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Abstract: Human skin fibroblasts (HSFs) approximate the multidirectional differentiation potential 

of mesenchymal stem cells, so they are often used in differentiation, cell cultures, and injury repair. 

They are an important seed source in the field of bone tissue engineering. However, there are a few 

studies describing the mechanism of osteogenic differentiation of HSFs. Here, osteogenic induction 

medium was used to induce fibroblasts to differentiate into osteoblasts, and the role of the mechan-

ical sensitive element PDLIM5 in microfilament-mediated osteogenic differentiation of human fi-

broblasts was evaluated. The depolymerization of microfilaments inhibited the expression of oste-

ogenesis-related proteins and alkaline phosphatase activity of HSFs, while the polymerization of 

microfilaments enhanced the osteogenic differentiation of HSFs. The evaluation of potential protein 

molecules affecting changes in microfilaments showed that during the osteogenic differentiation of 

HSFs, the expression of PDLIM5 increased with increasing induction time, and decreased under the 

state of microfilament depolymerization. Lentivirus-mediated PDLIM5 knockdown by shRNA 

weakened the osteogenic differentiation ability of HSFs and inhibited the expression and morpho-

logical changes of microfilament protein. The inhibitory effect of knocking down PDLIM5 on HSF 

osteogenic differentiation was reversed by a microfilament stabilizer. Taken together, these data 

suggest that PDLIM5 can mediate the osteogenic differentiation of fibroblasts by affecting the for-

mation and polymerization of microfilaments. 

Keywords: human skin fibroblasts; osteogenesis; PDLIM5; microfilament; mechanical sensing ele-

ment 

 

1. Introduction 

Regenerative medicine is a field that studies the repair and regeneration of damaged 

tissues and organs [1,2]. At present, the repair process of bone trauma diseases involves 

the use of stem cells [3–5], and osteoblasts play an important role in the healing process. 

Among the seed cells from many sources, studies have shown that human fibroblasts ex-

hibit stem cell characteristics and can differentiate into chondrocytes, osteoblasts, and ad-

ipocytes [6,7]. Fibroblasts can further differentiate into osteoblasts and maintain a stable 
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phenotype, and play a similar role in osteogenic differentiation as stem cells [8,9], which 

are widely used as an ideal source of cell seeds in bone tissue engineering [10,11]. How-

ever, although human fibroblasts have potential therapeutic value, the basic mechanism 

of osteogenic differentiation remains to be fully elucidated. Therefore, the study of the 

molecular mechanism involved in osteogenic differentiation of fibroblasts can contribute 

to a better understanding of the stem cell potential of multi-directional differentiation of 

fibroblasts and lays a solid foundation for its clinical application. 

PDLIM5 (also known as ENH) was first discovered in 1996 by Kuroda et al., using 

yeast two-hybrid technology with protein kinase C (PKC) as the bait protein [12]. 

PDLIM5, a PDZ-LIM family member, functions as a cytoskeleton adaptor protein. Recent 

studies have reported that PDLIM5 may be involved in the progression of multiple tumor 

types [13–16], and PDLIM5 may also expand its function by remodeling the cytoskeleton 

[17]. Advances in the life sciences have led to a deeper understanding of the structure of 

PDLIM5 protein and its functional roles. PDZ-LIM protein plays a role in the development 

and maintenance of skeletal muscle by stabilizing actin cytoskeleton and regulating cell 

adhesion through interaction with α-actinin and integrin (αPS2,βPS, β1-integrin) [18–20] 

and as a muscle-specific scaffold protein to tether PKCβ molecules to the Z-disk region of 

sarcomere [21]. PDLIM5 is involved in the regulation of proliferation and differentiation 

of myoblasts as a target signal of MicroRNA-17-92 [22]. In addition, it has been reported 

that PDLIM5 promotes myogenic gene expression in C2C12 cells, thus promoting their 

myogenic differentiation [23]. Further, PDLIM5 can promote the migration, proliferation, 

and invasion of the thyroid papillary carcinoma cell line PTC through the RAS-ERK sig-

naling pathway [24]. As a mechanical sensitive element, PDLIM5 shows obvious subcel-

lular localization in mesenchymal stem cells and exhibits tension-dependent shifting in 

cells [25]. Furthermore, it regulates the mechanical conduction of the YAP pathway [26]. 

