
biomolecules

Article

Computational Probing the Methylation Sites Related to EGFR
Inhibitor-Responsive Genes

Rui Yuan 1,2, Shilong Chen 1,3 and Yongcui Wang 1,4,*

����������
�������

Citation: Yuan, R.; Chen, S.; Wang, Y.

Computational Probing the

Methylation Sites Related to EGFR

Inhibitor-Responsive Genes.

Biomolecules 2021, 11, 1042. https://

doi.org/10.3390/biom11071042

Academic Editor: Vladimir

N. Uversky

Received: 4 June 2021

Accepted: 15 July 2021

Published: 16 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Plateau Biological Adaptation and Evolution, Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Xining 810008, China; yuanrui@nwipb.cas.cn (R.Y.); slchen@nwipb.cas.cn (S.C.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, Xining 810008, China
4 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology,

Chinese Academy of Sciences, Xining 810008, China
* Correspondence: ycwang@nwipb.cas.cn

Abstract: The emergence of drug resistance is one of the main obstacles to the treatment of lung
cancer patients with EGFR inhibitors. Here, to further understand the mechanism of EGFR inhibitors
in lung cancer and offer novel therapeutic targets for anti-EGFR-inhibitor resistance via the deep
mining of pharmacogenomics data, we associated DNA methylation with drug sensitivities for
uncovering the methylation sites related to EGFR inhibitor sensitivity genes. Specifically, we first
introduced a grouped regularized regression model (Group Least Absolute Shrinkage and Selection
Operator, group lasso) to detect the genes that were closely related to EGFR inhibitor effectiveness.
Then, we applied the classical regression model (lasso) to identify the methylation sites associated
with the above drug sensitivity genes. The new model was validated on the well-known cancer
genomics resource: CTRP. GeneHancer and Encyclopedia of DNA Elements (ENCODE) database
searches indicated that the predicted methylation sites related to EGFR inhibitor sensitivity genes
were related to regulatory elements. Moreover, the correlation analysis on sensitivity genes and
predicted methylation sites suggested that the methylation sites located in the promoter region
were more correlated with the expression of EGFR inhibitor sensitivity genes than those located
in the enhancer region and the TFBS. Meanwhile, we performed differential expression analysis
of genes and predicted methylation sites and found that changes in the methylation level of some
sites may affect the expression of the corresponding EGFR inhibitor-responsive genes. Therefore, we
supposed that the effectiveness of EGFR inhibitors in lung cancer may be improved by methylation
modification in their sensitivity genes.

Keywords: DNA methylation; group lasso; CTRP and CCLE; lung cancer; EGFR inhibitors effective-
ness related methylation sites

1. Introduction

Epidermal Growth Factor Receptor (EGFR) is a tyrosine kinase receptor which plays a
crucial role in many carcinogenic processes, including tumor cell proliferation, angiogenesis,
invasion and metastasis, inhibition of apoptosis, etc. [1–3]. Currently, numerous studies
have shown that EGFR is overexpressed or abnormally expressed in many different types
of tumors [4–7], including in more than 80% of non-small cell lung cancers (NSCLC).
Therefore, EGFR has become an attractive therapeutic target for NSCLC patients, but
drug resistance invariably emerges. Despite initially responding to EGFR tyrosine kinase
inhibitors, most patients will develop resistance to the drug within 1 to 2 years after the
first treatment [8–10]. In previous work, researchers have made significant contributions to
exploring the mechanism of EGFR inhibitor resistance. Balak et al. [11] examined tumor
cells from 16 patients with acquired drug-resistant lung cancer by molecular analysis; in
about 50% of these cases, resistance was due to the occurrence of a secondary mutation
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in EGFR (T790M). Engelman et al. [12] constructed 18 lung cancer cell lines resistant to
Gefitinib or Erlotinib (EGFR tyrosine kinase inhibitors) and found that MET amplification
might promote cellular resistance to EGFR target therapies, and Guix et al. [13] found
that the absence of expression of Insulin-Like Growth Factor (IGF) is associated with the
resistance to EGFR inhibitors in A431 lung squamous cancer cells. Meanwhile, with the
help of high-throughput sequencing technology, researchers attempted to predict drug
response based on statistical theory by using large-scale pharmacogenomics data. For
example, the EGFR mutation profile of cell lines was used by Guan et al. [14] to investigate
the relationship between gene mutations and response to Lapatinib (EGFR inhibitor),
and found that cell lines with EGFR mutations were more sensitive to Lapatinib on both
predicted and observed data; Chiu et al. [15] designed a deep learning model and predicted
that Afatinib and Gefitinib, two inhibitors of EGFR, performed better in NSCLC with EGFR
mutation than without EGFR mutation by using a large number of tumor samples from
the Cancer Genome Atlas (TCGA) database. Wei et al. [16] used the gene expression and
drug response data of 144 lung cancer cell lines to prioritize 549 drugs whose response
was correlated with up-regulated genes in Gefitinib-resistant cell lines, and the top drugs
were evaluated for their response in these cell lines. Therefore, because most patients will
eventually develop resistance to EGFR inhibitors, it is an important challenge to explore
the resistance mechanism of EGFR inhibitors by deep mining the pharmacogenomics data
to identify new therapeutic targets.

