the contribution of these enzymes to the inflammation of adipose tissue and tissues adjacent to it.

Keywords: metalloproteinase; preadipocytes; prostaglandins; adipokines; cytokines

1. Introduction

MMPs are a family of zinc-dependent endoproteases responsible for the degradation
of various proteins of the extracellular matrix (ECM). In physiological conditions, when the
expression and activity of MMPs are under strict control, these enzymes play important
roles in tissue remodelling, host defense, angiogenesis, and immune response, as well
as cell proliferation, migration, and differentiation [1–4]. However, when there is an im-
balance between the levels of activated MMPs and their tissue inhibitors, these enzymes
become important in the pathogenesis of several inflammatory diseases, such as arthritis,
atherosclerosis, and obesity [1,3,5–9]. Although the precise mechanisms of action of MMPs
have not been completely described, these enzymes have been shown to trigger inflam-
matory reactions at various levels, regulating the recruitment of inflammatory cells to the
site of inflammation by the processing of ECM components, growth factors, cytokines,
and chemokines [1,10–12]. Accordingly, increased circulating plasma levels of MMPs and
increased expression of these enzymes, mainly of MMP-3, MMP-9, and MMP-13, have been
reported in the inflamed tissues of patients suffering from inflammatory diseases, such
as rheumatoid arthritis, osteoarthritis, bowel disease, and neuroinflammation [1,3,8,10].
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Presently, MMPs have been associated with the development of obesity by promoting
adipocyte differentiation, as well as adipose tissue remodelling [5,13–16]. In this context,
levels of MMP-2, MMP-8, and MMP-9 were found to be increased in the adipose tissue of
obese patients [5,6,13]. However, despite the roles of MMPs in obesity development, the
actions of these enzymes on adipose tissue cells are still unknown.

Adipose tissue is known to secrete a range of proinflammatory mediators with au-
tocrine and paracrine properties, such as the adipose-tissue-derived adipokines leptin,
resistin, and adiponectin; cytokines; chemokines; and PGs, which contribute to the develop-
ment and progression of inflammatory diseases [17–23]. Among the mediators produced
by the adipose tissue, PGE2, which is enzymatically converted from arachidonic acid (AA)
by the COXs and terminal PGE synthases (PGES), is the predominant PG produced by
the adipose tissue and plays a pivotal role in the pathogenesis of several inflammatory
diseases [20,24,25]. In inflammatory conditions, PGE2 is known to mediate vasodilation,
vascular permeability, and pain [26,27]. Regarding obesity, PGE2 has been implicated in
the regulation of adipose tissue functions and the development of obesity. In this regard,
PGE2 and COX-2 levels have been found to be increased in the adipose tissue of obese pa-
tients [20,28–31]. Despite modulatory effects in this tissue by the suppression of leukocyte
inflammatory activity, several pieces of evidence have shown that PGE2 exerts antilipolytic
actions that lead to increased adipose tissue mass, a factor that has been associated with
increased risk of diabetes and cardiovascular disease [20,31–34].

Adipose tissue is largely composed of two fractions, mature adipocytes and the
stromal vascular fraction (SVF), which is responsible for the generation of many of the
proinflammatory mediators secreted by this tissue [35]. Within the SVF, preadipocytes,
the undifferentiated precursors of mature adipocytes, account for up to 50% of the cells
in human adipose tissue, and when compared to mature adipocytes, have a propensity
for greater inflammatory response through the activation of nuclear factor-κB (NF-κB) and
mitogen-activated protein kinase (MAPK) signalling [35–37]. In the adipose tissue, MMPs
are known to participate in the differentiation of preadipocytes into mature adipocytes
and in the development of this tissue by promoting ECM remodelling [7,38–40]. However,
the inflammatory actions of MMPs in adipose tissue cells and mechanisms leading to the
production of PGE2 in these cells are still unknown.

SVMPs share structural and functional homology with mammalian MMPs and have
been grouped within the M12 family of metalloproteinases, which belong to the metzincin
superfamily of these proteinases [41,42]. This superfamily is characterised by the presence
of a consensus zinc-binding sequence (HEXXHXXGXXH) followed by a conserved loop,
Met-turn, in the catalytic domain [1,2,42,43]. The SVMPs have been classified into three
main classes (P-I to P-III) based on their domain structure and size. Notably, P-I class
SVMPs present only the catalytic metalloproteinase domain, and as with MMPs, are able to
degrade ECM components, activate inflammatory cells, and induce inflammatory events
in several experimental models. P-I SVMPs are, therefore, useful tools for studies of the
biological effects of MMPs, including inflammatory disease development [44–46].