As a new substrate of AMPK at the ser-177 residue, PDLIM5 promotes its phosphorylation 

and mediates cell migration by inhibiting the Rac1-Arp2/3 pathway [27]. Therefore, as a 

cytoskeleton-related protein, PDLIM5 plays an important role in the genesis and develop-

ment of cells. 

The cytoskeleton is an important cellular component and plays an important role in 

the maintenance of cell movement, the reception of external signals, and the effective 

maintenance of cell internal structure. There are three basic structures of cytoskeleton: 

microfilaments, intermediate filaments, and microtubules [28–30]. Actin is considered to 

be a key factor in mediating intracellular and extracellular signal responses [31,32]. Stud-

ies have reported that microfilaments play an important regulatory role in the process of 

osteoblastic differentiation, promoting the osteoblastic differentiation of MC3T3 cells 

through the p38-MAPK signaling pathway [33,34]. By modulating BMP2-Smad signaling 

and the expression of this signaling downstream target gene RUNX2 by regulating the 

aggregation state of microfilaments, thus affect osteoblastic differentiation of osteoblasts 

[35,36]. It is known that PDLIM5 plays an important role in cardiovascular system [37], 

nervous system [38], and tumor system [39]. However, its role in fibroblasts has not been 

specifically elucidated. Therefore, understanding the molecular mechanism of PDLIM5 in 

osteoblastic differentiation in fibroblasts will help to understand the potential of osteo-

genic differentiation in fibroblasts and provide researchers with seed-derived cells for 

studying bone-filling materials. 

In this study, human fibroblasts were used as the research model, in which the sta-

bility of microfilaments was disturbed by the exposure to treatment with Jasplakinolide 

(JAS, actin polymerization stabilizer) and Cytochalasin D (CytoD, actin polymerization 

inhibitor). ALP staining, Western blotting, quantitative real-time polymerase chain reac-

tion (qRT-PCR), and immunofluorescence staining were used to detect the effects of mi-

crofilaments on osteoblast differentiation of human fibroblasts. Lentivirus transfection 

was adopted to down-regulate the expression of the cytoskeleton-related protein PDLIM5 
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to detect its regulatory effect on microfilaments. Finally, we attempt to explain the molec-

ular mechanism underlying PDLIM5 activity in regulating the osteogenic differentiation 

of fibroblasts by mediating microfilaments. 

2. Materials and Methods 

2.1. Cell Culture, Osteogenic Differentiation, and Treatments 

Human skin fibroblasts (HSFs) were obtained from skin dermis, which were pur-

chased from the cell bank of Zhongqiaoxinzhou Company (shanghai; China), and human 

adipose stem cells (hASCs) were extracted from subcutaneous adipose tissue of healthy 

individuals, using the type I collagenase digestion method as described previously [40]: 

adipose tissue was digested at 37 °C with 0.1% (w/v) type I collagenase to three times the 

volume of adipose tissue. After 40–60 min, digestion was terminated with Dulbecco’s 

modified Eagle medium (DMEM) to which 10% fetal bovine serum, 100 U/mL penicillin, 

and 100 µg/mL streptomycin were added. After centrifuged at 1000 rpm for 10 min, iso-

lated cells were suspended in growth medium (GM) and incubated at 37 °C in 5% CO2. 

Human adipose tissue was donated from the Plastic Surgery Department of Nanfang Hos-

pital. Cells were cultured in growth medium consisting of high-glucose Dulbecco’s mod-

ified Eagle’s medium (DMEM; Gibco, Carlsbad, CA, USA) with 10% fetal bovine serum 

(FBS, Gibco, Carlsbad, CA, USA) and 1% penicillin/streptomycin (Gibco). The growth me-

dium was changed every 2 days. 

The cells with 7000/cm2 density were seeded on a Petri dish. When the cell confluence 

reached 80%, the growth medium was replaced by the osteogenic differentiation medium 

(OS), which contained 10% FBS, 1% penicillin/streptomycin, 100 nM, dexamethasone, 37.5 

mg/L of ascorbic acid, 10 mM β-glycerophosphate sodium, and 10 nM VitD3. The medium 

was changed every 2 days. On days 1, 4, 7, 14, and 21 of culture samples were taken for 

Western blotting, qRT-PCR, and immunofluorescence analyses to detect the osteogenic 

differentiation ability and related indexes. 