In recent years, as research deepens, DNA methylation has become one of the most
studied oncogene regulatory mechanisms. DNA methylation, as a common epigenetic
modification, occurs on the cytosine bases of the CpG sequence under the premise of un-
changed DNA sequences, which will affect the transcription of downstream genes [17–20].
Many studies have now provided evidence that specific methylation changes can affect
the response to different cancer treatments; thus, DNA methylation could be a valuable
resource to study drug effectiveness in cancers. One prominent example is that in human T-
cell leukemia cell lines, researchers have found a strong correlation between demethylation
of the 5′ region of MDR1 gene and multi-drug resistance. MDR1 is a multi-drug resistance
gene encoding P-glycoprotein, which is involved in transporting substances across cellular
membranes. As we all know, P-glycoprotein is often overexpressed in cancer cells, which
is related to the increased efflux of cytotoxic drugs [21]. Later, Worm et al. [22] discovered
that in MDA-MB-231 breast cancer cell lines, methylation of the CpG island in the promoter
region of SLC19A1 can lead to methotrexate resistance; meanwhile, it has been found that
in xenografts from ovarian and colon cancer cell lines, treatment with a demethylating
agent induces the re-expression of MLH1, thereby sensitizing the xenografts to cisplatin,
carboplatin, temozolomide, and epirubicin [23]. These studies suggested that some genes
related to drug response regulation are methylated and silenced, thus DNA methylation
can be used as a useful resource to study the mechanism of drug resistance, and offer a
novel way to identify the targets for anti-drug resistance.

In 2012, multiple research groups from the Broad Research Institute, Dana-Farber
Cancer Research Institute, and Novartis Biomedical Research Institute jointly completed
the Cancer Cell Line Encyclopedia (CCLE) project, which carried out a large-scale deep
sequencing of 947 human cancer cell lines covering more than 30 tissue sources, and inte-
grated genetic information, such as DNA mutations, gene expression, and chromosome
copy number [24]. In 2019, the CCLE database received a major update, including newly
released DNA methylation data, whole genome sequencing data, and RNA-seq data [25].
The Cancer Therapeutics Response Portal (CTRP) is a public and interactive portal that
covers cancer cell line compound sensitivity and genetic or lineage characteristics. Further-
more, CTRP makes full use of CCLE’s common data, making the two projects excellently
complement each other [26]. These valuable databases provide a great opportunity to
study the relationship between DNA methylation and drug response. With a deep under-
standing of the regulatory role of DNA methylation in drug responses in cancer, the novel
therapeutic targets could be unveiled for the inhibition of drug resistance.
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Inspired by the above observations, here, we proposed a novel computational frame-
work to predict the methylation sites related to EGFR inhibitor sensitivity genes. The
purpose was to explore possible mechanisms that affected the EGFR inhibitor response
in cancers and provide novel targets for anti-EGFR inhibitor resistance. Specifically, we
first identified genes that were closely related to drug effectiveness through a Group
Least Absolute Shrinkage and Selection Operator (group lasso) regression model. It is
worth mentioning that for the special case of linear regression, the lasso solution is not
satisfactory when there are not only continuous variables, but also classified prediction
variables (factors), because it only selects a single dummy variable instead of the entire
factor. Therefore, group lasso overcomes this issue by introducing a suitable extension of
the lasso penalty [27–30]. Particularly, based on the group lasso algorithm, it is reasonable
to implement penalties on model parameters by gene grouping. Then, we predicted the
methylation sites associated with the effectiveness of EGFR inhibitor genes by the lasso
regression model, which performs both variable selection and regularization to improve
the prediction accuracy and enhance the interpretability of the statistical model [31–34].
Furthermore, to detect the function of the predicted methylation sites related to the ef-
fectiveness of EGFR inhibitors, GeneHancer [35] and Encyclopedia of DNA Elements
(ENCODE) databases were introduced [36]. The genome position analysis indicated that
the predicted methylation sites related to EGFR inhibitor sensitivity genes share genome
loci with regulatory elements, including promoter, enhancer, and translation factor binding
regions (TFBS). Finally, we performed differential expression analysis on EGFR inhibitor
sensitivity genes and the predicted methylation sites, and found some examples that dis-
played the changes in methylation level of predicted methylation sites, which may lead
to changes in the expression level of corresponding responsive genes, and then affect the
effectiveness of drugs in lung cancer. This result suggested a possible way to repress EGFR
inhibitor resistance, that is, the effectiveness of EGFR inhibitors in lung cancer might be
improved by methylation modification of genes that are closely related to EGFR inhibitors
resistance.

