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Abstract: Angiogenesis, a fundamental process in human physiology and pathology, has attracted
considerable attention owing to its potential as a therapeutic strategy. Vascular endothelial growth
factor (VEGF) and its receptor (VEGFR) are deemed major mediators of angiogenesis. To date,
inhibition of the VEGF-A/VEGFR-2 axis has been an effective strategy employed in the development
of anticancer drugs. However, some limitations, such as low efficacy and side effects, need to be
addressed. Several drug candidates have been discovered, including small molecule compounds,
recombinant proteins, and oligosaccharides. In this review, we focus on human oligosaccharides
as modulators of angiogenesis. In particular, sialylated human milk oligosaccharides (HMOs) play
a significant role in the inhibition of VEGFR-2-mediated angiogenesis. We discuss the structural
features concerning the interaction between sialylated HMOs and VEGFR-2 as a molecular mecha-
nism of anti-angiogenesis modulation and its effectiveness in vivo experiments. In the current state,
extensive clinical trials are required to develop a novel VEGFR-2 inhibitor from sialylated HMOs.

Keywords: human milk oligosaccharides; sialyllactose; angiogenesis; VEGFR-2; inhibitor

1. Introduction

Milk oligosaccharides are milk components with diverse biological functions [1]. In
particular, human milk has been utilized as a medicinal food due to its nutritional composi-
tion and non-nutritive bioactive factors [2]. Breast milk, which is ideal for infants, contains
numerous complex ingredients, including proteins, lipids, carbohydrates, minerals, and
other minor nutrients [3]. Among human milk components in colostrum, oligosaccharides
are the third most abundant, present at concentrations of up to 20–25 g/L [4]. However,
newborn babies lack enzymes that digest complex milk oligosaccharides. Thus, the precise
physiological role of milk oligosaccharides remained elusive until the 1960s [4,5]. However,
pioneering studies in the early 20th century have discovered that the carbohydrate fraction
of human milk contains growth-promoting factors for Lactobacillus bifidus [4]. Currently,
accumulated data suggest that human milk oligosaccharides (HMOs) are prebiotics, as
well as modulators of the intestinal mucosal and systemic immune response [4,6].

All HMOs contain five different monosaccharides, including D-glucose, D-galactose,
L-fucose, N-acetylglucosamine and N-acetylneuraminic acid [3]. Approximately 150 dif-
ferent types of oligosaccharides have been identified in human milk, with all possessing
a lactose unit at the reducing end [3,5]. Typically, HMOs are classified as neutral and
acidic oligosaccharides based on the respective presence or absence of negatively charged
N-acetylneuraminic acid, that is, sialic acid [6]. In several aspects, the biological activities
of acidic HMOs tend to differ from those of neutral HMOs [7,8]. Naturally occurring free
oligosaccharides harboring sialic acid have been found in both plasma and urine in healthy
men and women, especially in pregnant and lactating women [9–11]. Free sialylated
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oligosaccharides frequently present in human milk inhibit the adhesion of immune cells,
cholera toxin, and influenza virus with endothelial or epithelial cells [12–14]. Moreover,
the sialic acid-containing portion of HMOs is essential for early neurodevelopment and
cognition [15,16].

In the present review, we focused on the modulation of angiogenesis via human-
derived oligosaccharides, especially free sialylated oligosaccharides, to ameliorate diseases
associated with excessive angiogenesis.

2. Angiogenesis in Human Health and Disease
2.1. Physiological and Pathological Angiogenesis

In vertebrates, the vascular system plays a crucial role in organ homeostasis by trans-
porting oxygen and nutrients [17]. Closed blood vessel systems, like those in vertebrates,
first appeared in their common ancestor over 500 million years ago to optimize flow dy-
namics and barrier function [18]. Reportedly, metabolic requirements for oxygen and
nutrients induce new blood vessel formation from the existing ones, a process termed
angiogenesis [19]. Angiogenesis was initially considered as a physiological process for
maintaining metabolic homeostasis in the field of developmental biology [20]. Inevitably,
new blood vessel formation plays a critical role in early development, tissue growth and
wound healing [19]. Furthermore, female reproductive physiology, including oocytoge-
nesis, embryo implantation and the menstruation cycle, are regulated by angiogenesis
(Figure 1) [21].