CytoD (0.1 µg/mL) and JAS (10 nM/mL) were added to the osteogenic differentiation 

medium, and the corresponding growth medium was replaced every day. The samples 

were treated on day 7 of culture. 

2.2. Western Blotting 

A protein extraction kit (Whole protein extraction kit; Key GEN BioTECH, Nanjing, 

China) was used to prepare the cell lysis buffer according to the manufacturer’s instruc-

tions. Adherent cells were washed with precooled PBS three times, and the lysate was 

collected following cell lysis for 30 min on ice. The samples were centrifuged at 12,000× g 

at 4 °C for 10 min, which was followed by boiling for 5 min at 100 °C. Similarly, nuclear 

protein extraction was performed using the cytoplasmic-nuclear protein extraction kit 

(nucleoprotein and cytoplasmic protein extraction kit, Key GEN BioTECH, Nanjing, 

China) to prepare cytoplasmic and nuclear lysis buffers. The cell precipitates were di-

gested by trypsin and the cytoplasmic lysis buffer was added for 30 min on ice. The su-

pernatant containing the cytoplasmic protein was collected after centrifugation. The nu-

clear lysis buffer was added to the remaining precipitate and the lysate was collected after 

precipitates were lysed for 30–60 min at 4 °C. The supernatant containing the nuclear pro-

tein was collected after centrifugation at 12,000× g at 4 °C for 30 min, followed by boiling 

at 100 °C for 5 min. 

The 10% SDS-PAGE protocol was used to separate the proteins, which were then 

transferred to a PVDF membrane (Millipore, Waltham, MA, USA). The PVDF membrane 

was blocked for 1 h with 5% milk in tris-buffer salt solution (TBS) containing 0.1% Tween-

20. The membranes were then incubated with the following primary antibodies: anti-

PDLIM5 antibody (dilution 1:2000; ab85967), anti-α-actinin1 antibody (dilution 1:1500; 

ab68194), anti-osteopontin antibody (dilution 1:1500; ab69498), and anti-alkaline phospha-

tase (ALP) antibody (dilution 1:1000; ab126820), which were purchased from Abcam 
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(Cambridge, UK). The PDLIM5 monoclonal antibody (dilution 1:1000; H00010611-M01) 

was purchased from Abnova Company (Taipei, Taiwan). The anti-glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) antibody (dilution 1:5000; AP0063) was purchased 

from Bioworld Company (Bloomington, MN, USA). The anti-RUNT-related transcription 

factor 2 (RUNX2) antibody (dilution 1:1000; 12556S), anti-β-actin antibody (dilution 

1:2000; 4970S), and the anti-YAP antibody (dilution 1:1000; 14074S) were purchased from 

Cell Signaling Technology (Danvers, MA, USA). The membranes were washed for 10 min 

in TBST three times and then incubated for 1 h with horseradish peroxidase (HRP)-conju-

gated secondary antibodies (dilution 1:5000; Fudebio, Hangzhou, China) in 5% milk at 

room temperature. After washes with TBST, the membrane was visualized using FDbio-

Dura ECL kit (Fudebio, Hangzhou, China). The immunoreactive bands were quantita-

tively analyzed using ImageJ software (V1.4.3.64; National Institutes of Health; Bethesda, 

MD, USA), and the relative expression of each immunoreactive band was normalized to 

GAPDH. 

2.3. RNA Extraction and Quantitative Real-Time PCR  

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract the total RNA 

according to the manufacturer’s instructions. Total RNA (1 µg) was reverse transcribed to 

cDNA, using RevertAid First Strand cDNA synthesis kit, (Thermo Fisher, Waltham, MA, 

USA). Quantitative real-time polymerase chain reaction (qPCR) was performed using ABI 

StepOne Plus System (American Applied Biology Systems Inc. Waltham, MA, USA) with 

a fluorescent labeled SYBR dye in triplicate, using specific primers for RUNX2, ALP, OPN, 

β-actin, α-actinin1, PDLIM5, and GAPDH, which was used as an endogenous control. All 

primers used for the analysis are listed in Table 1. Calculation of relative expression of 

different gene transcripts was performed using the 2−ΔΔCt method. 