2. Materials and Methods
2.1. Materials

The benchmark dataset used for the validation of the models came from the well-
known cancer genomics resource, CTRP. The CTRP database deposited the AUCDR (area
under the dose-response curve) of 481 drugs across 664 cancer cell lines, which is an
important indicator of how a particular cancer cell line responds to a given anti-cancer
drug [37]. The download link for this data is: http://portals.broadinstitute.org/ctrp.v2.1/
(accessed on 31 May 2018). In this paper, we only focus on the sensitivity of EGFR in-
hibitors in lung cancer cell lines. Therefore, we extracted the AUCDR values of 10 EGFR
inhibitors (WZ8040, WZ4002, Vandetanib, PD_153035, Neratinib, Lapatinib, Gefitinib, Er-
lotinib, Canertinib, Afatinib) in 121 lung cancer cell lines. At the same time, we used
two cancer omics data, namely “CCLE_RNAseq_rsem_genes_tpm_20180929.txt” and
“CCLE_RRBS_cgi_CpG_clusters_20181119.txt”. The download links for them are: https://
data.broadinstitute.org/ccle/CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz (accessed
on 31 May 2018), and https://data.broadinstitute.org/ccle/CCLE_RRBS_cgi_CpG_clusters_
20181119.txt.gz (accessed on 31 May 2018), respectively. The RNA-seq data includes
57,820 gene expressions across 1019 cancer cell lines, and the DNA methylation data con-
tains beta values of 1,208,342 methylation sites across 843 cancer cell lines. Here, the gene
annotation file from the Ensemble database was introduced, which was to applied to screen
the methylation sites located in non-coding regions. The download link for the gene anno-
tation file is: http://ftp.ensembl.org/pub/release-83/gtf/homo_sapiens/Homo_sapiens.
GRCh38.83.gtf.gz (accessed on 31 May 2018). Finally, the expression values of 24,643 genes
and the beta values of 418,677 methylation sites across 153 common lung cancer cell lines
were retained for further analysis. That is, 418,677 methylation sites in the non-coding
regions were trained in the lasso model.

http://portals.broadinstitute.org/ctrp.v2.1/
https://data.broadinstitute.org/ccle/CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz
https://data.broadinstitute.org/ccle/CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz
https://data.broadinstitute.org/ccle/CCLE_RRBS_cgi_CpG_clusters_20181119.txt.gz
https://data.broadinstitute.org/ccle/CCLE_RRBS_cgi_CpG_clusters_20181119.txt.gz
http://ftp.ensembl.org/pub/release-83/gtf/homo_sapiens/Homo_sapiens.GRCh38.83.gtf.gz
http://ftp.ensembl.org/pub/release-83/gtf/homo_sapiens/Homo_sapiens.GRCh38.83.gtf.gz
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2.2. Methods
2.2.1. Identification of Drug Responsive Genes via Group Lasso Regularization