Figure 1. Role of angiogenesis in physiological and pathological conditions. Angiogenesis is a funda-
mental process in human physiology and pathology. Dysregulated angiogenesis, both insufficient
and excessive angiogenesis, can lead to various pathological conditions.

Conversely, angiogenesis could be employed as a therapeutic target for treating
pathological conditions characterized by either insufficient vascularization or excessive
vasculature [22,23]. Tumor-derived factors to promote neovascularization were first postu-
lated in the late 1930s [23]. In 1971, Folkman [24] suggested that inhibition of angiogenesis
might have potential therapeutic implications in cancer therapy. These pioneering studies
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have highlighted the concept that angiogenesis is an important biological process and
therapeutic target in diverse diseases, including cancer [25]. The excessive growth of new
vessels can aggravate diverse disorders, ranging from cancer and obesity to retinopathy,
such as age-related macular degeneration [22,26]. Psoriasis, arthritis, inflammatory bowel
disease, benign prostate hyperplasia, endometriosis, ovarian cysts, and uterine bleeding
also have been reported to have a mutual correlation with excessive angiogenesis [22,27,28].
In contrast, insufficient angiogenesis can contribute to various diseases, such as stroke,
myocardial infarction, diabetic ulcers, atherosclerosis, coronary artery disease, systematic
lupus erythematosus, preeclampsia, Alzheimer’s disease, and Crohn’s disease [22,26,29].
Thus, balanced regulation of the angiogenic process might be a key factor for maintaining
human health and preventing or treating numerous diseases.

2.2. Vascular Endothelial Cell Growth Factors (VEGFs) and Their Receptors (VEGFRs) as
Therapeutic Targets for Pathological Angiogenesis

Angiogenesis involves the formation and maintenance of new blood vessels via the
cooperation of multiple cells in vascular networks, including vascular endothelial cells,
their progenitor cells and pericytes [30,31]. Based on the dynamic interplay between
these cells, new blood vessel-like structures are formed via multistep processes, such as
sprouting, tip cell migration and tube formation [22,32]. These processes are regulated
by signaling between endothelial cells and the perivascular cell layer by secreting growth
factors, direct cell–cell interaction, and extracellular matrix production [31–33]. Among
the secretory growth factors that regulate angiogenesis, VEGFs are the most important, as
they play key roles in multiple steps of neovascular formation (Figure 2) [31,34]. Thus, the
axis of VEGFs and their receptors (VEGFRs) has been considered a therapeutic target for
modulating angiogenesis since the beginning of anti-angiogenic studies [24,35].

In mammals, the VEGF family consists of five members, including VEGF-A, VEGF-
B, VEGF-C, VEGF-D, and placental growth factor (PLGF). These ligands bind to their
respective receptors (VEGFRs), which belong to the type IV receptor tyrosine kinase (RTK)
family and are composed of three members, VEGFR-1, VEGFR-2, and VEGFR-3 [36,37].
Once the ligand binds to the receptor, homo- or hetero-dimeric interactions of VEGFRs
initiate the autophosphorylation of intracellular tyrosine residues, as well as downstream
signaling pathways responsible for the proliferation, migration and remodeling of the
vascular endothelial cells [34,36]. Among them, VEGFR-1 and VEGFR-2 play critical
roles in physiological and pathological angiogenesis. In blood vascular endothelial cells,
angiogenesis is predominantly mediated via VEGFR-2 activation [38]. VEGF-A, VEGF-B,
and PLGF are high-affinity ligands of VEGFR-1, but the kinase activity of VEGFR-1 is
relatively weak for the progression of the angiogenesis [39]. In some cancers, VEGF-C
sustains VEGFR-2 activation by binding to VEGFR-2 even when inhibiting VEGF-A [40,41].
VEGF-C and VEGF-D stimulate VEGFR-3 activation, which plays an indispensable role in
both angiogenesis and lymphangiogenesis [42]. Furthermore, the cooperative signaling
between VEGFR-2 and -3 is involved in forming new lymphatic vessels (Figure 3) [43].
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Figure 2. Molecular mechanism of angiogenesis and multicellular interaction during new vessel
development. In response to stimulators such as VEGFs, vascular endothelial cells sprout from
the basement membrane and migrate to the site of new vessel formation. The formation of tip
and stalk cells is regulated by the VEGF-DLL4/NOTCH signaling pathway. The other stimulating
molecules, such as PDGF, EGF, FGF, BMPs, and TGF-β, also cooperate to regulate pericytes and
tip cells. ALK1/5, actin receptor-like kinase 1/5; BMP, bone morphogenic protein (yellow dots);
DLL4, delta-like protein 4; EGF, epidermal growth factor (black dot); EGFR, epidermal growth factor
receptor; FGF, fibroblast growth factor (gray dot); FGFR, fibroblast growth factor receptor; NICD,
intracellular domain of the notch protein; PDGF, platelet-derived growth factor (green dot); PDGFR,
platelet-derived growth factor receptor; TGF-β, transforming growth factor-β (dark yellow dots);
VEGF-A, vascular endothelial cell growth factor A (orange dots); VEGF-C, vascular endothelial cell
growth factor C (red dots); VEGFR, vascular endothelial cell growth factor receptor.