Table 1. Primers used in the qPCR. 

Gene Forward Primer (5′→3′) Reverse Primer (3′→5′) 

RUNX2 

ALP 

PDLIM5 

β-actin 

α-actinin1 

GAPDH 

GCCTTCAAGGTGGTAGCCC 

CTATCCTGGCTCCGTGCTC 

TTAGTGGCACTGGGGAAATC 

CTTCGCGGGCGACGAT 

ATTGGCAACGACCCCCAGAA 

TCGGAGTCAACGGATTTGGT 

CGTTACCCGCCATGACAGTA 

CGCCAGTACTTGGGGTCTTT 

GATCTTCCTTTGGCATCGAC 

CCACATAGGAATCCTTCTGACC 

ATGTTGTAACCCATGGAGATCAGG 

TTCCCGTTCTCAGCCTTGAC 

2.4. Immunofluorescence 

The cells inoculated on the climbing piece were washed three times with serum-free 

DMEM basic medium, then fixed in 4% paraformaldehyde at 25 °C for 10 min and washed 

three times with PBS. Cells were then permeated for 5 min at 25 °C in 0.1% TritonX-100 in 

PBS and then blocked with phosphate buffer (PBS) containing 2% bovine serum albumin 

(BSA) for 1 h at 25 °C. The samples were incubated overnight with the following primary 

antibodies at 4 °C: PDLIM5 monoclonal antibody (dilution 1:500; H00010611-M01), anti-

α-actinin1 antibody (dilution, 1:500; ab68194), and anti-YAP antibody (dilution 1:500; 

14074S). After washing three times with PBST, the cells were stained with the correspond-

ing secondary antibody avoiding light sources. The secondary antibodies used were 

AlexaFluor488 goat anti-mouse (1:500), Cy3 labeled goat anti-rabbit (1:500), Cy3 labeled 

goat anti-mouse (1:500), all purchased from Beyotime Company (shanghai, China). Alexa 

Fluor 568 phalloidin (1:500) was purchased from Invitrogen (Carlsbad, CA, USA). Finally, 

4′,6-diamidino-2-phenylindole (DAPI) was used to label nuclear DNA. The samples were 

imaged by confocal microscopy (Carl Zeiss, LSM 880, Jena, Germany). 
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2.5. Alkaline Phosphatase Staining 

The adherent cells in 6-well plate were washed three times with PBS and fixed by 

adding 4% paraformaldehyde for 10 min. The BCIP/NBT working solution (Beyotime, 

shanghai, China) was prepared according to the proportion specified by the manufac-

turer’s instructions, and then added for staining for 30 min. The slides were washed in 

PBS three times and were then observed under a microscope (Olympus, Tokyo, Japan). 

2.6. Lentivirus Transduction 

For knockdown of human PDLIM5 expression, Lentivirus vectors (NM_006457) re-

pressing PDLIM5 (GAGCAACTACAGTGTGTCACT) were constructed and generated by 

Genechem (Shanghai, China) (Figure S2). In preliminary experiments (Figure S1), we de-

termined the optimal conditions for lentivirus infection, including inoculation, infection 

volume, duration of treatment, and number of cells with multiple infections. To infect 

target cells, the virus was diluted in fresh medium in accordance with the transfected cell 

density ratio before transduction, and the virus infection enhancer HistransG P was 

added. Before infection, the cells were digested and inoculated on the 6-well plate at a 

density of 7000/cm². The cells were cultured at 37 °C for 16–24 h until the degree of con-

fluence was 20–30%. On the second day, according to cell MOI (multiplicity of infection) 

and the virus titer, the corresponding amount of virus and the corresponding infection 

enhancement solution were added. After 12 h, the medium was changed to the regular 

growth medium. At 72–96 h, the expression efficiency of green fluorescent protein (GFP) 

was observed by Olympus microscopy (Tokyo, Japan). 

2.7. Cell Proliferation Assay (CCK8 Assay) 

Following three washes of the adherent cells using PBS, a 10% CCK8 working solu-

tion (Cell CountingKit-8) was prepared with serum-free DMEM. The culture plate was 

incubated in the incubator for 1 h, and the absorbance of the sample at 450 nm was deter-

mined by an enzyme-labeling instrument (Thermo Fisher, Thermo Scientific Multiskan 

FC, Waltham, MA, USA). 