It has been reported that genes are not independent of each other, co-expressed
genes may have similar biological functions, and the effect of grouping genes is relatively
strong [38]. Here, to overcome the gene group effect, the group lasso regression model [27],
which aims to identify the drug responsive genes based on drug screening experimental
results and RNA-seq data, was introduced (Figure 1A,B). The formula of the group lasso is
as follows:

minβ
1
2
‖yi −

m

∑
l=1

x(l)i β(l)‖2
2 + λ

m

∑
l=1

√
ρl‖β(l)‖2

where yi is the AUCDR value of i-th EGFR inhibitors across 153 cancer cell lines, and x(l)i is
the i-th gene expression in group l with rows as the cancer cell lines. β(l) is the coefficient
vector of that group and ρl is the length of β(l). Meanwhile,

√
ρl is the weight of each

group and λ is the regularization parameter. In this paper, the group lasso model was
implemented via an “SGL” R package (main parameters: type = “linear”, alpha = 0.9).
The groups of genes were obtained by the R “hclust” function with “ward.D2” as the
hierarchical clustering method. To understand which biological functions and important
pathways the predicted genes were enriched in, we performed a Gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis via DAVID
Bioinformatics Resources [39,40].

2.2.2. Prediction of DNA Methylation Sites Related to Drug Responsive Genes via
Lasso Regression

Once we obtained genes related to the sensitivity of each EGFR inhibitor (Figure 1C),
DNA methylation sites related to drug responsive genes can be obtained. Specifically, the
lasso regression model was introduced to predict the methylation sites related to the drug-
responsive genes (Figure 1D). Lasso was first proposed by Robert Tibshirani in 1996. It is a
linear regression method that adopts L1 regularization, which makes partial learned feature
weights equal to 0 so as to achieve the purpose of sparsity and feature selection [32,33].
Here, the lasso model was implemented via a “glmnet” R package, and the best lambda
was determined by a grid search. The input and output of the lasso regression model were
the beta value of the methylation site and the expressions of genes associated with a given
EGFR inhibitor sensitivity across the common 153 lung cancer cell lines. The lasso model
was implemented on each given gene related to EGFR inhibitor sensitivity. To show the
biological usefulness of predicted methylation sites, we checked whether they were located
in some important regulatory elements, including enhancers, promoters, or TFBS, through
a database search. Specifically, we first used the GeneHancer database, a novel database
of human enhancers and their inferred target genes, to see whether the methylation site
falls in the enhancer region [35]. Then, the ENCODE database, which provides a wealth of
data and clarifies the role of functional elements in the human genome [36], was applied to
check whether the identified methylation sites were located in the promoter region or the
TF binding region. Subsequently, the Pearson Correlation Coefficient (PCC) was calculated
between the beta value of the predicted methylation site and the drug responsive genes.

2.2.3. Differential Expression Analysis

To detect the regulatory role of the predicted methylation sites, we performed differen-
tial expression analysis on 24,643 genes and their associated methylation sites in sensitive
and resistant cancer cell lines. Here, we classified the cancer cell lines as sensitive or
resistant according to the AUCDR data, and Table 1 shows the thresholds of classification
and the number of cancer cell lines in each group for 10 EGFR inhibitors, respectively.
Specifically, we first performed differential expression analysis on 24,643 genes to find the
differentially expressed genes for 10 EGFR inhibitors, respectively. Subsequently, according
to the prediction results of the lasso regression model, the methylation sites closely related
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to these differentially expressed genes were obtained. Finally, differential expression anal-
ysis was performed on these methylation sites in the same sample, and the methylation
sites with significantly different methylation levels were selected as the candidates dis-
playing the possible regulatory relationships with drug responsive genes. The differential
expression analysis was implemented via a “limma” R package.
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Table 1. Classification conditions of EGFR inhibitor samples.

Drug Sensitivity Resistance No. of Sensitive Cell Lines No. of Resistance Cell Lines

WZ8040 >0 & <10.5 >12 22 27
WZ4002 >0 & <12 >13 18 28

Vandetanib >0 & <11.5 >13.5 25 26
PD-153035 >0 & <12.5 >14.5 19 21
Neratinib >0 & <10 >13 24 33
Lapatinib >0 & <11.5 >14 21 24
Gefitinib >0 & <11 >13.5 19 21
Erlotinib >0 & <11.5 >14.5 19 21

Canertinib >0 & <10 >13 21 33
Afatinib >0 & <9 >11.5 27 30
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3. Results
3.1. The Drug Responsive Genes Are Enriched in Lung Cancer Developmental Processes

In order not to ignore the influence of gene co-expression, the 24,643 genes were firstly
divided into 20 groups through hierarchical clustering analysis. Figure 2A shows the
results of gene clustering, and different groups are indicated by different colors. Figure 2B
shows the number of genes contained in each group, and we can see that the gene group
effect is strong.