Based on this, we investigated the ability of BmooMPα-I, a P-I class metalloproteinase
isolated from Bothrops moojeni snake venom, to activate the inflammatory response by
preadipocytes in culture with a focus on (i) the release of PGE2 and PGI2, cytokines, and
adipokines; and (ii) the mechanisms involved in the release of PGE2 induced by this metal-
loproteinase. For this purpose, we evaluated the participation of COX-1, COX-2, mPGES-1,
endogenous PLA2s, and metalloproteinase catalytic activity in the BmooMPα-I-induced
release of PGE2. Our results are the first to demonstrate the ability of a metalloproteinase to
activate preadipocytes for production of PGE2, PGI2, monocyte chemoattractant protein 1
(MCP-1), and adiponectin. The BmooMPα-I-induced production of PGE2 is dependent on
the activation of endogenous cPLA2-α and sPLA2-IIA and the COX-1/COX-2/mPGES-1
pathway. The catalytic activity of BmooMPα-I is critical for the activation of PG biosynthe-
sis pathways.
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2. Materials and Methods
2.1. Chemicals and Reagents

MTT and L-glutamine were obtained from USB (Cleveland, OH, USA). Dulbecco’s
modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were purchased from
Life Technologies (São Paulo, SP, Brazil). Gentamicin was purchased from Schering-Plough
(Whitehouse Station, NJ, USA) and DMSO was purchased from Amresco (Solon, OH, USA).
Mouse mAb anti-β-actin was purchased from Sigma-Aldrich (St. Louis, MO, USA) and
polyclonal antibodies against COX-1, COX-2 and mPGES-1 were purchased from Cayman
Chemical Company (Ann Arbor, MI, USA). PGE2; PGI2 enzyme immunoassay kit; and the
compounds SC-560 NS-398, pyrrolidine-2 (PYR-2), FKGK11, KH064, and Batimastat (BB-94)
were also purchased from Cayman Chemical Company (Ann Arbor, MI, USA). Secondary
antimouse and antirabbit antibodies conjugated to HRP and nitrocellulose membrane
were obtained from GE Healthcare (Buckinghamshire, UK), while the leptin, resistin, and
adiponectin immunoassay kit was purchased from Thermo Fisher Scientific (Waltham, MA,
USA). The cytometric bead assay (CBA) kit was purchased from BD Bioscience (San Jose,
CA, USA).

2.2. BmooMPa-I

The metalloproteinase BmooMPα-I, isolated from Bothrops moojeni venom, was puri-
fied by ion-exchange chromatography on a Hitrap® DEAE Fast Flow column. Gel filtration
was performed on a Tosoh G2000SWxL column and affinity chromatography was per-
formed on a Hitrap® Heparin High Performance column [47]. All chromatographic steps
were performed using liquid chromatography on AKTA AVANT from GE Healthcare
(Buckinghamshire, UK). The homogeneity of the enzyme was determined by sodium
dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) under reducing condi-
tions and confirmed by mass spectrometry. The results obtained via mass spectrometry
demonstrated a single protein peak with a molecular weight of 24.5 kDa compatible with
the metalloproteinase BmooMα-I. The proteolytic activity of BmooMPα-I was confirmed
using the fluorescence resonance energy transfer substrate (FRET Abz-FRSSRQ-EDDnp),
which contains a universal sequence recognized by different classes of proteases [48]. The
absence of endotoxin contamination in the BmooMPa-I batches used was demonstrated
by the quantitative limulus amebocyte lysate (LAL) test [49], which revealed undetectable
levels of endotoxin (<0.125 EU/mL). The enzyme was lyophilised, stored at −20 ◦C, and
dissolved in DMEM medium just before use.

2.3. Cytotoxicity Assay

The cytotoxicity of BmooMPα-I toward the 3T3-L1 preadipocyte was evaluated using
the MTT assay as previously described [50]. In brief, 4 × 103 preadipocytes per well were
plated in 96-well plates in DMEM, supplemented with 40 µg/mL gentamicin sulphate and
2 mM L-glutamine, then incubated with BmooMPα-I (0.24 µM), COX, or PLA2 inhibitors
or Batimastat diluted in medium or with the same volume of medium alone (control) for 1,
3, 6, 12, 24, and 48 h in a humidified atmosphere (5% CO2) at 37 ◦C. MTT (5 mg/mL) was
dissolved in PBS and filtered for the removal of insoluble residues and sterilisation. MTT
stock solution (10% in culture medium) was added to all wells in each assay and plates
were incubated for 3 h at 37 ◦C. Dimethyl sulfoxide (DMSO) (100 µL) was added to wells
and mixed thoroughly for 30 min at room temperature. Absorbances were then recorded
at 540 nm in a microtiter plate reader. The results were expressed as percentages of viable
cells, considering control cells incubated with medium alone as 100% viable.