Therefore, considerable efforts to inhibit VEGFR-2 activation have been made to sup-
press angiogenesis as pathogenic angiogenesis is predominantly mediated by the VEGF-
A/VEGFR-2 axis [44]. Several strategies for suppressing excessive angiogenesis have been
exploited, including neutralizing monoclonal antibodies, VEGF-trapping recombinant pro-
teins and small molecule tyrosine kinase inhibitors [34,35,45]. Among them, neutralizing
VEGF-A using the anti-VEGF-A monoclonal antibody, bevacizumab (brand name Avastin),
has been inhibiting angiogenesis most successfully in clinical settings. It has been approved
as a conventional treatment for several cancers, such as colorectal cancer, lung cancer,
glioblastoma, renal cell carcinoma, and age-related macular degeneration [46–48]. How-
ever, the use of bevacizumab has revealed several limitations, such as high cost, no effect on
overall survival in a few cancer cases, and adverse effects on coronary and peripheral artery
disease [49,50]. Accordingly, several researchers have focused on developing an effective
and safe anti-angiogenic agent from small molecule compounds [34,35]. The majority of
small molecule anti-angiogenic agents target the tyrosine kinase activity of VEGFRs [51,52].
However, these chemical inhibitors for tyrosine kinases have been unsuccessful owing to
their low specificity and mutation-induced drug resistance [51,53]. As the extracellular
ligand-binding region of RTKs is markedly diverse in terms of the protein structure, they
are considered more suitable for developing specific inhibitors [54,55]. Accordingly, sev-
eral investigations reported that interactions between VEGF-A and its receptor could be
intercepted by employing recombinant peptides and peptidomimetic chemicals [56–58].
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Figure 3. VEGF/VEGFR axis as a therapeutic target and its intervention strategies. Five members of
the VEGF family are composed of VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PLGF. VEGF-A binds to
both VEGFR-1 and VEGFR-2. VEGF-C binds to both VEGFR-2 and VEGFR-3. VEGF-B and PLGF
bind to VEGFR-1, and VEGF-D binds to VEGFR-3. VEGFR-1- and VEGFR-2-mediated signaling
cascades regulate vascular angiogenesis. VEGFR-3 activation is essential for lymphangiogenesis
(green arrow). VEGFR-2 cooperatively activates lymphangiogenesis with VEGFR-3 (blue dashed
arrow), and VEGFR-3 also slightly enhances the vessel angiogenesis (green dashed arrow). Several
monoclonal antibodies and recombinant soluble receptors consisting of the extracellular domains of
VEGFRs have been successfully developed as therapeutic anti-angiogenic agents. Small molecules
targeting the intracellular tyrosine kinase domain or extracellular VEGF-binding domain are under
development as novel strategies for inhibiting angiogenesis. Abs, antibodies; PLGF, placenta growth
factor; TKIs, tyrosine kinase inhibitors; VEGF, vascular endothelial cell growth factor; VEGFR,
vascular endothelial cell growth factor receptor.

3. Human Milk Oligosaccharides and Angiogenesis
3.1. Oligosaccharides and Angiogenesis

Several different types of oligosaccharide chains exist in mammals as bound to pro-
teins, lipids, or repeating sugar units [59,60]. Oligosaccharide-linked proteins or lipids,
that is, glycoproteins or glycolipids, respectively, are mainly located on the cell surface
and have distinct biological functions, including mediation of viral/bacterial infection,
immune response, cell–cell interaction and cancer progression [61]. Additionally, numer-
ous ligand–receptor interactions might be regulated by the glycosylation status, especially
those involving G protein-coupled receptors and growth factor receptors [61–63]. It is well
known that ligand binding and trafficking of epidermal growth factor receptor (EGFR),
fibroblast growth factor-1 and VEGFR-2, the most crucial RTKs in cancer-associated an-
giogenesis, are affected by site-specific N-glycosylation [64–66]. Conversely, in the present
review, we focused on the pro- or anti-angiogenic roles of unbound oligosaccharides to
determine their potential as therapeutic modulators of angiogenesis.