The group lasso model (equation X) was applied to the grouped RNA-seq data and
the sensitivity data (AUCPR) of EGFR inhibitors and the grouped drug responsive genes
were obtained. The GO and KEGG enrichment analyses on these predicted responsive
genes were performed, and the functions and pathways with a p value of less than 0.05 are
shown in Figure 3. Here, we only focus on biological processes related to EGFR inhibitor
sensitivity (Figure 3A). Figure 3A shows that, among the eight biological processes related
to EGFR inhibitor sensitivity, the genes are well enriched in response to drug and lung
development. Figure 3B shows the enrichment of six KEGG pathways. We found that the
sensitivity genes of 10 EGFR inhibitors were significantly correlated with cancer pathways.
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3.2. The Predicted Methylation Sites Related to EGFR Inhibitors Sensitivity Share Locus with
Regulatory Elements

The methylation sites related to EGFR inhibitor sensitive genes were obtained by lasso
regression of expressions of drug responsive genes. Through GeneHancer and ENCODE
databases, we checked whether those methylation sites share loci with regulatory regions
(Figure 4). Figure 4A shows the proportion of predicted methylation sites located in the
enhancer, promoter, or TF binding regions of corresponding responsive genes. We can
see that about 6% of predicted methylated sites are located in the enhancer or promoter
region, and the variations are small for all ten EGFR inhibitors. In contrast, the variation
of predicted methylation sites falling into the TF binding region is higher. For example,
about 44% of predicted methylation sites related to the sensitivity to the drug Lapatinib
fall in the TF binding region; however, only about 4% of predicted methylation sites
related to WZ8040 share loci with the TF binding region. Figure 4B shows the number of
responsive genes with relevant methylation sites located in a regulatory element. Detailed
information about this part is presented in the supplementary materials (Supplementary
Table S1). Subsequently, we calculated the PCC between the beta value of predicted
methylation sites located in the regulatory region and the expression of responsive genes.
For comparison, we randomly selected methylation sites and corresponding genes from
the lasso prediction results as the control group (Figure 5A). As a result, compared with the
control group, the absolute values of PCC in regulatory groups are higher. Figure 5B shows
the number of predicted methylation sites located in the regulatory region with absolute
spearman PCC values greater than 0.3. Our results suggested that the well-correlated
predicted methylation sites located in promoters are more than those in the enhancer and
TF binding region, suggesting the important role of methylation sites in the promoter



Biomolecules 2021, 11, 1042 7 of 14

region of responsive genes. In order to further explore the role of methylation sites in the
resistance of EGFR inhibitors, we performed differential expression analysis on responsive
genes and predicted methylation sites, respectively. Figure 6A shows the fold change of
gene expression value and −log10 p value analysis on genes and methylation sites for
ten EGFR inhibitors (Supplementary Figure S1). The number of genes with significant
differences in expression with an absolute value of logFC > 0.5 and a p value < 0.05 are
shown in Figure 6B. Taking Erlotinib as an example, the number of differentially expressed
genes is up to 104, but only 28 differentially expressed genes are found to be correlated with
the effectiveness of WZ4002. Based on the prediction results of the lasso model, methylation
sites associated with these differentially expressed genes can be found. Through further
differential expression analysis on these methylation sites, we identified several pairs of
genes and methylation sites that may be involved in regulation (Supplementary Table S1).
For example, we found a significant difference in the expression value of MARVELD2
among Lapatinib-sensitive (DV90_LUNG) and Lapatinib-resistant (SBC5_LUNG) lung
cancer samples. Through the lasso regression model, methylation site “5:68711681” is
closely related to the MARVELD2 gene. Furthermore, the beta value of methylation site
“5:68711681” shows a significant difference (absolute value of logFC > 0.4 and p value < 0.05)
among Lapatinib-sensitive and Lapatinib-resistant lung cancer samples. It indicated that
the low methylation of “5:68711681” may promote the expression of the Lapatinib-related
gene MARVELD2 (Figure 7A); on the contrary, the high methylation of this site may inhibit
MARVELD2 gene expression, and then affect the effectiveness of Lapatinib in lung cancer
cells (Figure 7B). Therefore, one of the important factors affecting the expression of drug
responsive genes may be the level of the methylation sites in their promoter region.
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Figure 6. Results of difference analysis. (A) The violin plot shows the absolute value of logFC and −log10(p value) for each
EGFR inhibitor. (B) The number of absolute value of logFC > 0.5 and the p value < 0.05 for each EGFR inhibitor.
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Figure 7. The relationship between methylation and gene expression. (A) In lung cancer samples sen-
sitive to Lapatinib (DV90_LUNG), methylation site—5:68711681 hypomethylation may promote the
transcription of MARVELD2 gene. (B) In lung cancer samples resistant to Lapatinib (SBC5_LUNG),
methylation site—5:68711681 hypermethylation may suppress the transcription of MARVELD2 gene.