2.4. 3T3-L1 Cell Culture and Stimulation

The 3T3-L1 preadipocytes obtained from the American Type Culture Collection were
cultured as described in a previous study [35]. Briefly, 5 × 103 preadipocytes per well
were seeded in 12-well culture plates and maintained in culture medium for 48 h before
stimulation, according to the experimental protocol. Preadipocytes were serum-starved in
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DMEM containing 1% (v/v) gentamicin sulphate supplemented with 1% (v/v) L-glutamine
for 18 h prior to all treatments. Cell homogenates were collected and used for the Western
blotting analysis of COX-1, COX-2, and mPGES-1 protein expression, and supernatants of
each treatment were used to measure lipid mediators PGE2 and PGI2 and the adipokines
leptin, resistin, and adiponectin by enzyme immunoassay (EIA), as well as the cytokines
MCP-1, TNF-α, IL-1β, KC, IL-6, and IL-10 by cytometric bead array (CBA). Cells were
stimulated with BmooMPα-I (0.24 µM), diluted in DMEM (2.5% FBS) or DMEM alone
(control) for selected periods, and maintained in a humidified atmosphere (5% CO2) at
37 ◦C. To investigate the mechanism involved in the PGE2 biosynthesis and the partici-
pation of the metalloproteinase enzymatic activity in the effects induced by BmooMPα-I,
selective inhibitors were used at previously tested concentrations: 1 µM SC-560 (COX-1
inhibitor) [51] and NS-398 (COX-2 inhibitor) [52], 1 µM PYR-2 (cPLA2-α inhibitor) [53],
1 µM FKGK11 (calcium-independent phospholipase A2 (iPLA2) inhibitor) [54], 10 µM
KH064 (sPLA2-IIA inhibitor) [55], and 32 µM Batimastat (metalloproteinase inhibitor) [56].
All stock solutions were prepared in DMSO and stored at −20 ◦C. Aliquots were diluted in
DMEM immediately before use. The concentration of DMSO was always lower than 1%.
The viability of cells treated with inhibitors was evaluated by MTT assay. No significant
changes in cell viability were registered with any of the tested agents or the vehicle at the
concentrations used.

2.5. Inhibition of Metalloproteinase Activity

BmooMPα-I was incubated with the peptidomimetic hydroxamate metalloproteinase
inhibitor Batimastat (32 µM) at 37 ◦C for 30 min prior to incubation with cells [56]. The
3T3-L1 preadipocytes plated in 12-well plates were then incubated for 6 h at 37 ◦C with
aliquots of BmooMPα-I (0.24 µM) inhibited by Batimastat and controls, which included
BmooMPα-I without Batimastat, Batimastat alone, or vehicle (DMSO). Cell homogenates
were collected for the evaluation of COX-2 protein expression and supernatants were
collected for the quantification of PGE2.

2.6. Western Blotting

The protein expression of COX-1, COX-2, and mPGES-1 from cell homogenates was
detected by Western blotting. Briefly, BmooMPα-I-stimulated and non-stimulated cells
were lysed with 100 mL of a sample buffer (0.5 M Tris HCl, pH 6.8, 20% SDS, 1% glyc-
erol, 1 M β-mercaptoethanol, 0.1% bromophenol blue) and boiled for 10 min. Samples
were resolved by SDS-PAGE on 10% bis-acrylamide gels overlaid with a 5% stacking
gel. Proteins were transferred to nitrocellulose membranes using a Mini Trans-Blot sys-
tem (Bio-Rad Laboratories, Richmond, CA, USA). Membranes were then blocked for 1 h
with 5% albumin in Tris-buffered saline (20 mM Tris, 100 mM NaCl and 0.5% Tween 20,
pH 7.2) and incubated overnight at room temperature with primary antibodies against
COX-1, COX-2, and mPGES-1 (1:500 dilution) or for 1 h with the primary antibody against
β-actin (1:3000 dilution). Membranes were washed and incubated with the appropriate
secondary antibody conjugated to horseradish peroxidase. Immunoreactive bands were de-
tected by the entry-level peroxidase substrate for enhanced chemiluminescence, according
to the instructions of the manufacturer (GE Healthcare). Band densities were quantified
with an ImageQuant LAS 4000 mini densitometer (GE Healthcare) using the image analysis
software ImageQuant TL (GE Healthcare).