As shown in Table 1, different types of oligosaccharides have pivotal roles in an-
giogenesis. Hyaluronan types, including their fragments, generally promote angiogenic
processes [67–79]. Several hyaluronan receptors, including CD44, receptor for hyaluronan-
mediated motility, LYVE-1 and CD31 [69,70,72,73,76], and their downstream signaling
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molecules, such as protein kinase C, Src, extracellular signal-regulated kinase (ERK),
transforming growth factor-β and Janus kinase/signal transducer and activator of tran-
scription [75,77,78], are involved in hyaluronan-stimulated angiogenesis. Two studies
reported that high molecular weight hyaluronan inhibits angiogenesis, whereas small
molecular weight hyaluronan promotes angiogenesis [80,81]. Heparin oligosaccharides,
such as heparin and their fragments combined with corticosteroid and heparin-like gly-
cosaminoglycans, caused inhibitory effects on angiogenesis [80,82]. However, heparin itself
promotes angiogenesis by binding to α2-macroglobulin, thus decreasing the inhibitory
effect of α2-macroglobulin on VEGF [83]. Furthermore, fucosylated oligosaccharides typ-
ically promote angiogenesis by interacting with FGF-2 and galectin-12 and through the
secretion of basic fibroblast growth factor (bFGF) and VEGF [84–86]. However, fucosylated
glycosaminoglycan and its derivatives suppress angiogenesis by inhibiting heparanase [87].

Table 1. Summary of studies investigating the effects of oligosaccharides on angiogenesis.

Compound Reference
(PMID) Exam Molecular Target Effect on

Angiogenesis Disease Model

Heparin, heparan sulfate, or their
fragments

7681826 in vitro α2-Macroglobulin Promotion N.D. (1)

3746342 in vitro,
in vivo

Growth of cerebral
microvessel

endothelial cell
Inhibition N.D. (1)

14517393 in vitro FGF Inhibition N.D. (1)

Hyaluronan, hyaluronic acid, or
their fragments

2408340 in vitro N.D. (1) Promote N.D. (1)

2472284 in vitro Endothelial cell
proliferation

Promotion or
inhibition (2) N.D. (1)

1384133 in vitro N.D. (1) Promotion or
inhibition (2) N.D. (1)

8647630 in vitro CD44 Promotion N.D. (1)

7543630 in vivo N.D. (1) Promotion Skin wound
healing

18544273 in vitro
RHAMM (receptor for
hyaluronan mediated

motility)
Promotion Skin wound

healing

12194965 in vitro PKCα, -β1, -β2, -ε Promotion Skin wound
healing

19724912 in vitro CD44 and RHAMM Promotion Wound healing

19913615 in vivo

LYVE-1 (lymphatic
vessel endothelial

hyaluronan receptor 1)
and CD31

Promotion Skin wound
healing

16544303 in vitro Endothelial cell
proliferation Promotion Wound healing

27588388 in vivo
Phosphorylation of Src

and ERK
TGF-β expression

Promotion Diabetic wound

31037151 in vivo
macrophage M2

polarization (MAPK,
JAK/STAT pathway)

Promotion Myocardial
infarction

26917404 in vitro,
in vivo CD44 Promotion N.D. (1)

19720068 in vitro VEGF (mRNA level) Promotion N.D. (1)
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Table 1. Cont.