4. Discussion

Systematic study of the relationship between cancer cells and anticancer therapies
could provide novel therapeutic targets for early clinical trials. In this paper, our main
contribution is to explore the possible resistance mechanism of EGFR inhibitors from the
perspective of DNA methylation. Therefore, we took a series of measures to find some
new potential relationships. Firstly, to overcome the group effect of genes, a group lasso
regression model was introduced to detect the genes closely related to drug responses in
cancers. We performed GO and KEGG enrichment analyses on the sensitivity genes for
10 EGFR inhibitors, respectively. The results showed that many sensitivity genes were
significantly enriched in the “response to drug”. For example, we found that the MET
gene was significantly associated with the effectiveness of Erlotinib. Engelman et al. [12]
constructed lung cancer cell lines resistant to Erlotinib and found that MET amplification
was detected in about 22% of the samples, suggesting that MET amplification may be one
of the important factors leading to Erlotinib resistance in lung cancer cell lines. Similarly,
Jakobsen et al. [41] established Erlotinib-resistant lung adenocarcinoma cell lines and
produced 14 resistant subclones, and found that approximately 42% of the subclones
exhibited MET amplification. As we all know, EGFR-mutated non-small-cell lung cancer
was highly sensitive to a variety of EGFR inhibitors [42–44], and our results also predict
that EGFR was the responsive gene of Vandetanib, Lapatinib, Gefitinib, Canertinib, and
Afatinib. López-Ayllón et al. [45] identified that the expressions of UGT1A6, MET, and
LCN2 genes were correlated with the effectiveness of Erlotinib, and especially with the
low MET expression level showing the strongest correlation. In this study, these genes
were predicted to be associated with Erlotinib sensitivity in non-small-cell lung cancer.
Second, the methylation sites closely linked to these responsive genes were predicted by
the lasso regression model, which is one of the classical regression algorithms. Third,
the predicted methylation sites were related to regulatory elements and the correlation
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analysis was performed on them. The results showed that the predicted methylation
sites associated with EGFR inhibitor-responsive genes seemed to be more related to the
promoter region of their associated gene. Over the past decade, it has become increasingly
clear that aberrant promoter methylation seems to be related to the loss of gene function.
For example, hypermethylation of the promoter region is a major mechanism to suppress
tumor genes and silence other cancer-related genes in many human cancers. Baldwin et al.
discovered that promoter hypermethylation may be an important way to inactivate the
BRCA1 tumor suppressor gene, and there was a clear association between the BRCA1
gene mutation and hereditary ovarian cancer [46]. Martínez-Galán et al. [47] reported that
the hypermethylation of the promoter region of the ESR1 gene in breast cancer patients
will affect the expression of the estrogen receptor protein, and concluded that epigenetic
markers in plasma might be a new target for anticancer therapy, especially in endocrine
therapy. Mijnes et al. [48] identified that the promoter region of the RBBP8 gene was
almost hypermethylated in bladder cancer. However, RBBP8 has been shown to play a
role in the repair of DNA double strand breaks mediated by homologous recombination,
which is known to make cancer cells sensitive to PARP1 inhibitors. According to previous
studies, the methylation of CpG sites in the gene promoter region affects the activity
of gene transcription in three ways: DNA sequence methylation directly hinders the
binding of transcription factors; the CpG-binding protein binds to methylated CpG site
and interacts with other transcription inhibitors; condensation of chromatin structure
blocks the binding of transcription factors to their regulatory sequences [49–51]. Therefore,
inspired by the above observations, it is reasonable to hypothesize that methylation in some
important regulatory regions of EGFR inhibitor-responsive genes may lead to changes
in the effectiveness of the drug. In this paper, to further validate that, we performed
differential expression analysis on responsive genes and their associated methylation sites
in EGFR inhibitor-sensitive and -resistant lung cancer cell lines. As a result, we found some
examples that displayed changes in the methylation level of predicted methylation sites
which may lead to changes in the expression level of corresponding responsive genes, and
then affect the effectiveness of drugs in lung cancers. For example, the hypermethylation
of site 5:68711681 was linked with the differential expression of MARVELD2 in Lapatinib-
sensitive and -resistant lung cancer cell lines. MARVELD2 encodes the trillulin protein,
which is a membrane protein found in tight junctions between epithelial cells [52]. Previous
studies have confirmed that tight junctions are an important part of signal transduction
and the cellular barrier, which refers to the barrier separating the cell membrane. Indeed,
tight junctions are closely associated with various types of cancers and drug delivery. Since
the drug must pass through the epithelium and the inner membrane to reach the target
tissue, that is, the ability of the drug to pass through these membranes is directly related to
the effectiveness of the drug [53–55]. Therefore, we conducted a hypothesis that the level
of methylation may affect the expression of EGFR inhibitors of responsive genes, and then
influence the effectiveness of drugs in cancer.