2.7. Prostanoid, Cytokine and Adipokine Quantification

PGE2 and PGI2, as well as the adipokines leptin, resistin, and adiponectin, were
measured using EIA kits, while cytokines (MCP-1, TNF-α, IL-1β, KC, IL-6, IL-10) were
quantified using a CBA kit from supernatants of preadipocytes incubated with each treat-
ment. Kits were used following the instructions of the manufacturer.
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2.8. Statistical Analysis

Data are expressed as means ± SEM (n = 4). Multiple comparisons among groups
were performed using one-way ANOVA, and as a post-test, the Bonferroni test. Differences
between experimental groups were considered significant for p-values < 0.05. All statistical
tests were performed using GraphPad Prism version 5 software (GraphPad, San Diego,
CA, USA).

3. Results
3.1. Metalloproteinase BmooMPα-I Induces the Release of PGE2 and PGI2 by
Cultured Preadipocytes

PGE2 and PGI2 are recognised as key mediators for the pathogenesis of inflammatory
diseases [57–60]. PGE2 has been reported to be released by macrophages upon MMP
stimulus [61]; however, whether this class of enzymes stimulates preadipocytes to release
PGE2 and PGI2 has yet to be established. To investigate the action of BmooMPα-I in
preadipocytes, we first assessed the ability of this metalloproteinase to induce the release
of PGE2 in cultured preadipocytes by testing three concentrations of BmooMPα-I (0.06,
0.12, and 0.24 µM), which were added to the culture for 24 h. At these concentrations,
BmooMPα-I did not affect cell viability after 6 or 24 h of incubation, as assessed by MTT
assay. After establishing that BmooMPα-I induced a maximal effect at 0.24 µM (Figure 1A),
we evaluated the time course of PGE2 and PGI2 release induced by BmooMPα-I. To that
end, BmooMPα-I (0.24 µM) was added to the culture for 1, 3, 6, 12, and 24 h, and PGE2
and PGI2 release was evaluated by ELISA. As shown in Figure 1B, BmooMPα-I induced a
significant release of PGE2 from 3 to 24 h and of PGI2 from 12 to 24 h (Figure 1C) when
compared with control cells incubated with culture medium alone. These results indicate
that BmooMPα-I has the ability to directly stimulate preadipocytes to produce prostanoids.

3.2. BmooMPα-I-Induced Release of PGE2 Is Dependent on COX-1 and COX-2

COX-1 and COX-2 are key enzymes responsible for the production of prostanoids
from AA [62]. COX-2 expression is induced by inflammatory stimuli and has largely
been associated with the increased production of PGs in inflammatory conditions [63,64].
In addition, PGE2 is one of the most abundant lipid mediators produced in the adipose
tissue [25]. Therefore, to investigate the mechanisms underlying PGE2 release induced
by the metalloproteinase BmooMPα-I in preadipocytes, we evaluated the participation of
COX-1 and COX-2 in this effect. Preadipocytes were treated for 1 h with either compound
SC-560 or compound NS-398, selective inhibitors of COX-1 and COX-2, respectively, or
their vehicle. PGE2 release was evaluated after 12 h of incubation with BmooMPα-I. As
shown in Figure 2A, preadipocytes preincubated with vehicle followed by stimulation with
BmooMPα-I induced significant release of PGE2 when compared with basal preadipocytes
(negative control). Pretreatment of cells with SC-560 abolished BmooMPα-I-induced PGE2
release in comparison with preadipocytes treated with vehicle followed by stimulation
with BmooMPα-I (positive control). Pretreatment of cells with NS-398 significantly reduced
the release of PGE2 induced by BmooMPα-I (Figure 2A) in comparison with the positive
control; pretreatment of preadipocytes with the association of both SC-560 and NS-398
abolished this release when compared with the positive control. These results suggest that
both COX-1 and COX-2 play an important role in BmooMPα-I-induced PGE2 production in
preadipocytes. Based on the above results, we next investigated whether BmooMPα-I can
induce the protein expression of COX-1 and COX-2 by preadipocytes. As demonstrated
in Figure 2B,C, the incubation of cells with BmooMPα-I did not affect the constitutive
expression of COX-1 in comparison with the basal control but it significantly increased
the protein expression of COX-2 after 3 h and up to 24 h of incubation (Figure 2B,D).
Taken together, these findings indicate that the production of PGE2 induced by BmooMPα-
I depends on the COX-1 and COX-2 signalling pathways and suggest that the ability
of BmooMPα-I to upregulate COX-2 expression at the translational level is one of the
mechanisms of the increased production of PGE2 seen at the later time interval (24 h).
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are expressed as means ± SEM of 3 experiments. Note: * p < 0.05 vs. control; # p < 0.05 vs. BmooMPα−I (two-way ANOVA 
and Bonferroni post-test).  
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Figure 1. BmooMPα-I induces production of PGE2 and PGI2 by preadipocytes: (A) effects of selected concentrations of
BmooMPα-I in the release of PGE2 at 24 h; (B) time-course of BmooMPα-I-induced release of PGE2; (C) time-course of
BmooMPα-I-induced release of PGI2. Preadipocytes were incubated with BmooMPα−I (0.06, 0.12, or 0.24 µM) or DMEM
(control) for 1, 3, 6, 12, or 24 h. Concentrations of PGE2 and PGI2 in culture supernatants were determined by EIA. Results
are expressed as means ± SEM of 3 experiments. Note: * p < 0.05 vs. control; # p < 0.05 vs. BmooMPα−I (two-way ANOVA
and Bonferroni post-test).