Compound Reference
(PMID) Exam Molecular Target Effect on

Angiogenesis Disease Model

Lacto-N-Neotetraose (3) 31969618 in vitro,
in vivo Th2 immune response Promotion Skin wound

healing

Sialylated
oligosaccha-

rides

6′-sialylgalactose,
3′-sialylgalactose 31604908 in vitro,

in vivo VEGF receptor 2 Inhibition Cancer and
retinopathy

6′-sialyllactose,
3′-sialyllactose (3) 28938544 in vitro,

in vivo VEGF receptor 2 Inhibition Cancer

6′-sialyllactose (3) 31383249 in vitro,
in vivo VEGF receptor 2 Inhibition

Benign
prostatic

hyperplasia

Fucosylated
oligosaccha-

rides

Fucosylated
glycosaminoglycan 33667689 in vitro,

in vivo Heparanase Inhibition Cancer

Fucosylated
chondroitin sulfate 12496356 in vitro,

in vivo FGF-2 Promotion Ischemia and
thrombosis

3′-fucosylated
glycans (3) 31914594 in vitro,

in vivo Galectin-12 Promotion
Adipose

metabolic
disorder

2′-fucosyl lactose
(H-2g) (3) 15498849 in vitro,

in vivo
Secretion of bFGF and

VEGF Promotion N.D. (1)

(1) N.D.: not determined. (2) Promoted by low molecular weight hyaluronan and inhibited by high molecular weight hyaluronan.
(3) Ingredients of human milk. ERK, extracellular signal-regulated kinase; FGF-2, fibroblast growth factor; TGF-β, Transforming growth
factor-beta; VEGF, vascular endothelial growth factor.

Among the oligosaccharides listed in Table 1, only some, including lacto-N-neotetraose
(LNnT), fucosylated glycans, and sialylated oligosaccharides, are classified as HMOs.
Especially, LNnT, a linear chain of a tetrasaccharide composed of galactose [88],
N-acetylglucosamine and lactose, is reportedly a prebiotic that promotes the growth of
Bifidobacterium longnum, especially the subspecies infantis [89,90]. Helminths-derived
LNnT showed an immunosuppressive effect by augmenting Gr1+ cells and inhibiting naïve
CD4+ cells [91]. Recently, it was reported that LNnT accelerates the wound healing process
by inducing angiogenesis and promoting type 2 immune responses [92,93]. Approximately
50–80% of HMOs are fucosylated with fucose linked in α1-2, α1-3 or α1-4 linkages to
galactose, glucose, or N-acetylglucosamine [2], and have demonstrated beneficial effects
on reducing Campylobacter jejuni-associated diarrhea in a human translational study [94].
Core fucosylated free oligosaccharides derived from maternal milk N-glycosylated proteins
activate B cells via B cell receptor-mediated downstream signaling [95]. Several studies
have revealed that fucosyltransferases and fucosylated proteins play positive roles in
angiogenesis via the activation of fibroblasts, vascular endothelial cells, and endothelial
progenitor cells [96–98]. In addition, the fucosylated glycans increase angiogenesis by
interacting with galectin-12 or releasing angiogenic bFGF and VEGF [84,86].

3.2. Roles of Sialylated HMOs in Pathologic Angiogenesis

Several cell-surface proteins, such as mucins, ion channels, receptors, and adhesion
molecules, are highly glycosylated with terminal sialic acid residues [61]. Numerous studies
have revealed that cell surface glycosylated molecules bound to growth factor receptors
regulate their proangiogenic function [99–101]. N-glycosylation, especially that of terminal
sialic acid residues, regulates ligand-dependent activation of VEGFR-2 [102]. Not only
proteins, a sialylated glycosphingolipid, GM3, reportedly exhibits an anti-angiogenic effect
by inhibiting VEGFR2 activation [103,104]. Although two review papers have discussed
the role of glycosylation as a novel therapeutic target for diseases associated with excessive
angiogenesis [105,106], none of them described the exact functions of sialylated HMOs
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in angiogenesis. In 2004, Rudloff et al. [107] demonstrated that sialylated HMOs have an
anti-angiogenic effect on bovine vascular endothelial cells by employing an in vitro tube
formation assay. However, the study failed to identify the precise components of acidic
HMOs and the mechanism underlying their anti-angiogenic effects.

In this regard, our group recently revealed the specific components of anti-angiogenic
acidic HMOs and their underlying mechanisms. Unlike other HMOs summarized in
Table 1, we identified that 3′- and 6′-sialyllactose inhibited angiogenesis (Figure 4) [108,109].
However, their analogs, 3′-sialyl-N-lactosamine and 6′-sialyl-N-lactosamine, were unable
to bind to VEGFR-2 or suppress their activation, despite the only difference being a sin-
gle glycan unit, glucose, and N-acetylglucosamine [108]. Moreover, our data unraveled
that 6′-sialylgalactose is a minimal component that harbors superior binding affinity to
VEGFR-2 and suppresses its activation [110]. We also found a potent mechanism that
sialyllactose and sialylgalactose might interfere with the interaction between VEGF-A and
the immunoglobulin-like domain 2 of VEGFR-2. Binding affinity of free oligosaccharides to
VEGFR-2 measured by surface plasmin resonance was relatively lower than that of VEGF-
A to VEGFR-2 [110,111]. Among the free sialylated oligosaccharides, 6′-sialylgalactose
possesses a higher binding affinity than other oligosaccharides [110].