Due to the continuous change and development of high-throughput sequencing tech-
nology, researchers have made more attempts to use biological knowledge to understand
the regulatory mechanisms of gene expression from the perspectives of genomics, pro-
teomics, metabolomics, and other omics, and to explore the internal rules of human disease
diagnosis and drug therapy, so as to elucidate the genetic characteristics of life. Here, we as-
sociated DNA methylation data with drug sensitivity data to detect the possible regulatory
relationship between methylation sites and EGFR inhibitor-responsive genes. In summary,
this study demonstrated the correlation between DNA methylation and the effectiveness
of EGFR inhibitors, and suggested that DNA methylation might be one of the important
regulatory factors affecting the sensitivity of EGFR inhibitors in lung cancer patients.

It is worth mentioning that this study has some limitations. On the one hand, the
lung cancer samples extracted in this study are derived from different tissues, which
could have a certain impact on our results (small_cell_carcinoma: 49; adenocarcinoma: 39;
non_small_cell_carcinoma: 22; squamous_cell_carcinoma: 16; large_cell_carcinoma: 14;
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mixed_adenosquamous_carcinoma: 4; NS: 3; undifferentiated_carcinoma: 1; mucoepider-
moid_carcinoma: 1). Our research results are only based on the current data. In the future,
we will try to test our model on lung cancer cell lines extracted from other databases, such
as GDSC, in order to obtain more robust conclusions. On the other hand, there are few
EGFR inhibitor-sensitive genes that have been experimentally verified. Therefore, we look
forward to verifying our conclusion with more experimental data in the future.

5. Conclusions

In the study, we introduced the CTRP and CCLE as the basic databases. First, we
constructed the group lasso regression models of 10 EGFR inhibitors, respectively, to obtain
the gene sets related to drug sensitivity. Then, the methylation sites closely related to these
genes were predicted based on the lasso regression algorithm. Finally, we further combined
the location information of predicted methylation sites and the correlation analysis with
drug-related genes. The results show that, compared with enhancers and transcription
factors, EGFR inhibitor-related genes have a stronger correlation with the methylation sites
in the promoter region of this gene. Therefore, the effect of EGFR inhibitors in lung cancer
may be affected by regulating the methylation level of the drug-sensitive gene promoter
region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11071042/s1, Figure S1: Classification of sensitive or resistant lung cancer samples, Table
S1: (sheet 1: the description of the supplement table of each sheet; sheet 2: for each of the 10 EGFR
inhibitors, based on differential expression analysis and the constructed lasso model, the genes and
methylation sites that may have regulatory relationships are predicted; sheet 3–12: the predicted
methylation sites associated with 10 EGFR inhibitors responsive-gene were located in promoter
region, enhancer region, or TFBS region, respectively).
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