3.3. BmooMPα-I Induces mPGES-1 Protein Expression

Since mPGES-1 is an inducible enzyme responsible for the final step of the PGE2
biosynthetic cascade [62], we further explored the mechanisms involved in BmooMPα-
I-induced PGE2 production in preadipocytes by assessing mPGES-1 protein expression
after stimulation with the metalloproteinase. Figure 3A,B shows that the stimulation of
cells with BmooMPα-I did not alter mPGES-1 protein expression when compared with
control cells, suggesting that this mechanism is not involved in the BmooMPα-I-induced
production of PGE2.

3.4. Metalloproteinase Enzymatic Activity Is Important for BmooMPα-I-Induced Release of PGE2
and COX-2 Expression

The catalytic domain is conserved among all classes of the metalloproteinase enzyme
superfamily [2]. Therefore, to investigate the importance of the enzymatic activity of
metalloproteinases in the effects triggered by BmooMPα-I in preadipocytes, in particular in
the release of PGE2 and protein expression of COX-2, two fundamental events in inflamma-
tion, the catalytic domain of this enzyme was inhibited by incubation with the compound
Batimastat. Batimastat is a hydroxamate peptidomimetic that binds specially to zinc ions
in MMPs and inhibits enzyme activities [64,65]. As shown in Figure 4, the inhibition of
the enzymatic site of BmooMPα-I abolished the release of PGE2 (Figure 4A) and COX-2
expression (Figure 4B,C) after 6 h of incubation when compared with the positive control
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incubated with the active enzyme. This indicates that the enzymatic activity of BmooMPα-I
is important for the activation of prostanoid synthesis pathways in preadipocytes.
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Figure 2. BmooMPα-I activates COX-1 and COX-2 pathways to release PGE2 and upregulates COX-2 protein expression:
(A) cultured preadipocytes were pretreated with the selective inhibitors of COX-1, COX-2, SC-560, and NS-398 for 1 h
and incubated with BmooMPα-I (0.24 µM) or DMEM (control) for 12 h, then supernatants were collected and PGE2 was
quantified by ELISA; (B–E) preadipocytes were incubated with BmooMPα-I (0.24 µM) (Bmoo) or DMEM (control) for 1, 3, 6,
12, and 24 h; (B) representative Western blotting of COX-1 and β-actin (loading control) showing immunoreactive bands;
(D) representative Western blotting of COX-2 and β-actin (loading control) showing immunoreactive bands; densitometric
analysis of immunoreactive (C) COX-1 and (E) COX-2 bands. Data are means ± SEM of 4 samples. Note: * p < 0.05 relative
to control; # p < 0.05 relative to BmooMPα-I (with vehicle); (A) one-way ANOVA and Bonferroni post-test; (C,E) two-way
ANOVA and Bonferroni post-test.