Figure 4. Structures and synthetic pathways of major HMOs and their effects on angiogenesis. All HMOs consist
of a lactose core or LacNAc core, with a few exceptions. These cores can be enzymatically elongated in repeats of
LacNAc. The elongated HMO chains can be further decorated with fucosylation or sialylation by fucosyltransferases or
sialyltransferases, respectively. Fucosylated HMOs generally promotes angiogenesis, but several sialyllactose analogs
inhibit angiogenesis. CMP, cytidine monophosphate; GDP, guanosine diphosphate; HMO, human milk oligosaccharides;
LacNAc, N-acetyllactosamine.

Following VEGFR-2 inhibition by sialylated oligosaccharides, the downstream sig-
naling molecules, including ERK, Akt and p-38, were also suppressed (Figure 5) [108,110].
Furthermore, administration of sialylated oligosaccharides sufficiently inhibited angio-
genesis in allograft cancer, benign prostate hyperplasia, and premature retinopathy mod-
els [108–110].
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Figure 5. Molecular mechanism of the anti-angiogenic action by sialic acid-containing oligosaccharides. Sialylated lactose
and sialylgalactose with sialic acid linked α2-3 or α2-6 to galactose inhibit the activation of VEGFR-2 by interfering the
binding between VEGF and VEGFR-2 via Ig-like domain 2 and 3 (green circle). Inhibition of VEGFR-2 activation thereby
suppresses the downstream angiogenic signaling pathways, such as the PI3K/Akt, PKC/ERK1/2 and p38 pathways.
ERK1/2, extracellular signaling-regulated kinases 1/2; FAK, focal adhesion kinase; NCK, non-catalytic region of tyrosine
kinase; PI3K, phosphoinositide 3-kinase; PLCγ, phospholipase γ; PKC, protein kinase C; SHB, SH2 domain-containing
adapter protein B; TSAd, T-cell specific adaptor protein; VEGF, vascular endothelial cell growth factor; VEGFR, vascular
endothelial cell growth factor receptor; VRAP, VEGF-receptor activated protein.

As described above, antibody- and recombinant protein-based drugs are superior to
small molecules, such as oligosaccharides, in terms of target specificity. However, their
clinical application might be limited due to the high cost, the risk of immunogenicity
following long-term treatment, and limited accessibility to target pathological foci owing
to their large size [110,112]. Natural sialylated HMOs reportedly possess several valuable
properties, including low molecular weight, low immunogenicity, and high accessibility
to therapeutic targets. Moreover, the safety of 3′- and 6′-sialyllactoses has previously
been confirmed for use in infants as well as in the general population, based on rodent
and porcine models [113–115]. Therefore, these in vivo efficacy and safety assessment
studies potentiate sialylated oligosaccharides as an anti-angiogenic agent via suppressing
the VEGF-A/VEGFR-2 axis. However, to develop sialylated HMOs as clinically avail-
able VEGFR-2 inhibitors, further extensive preclinical studies using animal models of
pathological angiogenesis, as well as clinical trials, should be warranted. Moreover, identi-
fying superior oligosaccharide analogs with higher binding affinities might help guarantee
improved anti-angiogenic effects.

4. Conclusions

In the present review, we highlighted the emerging role of sialic acid-containing
HMOs in the suppression of VEGFR-2-mediated angiogenesis. Disparately from other
glycans contained in HMOs, sialyllactose, and sialylgalactose could inhibit the activation of
VEGFR-2 by binding to its immunoglobulin-like domain 2. Although the anti-angiogenic
effects of sialylated HMOs have been evaluated in limited in vivo models, such as several
cancers, premature retinopathy, and benign prostate hyperplasia, their anti-angiogenic
efficacy still has the potential to cure other pathological conditions associated with excessive
angiogenesis. Moreover, extensive clinical trials using sialylated oligosaccharides would
lead us to new and novel strategies to develop clinically available VEGFR-2 inhibitors from
sialylated HMOs.
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