3.5. cPLA2-α and sPLA2-IIA Participate in the BmooMPα-I-Induced Release of PGE2

It is well known that PLA2s are upstream enzymes in the signalling cascade involved
in the production of eicosanoids, including PGs. Additionally, it is well documented
that PLA2s hydrolyse membrane phospholipids, resulting in the release of AA, which is
further converted into biologically active PGs, such as PGE2, by the COX enzymes and PG
synthases [66]. Taking this information into account, we investigated the rolew of distinct
PLA2s in PGE2 release induced by BmooMPα-I. We used pharmacological approaches to
identify the critical PLA2s involved in this effect of BmooMPα-I. For this purpose, cells
were pretreated with effective concentrations of PYR-2 compound, a specific inhibitor of
cPLA2-α; FKGK11 compound, an inhibitor of iPLA2; or KH064 compound, a sPLA2-IIA
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inhibitor. As marked release of PGE2 was detected after 12 h of incubation with BmooMPα-
I, we evaluated the effects of the pharmacological compounds in the same time interval. As
shown in Figure 5, the treatment of cells with PYR-2 or KH064 compounds abolished the
stimulatory effect of BmooMPα-I in comparison with the positive control. The treatment of
cells with FKGK11 compound, however, did not affect the release of PGE2 induced by this
metalloproteinase. These findings indicate that cPLA2-α and sPLA2-IIA but not iPLA2l are
involved in the production of PGE2 induced by BmooMPα-I in preadipocytes.
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Figure 3. BmooMPα-I does not alter mPGES-1 protein expression in preadipocytes. Preadipocytes
were incubated with BmooMPα-I (0.24 µM) (Bmoo) or DMEM (control) for 1, 3, 6, 12, and 24 h: (A)
representative Western blotting of mPGES-1 and β-actin (loading control) showing immunoreactive
bands; (B) densitometric analysis of immunoreactive mPGES-1 bands. Densities (in arbitrary units)
were normalized to β-actin densities. Results are expressed as means ± SEM of 4 samples.

3.6. BmooMPα-I Induces Release of MCP-1 and Adiponectin by Cultured Preadipocytes

Cytokines and adipokines are important mediators that participate in the development
of inflammatory diseases and in adipose tissue inflammation [67–71]. To further investigate
the inflammatory effects of MMPs in preadipocytes, we evaluated whether BmooMPα-I
can induce the release of cytokines and adipokines by these cells. Thus, preadipocytes
were incubated with BmooMPα-I (0.24 µM) for 1, 3, 6, 12, 24, or 48 h, and the release of
those mediators was evaluated by ELISA. As shown in Figure 6, BmooMPα-I induced
significant release of MCP-1 from 3 to 24 h (Figure 6A) and of adiponectin (about 80%
increase) at 48 h of incubation (Figure 6D) when compared with control cells incubated
with culture medium alone. This metalloproteinase did not induce significant release of
IL-6 (Figure 6B), KC (Figure 6C), leptin (Figure 6E), or resistin (Figure 6F) compared with
control cells. The release of TNF-α, IL-1β, and IL-10 was not detectable in our experimental
condition. The obtained results show for the first time the capacity of a metalloproteinase
to induce release of MCP-1 and adiponectin by preadipocytes and are in line with the
reported proinflammatory activity of MMPs and SVMPS, especially BmooMPα-I.
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or vehicle (DMSO) for 6 h: (A) concentration of PGE2 present in culture supernatant was quantified by ELISA; (B) represen-
tative Western blotting of COX-2 and β-actin (loading control) showing immunoreactive bands; (C) densitometric analysis
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Cultured preadipocytes were pretreated with PYR-2, cPLA2-α inhibitor, FKGK11, iPLA2 inhibitor,
KH064, sPLA2-IIA inhibitor, or DMEM + vehicle (DMSO < 1%) for 1 h and then stimulated with
BmooMPα-I (0.24 µM) for 12 h. Supernatants were collected and the concentration of PGE2 was
quantified by ELISA. Each value represents the mean ± SEM of 3 samples. Note: * p < 0.05 vs. control;
# p < 0.05 vs. BmooMPα-I (one-way ANOVA, Bonferroni post-test).
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Figure 6. BmooMPα-I induces the release of MCP-1 and adiponectin by preadipocytes. Preadipocytes were incubated with
BmooMPα-I (0.24 µM), TNF-alpha (20 ng/mL—positive control), or DMEM (control) for 1, 3, 6, 12, 24, or 48. Concentrations
of cytokines in culture supernatants were determined by CBA and adipokines were quantified by ELISA. Bar graphs
show the release of (A) MCP-1, (B) IL-6, (C) KC, (D) adiponectin, (E) leptin and (F) resistin. Each value represents the
mean ± SEM of 3 samples. Note: * p < 0.05 vs. control (one-way ANOVA, Bonferroni post-test).

4. Discussion

Matrix metalloproteinases have been associated with the pathogenesis of various
inflammation-related diseases, ranging from cancer to chronic inflammatory diseases,
including obesity [1,3,5–9]. Levels of MMPs are elevated in the adipose tissue of obese
patients [6] but the inflammatory effects of MMPs in this tissue are not fully understood.
Comprehending the inflammatory action of metalloproteinases on adipose tissue cells, such
as preadipocytes, is critical to identify the factors underlying adipose tissue inflammation,
which lead to obesity or inflammation of adjacent tissues due to the impacts of inflammatory
mediators reaching these tissues [68]. We have demonstrated the ability of BmooMPα-I, a
P-I class SVMP, to elicit an inflammatory response in preadipocytes in culture. Our results
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show that BmooMPα-I induced a marked release of PGE2 and PGI2 from preadipocytes in
culture. The concentrations of BmooMPα-I able to induce release of these prostaglandins
were comparable to those described for relevant MMPs, such as MMP-2, in the plasma
of obese patients [6]; therefore, it is plausible to suggest that PGE2 and PGI2 can mediate
the inflammatory actions of metalloproteinases in the adipose tissue and exert paracrine
actions in structures adjacent to this tissue, contributing to the development of distinct
inflammatory conditions, such as arthropathies [18,23]. Although the ability of MMP-1
and MMP-3 to release PGE2 from isolated macrophages and of an SVMP, BaP1, to release
this mediator by fibroblast-like synoviocytes [61,72] has previously been reported, to our
knowledge this is the first report providing evidence of a metalloproteinase inducing the
production of PGE2 and PGI2 by adipose tissue cells.

Prostanoids are produced from the metabolism of AA by COX-1 and COX-2 and are
fundamental mediators in inflammatory responses and the perpetuation of inflammation
signs and symptoms [60,73]. In the adipose tissue, prostanoids, mainly PGE2, are impli-
cated in the process of the differentiation of preadipocytes into mature adipocytes, leading
to the increased mass of this tissue [25,28,74–76]. Taking into account the marked release of
PGE2 in preadipocytes stimulated by BmooMPα-I and the importance of this mediator in
inflammation, we investigated the mechanisms involved in PGE2 biosynthesis induced
by BmooMPα-I. Our findings from our pharmacological approach showed that PGE2
production induced by BmooMPα-I is dependent on the activation of COX-1 and COX-2
isoforms in preadipocytes. As an additional mechanism, BmooMPα-I upregulated COX-2
protein expression but did not alter the protein levels of the inducible terminal synthase
mPGES-1. As expected, BmooMPα-I did not affect protein expression of the constitutive
COX-1. These results indicate that adipose tissue cells are targets for the action of metallo-
proteinases and align with the idea that COX-derived mediators can be second messengers
of metalloproteinases for the development of inflammation in these cells. The mechanism
by which BmooMPα-I upregulates the expression of COX-2 in preadipocytes has not yet
been investigated. However, an autocrine effect of the chemokine MCP-1 may be involved
in this effect, since this mediator is released from preadipocytes upon BmooMPα-I stimulus
and has been previously reported to lead to COX-2 expression [76–78].

PLA2s are lipolytic enzymes that act on membrane glycerophospholipids for the re-
lease of AA, the main substrate of COX enzymes and the precursor of PGs, including PGE2.
PLA2s have also been demonstrated to be key enzymes in triggering diverse inflammatory
diseases [79–83]. In this work, we investigated the participation of these enzymes in the
BmooMPα-I-induced release of PGE2. Our results, which showed that the pharmaco-
logical inhibition of cytosolic PLA2s or group-IIA-secreted PLA2s markedly reduced the
BmooMPα-I-induced release of PGE2, indicated that both cytosolic and group-IIA-secreted
PLA2s are important players in the generation of PGE2 following BmooMPα-I stimulus.
These findings are evidence of a link between metalloproteinases and PLA2s, by which the
venom metalloproteinase stimulates preadipocytes to produce PGE2; they are in accordance
with previous studies demonstrating a link between metalloproteinases and PLA2 for the
production of PGE2 by fibroblast-like synoviocytes [72]. On the other hand, a negative
regulation of a cardiac sPLA2 by MMP-2 in a proinflammatory setting has been previously
reported, since in MMP-2 deficient mice the production and release of a unique sPLA2 was
increased in cardiomyocytes [84,85]; thus, MMPs may act as modulators of distinct mem-
bers of the PLA2 family and may regulate inflammation signaling, both when expressed
in excess and when underexpressed. The mechanisms involved in BmooMPα-I-induced
activation of cPLA2-α and sPLA2-IIA were not addressed in our study; however, in the case
of cPLA2-α, some mechanisms may be suggested. First, the release of molecular patterns
associated with cell damage (DAMPs) via the action of BmooMPα-I on cell membrane
may lead to activation of Toll-like receptors (TLR) followed by production of inflammatory
mediators, including PGE2. In this context, the regulation of cPLA2 activation and lipid
generation by TLR4 signaling [86] and activation of TLR4 by DAMPs [87] were previously
reported. Moreover, production of DAMPS by a snake venom metalloproteinase and
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MMPs were recently demonstrated [86,88]. Second, the potential activation of PAR receptor
by BmooMPα-I may result in increased phosphorylation of cPLA2 and the release of AA,
since activation of the PAR receptor by proteases leading to activation of cPLA2-α coupled
to COX-1 has been reported [89].

In addition, our results showing that the inhibition of the BmooMPα-I catalytic domain
abolished PGE2 release and COX-2 protein expression indicate that the catalytic activity of
BmooMPα-I is essential for the activation of the biosynthetic pathway for the production of
prostanoids in preadipocytes. Considering that the catalytic domain of metalloproteinases
was demonstrated to be responsible for the degradation of ECM components and for the
processing of non-matrix proteins, such as cytokines, chemokines, and receptors [11,72],
our findings provide insight into the role of the catalytic domain of MMPs in the release of
lipid mediators triggered by this class of enzymes.

Extensive research has shown that the inflammation of adipose tissue may be a major
factor in the development of metabolic diseases and that cytokines and adipokines released
by adipose tissue contribute to the inflammation of adjacent tissues [18,23,76,90]. Our
results showing that BmooMPα-I induced a marked release of MCP-1 and a late release
of adiponectin from preadipocytes in culture contribute to the information regarding the
inflammatory effects of this metalloproteinase on preadipocytes. It is known that MCP-1
initiates adipose tissue inflammation by inducing the recruitment of monocytes to the tis-
sue, contributing to obesity onset [35,71]. Moreover, MCP-1 biosynthesis has been reported
in the intra-articular adipose tissue, with a role in the pathogenesis of joint diseases [91];
thus, the release of MCP-1 by preadipocytes under the stimulus of a metalloproteinase
may contribute not only to adipose tissue inflammation, but also to the progression of
inflammation in adjacent tissues. Moreover, a role of MCP-1 in activation of PLA2s induced
by BmooMPα-I may be suggested, since MCP-1 has been shown to induce the phosphory-
lation of cPLA2-α and the rapid release of AA by human leukocytes [92,93]. Adiponectin is
mainly produced by the adipose tissue and has been recognised as an important modulator
of the immune system [69]. Unlike most other adipokines, adiponectin appears to have a
protective role in metabolic syndrome and diabetes mellitus type 2 [69,70]. However, in
inflammatory joint diseases, this adipokine has been highlighted as an important player
in synovitis and joint destruction, as it acts as a proinflammatory mediator, inducing
the production of MCP-1, PGE2, and MMPs and the expression of COX-2 by synovial
cells [23,69,77]; thus, the release of adiponectin by preadipocytes under the stimulus of
a metalloproteinase provides insight into the participation of MMPs and adipose tissue
cells in joint inflammation. In addition, it is possible to suggest that via autocrine sig-
nalling, adiponectin amplifies the release of MCP-1 and PGE2 and COX-2 expression by
preadipocytes under the stimulus of a metalloproteinase. To our knowledge, this is the
first demonstration of the ability of a metalloproteinase to trigger adiponectin and MCP-1
synthesis by adipose tissue cells.

In conclusion, the data from the present study show, for the first time, the ability of a
representative single-domain metalloproteinase, BmooMPα-I, to activate an inflammatory
response in preadipocytes. BmooMPα-I induced the release of the inflammatory mediators
PGE2, PGI2, MCP-1, and adiponectin but not IL-6, KC, leptin, or resistin by preadipocytes.
BmooMPα-I-induced PGE2 biosynthesis was dependent on sPLA2-IIA, cPLA2-α, COX-1,
and COX-2 pathways. Moreover, BmooMPα-I upregulated COX-2 protein expression
but did not alter mPGES-1 expression. Furthermore, we demonstrated that BmooMPα-I
enzymatic activity is essential for the activation of prostanoid biosynthesis in preadipocytes
(Scheme 1). Altogether, our data highlight preadipocytes as important targets for the action
of metalloproteinases and provide new insights into the contributions of these enzymes
to the inflammation of adipose tissue and tissues adjacent to it. Furthermore, our study
provides insight into the importance of the catalytic domain of MMPs to the inflammatory
activity triggered by these enzymes.
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