2.8. Wound Healing 

The cells were inoculated in a 6-well plate and divided into three groups: Con, shScr, 

shPDLIM5, the corresponding density of inoculated cells in each group was 5000/cm2, 

5000/cm2, and 6000/cm2respectively. The cells were uncovered but immersed in growth 

media to make scratches on the plates with 200 µL pipette tips. The old medium was dis-

carded and the cell was washed with PBS three times to remove the detached cells. Next, 

serum-free medium was added for culturing. The motor ability of the cells was observed 

and photographed after 0 h, 12 h, 24 h, and 48 h. 

2.9. Transwell Migration Experiments 

Migration chambers were positioned in a 24-well plate and 100 µL of serum-free me-

dium was added to the chambers. Next, 200 µL of medium containing the cell suspension 

(2.5 × 105 cells/mL in serum-free medium) was placed in the upper chamber and 750 µL 

culture medium (with FBS) was added to the lower chambers. The plate was incubated at 

37 °C for 12–16 h. Next, medium was removed from the chambers, the chambers were 

washed twice in PBS, and the cells were fixed in 4% formaldehyde for 30 min. The mem-

branes were exposed to crystal violet staining solution (Solarbio Company, Beijing, China) 

for 30 min after washing in PBS. Non-migrated cells were scraped away with cotton 

swabs, and the migrated cells were observed under an Olympus microscope (Tokyo, Ja-

pan). 
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2.10. Statistical Analysis 

All experiments were performed at least in triplicate. Data are presented as mean ± 

standard deviation (SD). T-test (GraphPad Prism 5.0 software, La Jolla, CA, USA) was 

used to determine the significant differences, and p < 0.05 was considered statistically sig-

nificant. 

3. Results 

3.1. Cell Culture and Osteogenic Differentiation In Vitro 

To verify the ability of osteogenic differentiation of HSFs, hASCs, which have been 

proved to be one of the representatives of mesenchymal stem cells with multiple differen-

tiation functions and compared with hMSCs, hASCs have a wide range of sources, are 

easy to obtain, simple separation, and are not restricted by ethics, were induced to indi-

rectly observe the osteogenic ability of fibroblasts. hASCs and HSFs completely adhered 

to the culture dishes 24 h after inoculation. Both cell types were similar in shape, and were 

characterized by long fusiform or oval shapes. The confluence of cells reached 80–90% 

after 36–48 h, and rapidly grew with a whirlpool-like appearance (Figure 1A). In the con-

dition of osteogenic induction, Western blotting and qRT-PCR were used to detect the 

expression of osteogenic marker proteins of hASCs and HSFS as the induction time in-

creased (Figure 1B,C). Furthermore, the osteogenic differentiation ability of HSFs and 

hASCs was confirmed by ALP staining, which showed that alkaline phosphatase staining 

increased with the increase of osteogenic induction days, and reached the peak on the 14th 

day (Figure 1D). Moreover, the results of alizarin red staining showed that on the 21st day 

of osteogenic induction, HSFs were weaker than hASCs in bone mineralization nodules 

(Figure S3), which may be related to the different differentiation potentials of the two 

kinds of cells. 
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Figure 1. Morphology and osteogenic differentiation of hASCs and HSFs in vitro. (A) Morphology of hASCs and HSFs obtained 

following 48 h of culture. Scale bar = 100 µm. Western blotting (B) and RT-qPCR (C) detection of HSFs, and hASCs osteogenic dif-

ferentiation marker protein and mRNA expression. (D) ALP staining analysis of hASCs and HSFs differentiation into osteogenesis. 

Scale bar = 100 µm. hASCs: human derived adipose stem cells; HSFs: human skin fibroblasts; OS: osteogenic medium; RUNX2: runt 

related transcription factor 2; ALP: alkaline phosphatase; OPN: osteopontin, * p < 0.05, ** p < 0.01, *** p < 0.001, n = 3. 

3.2. Microfilaments and Related Proteins Were Involved in Osteogenic Differentiation of HSFs 

To examine the effects of microfilaments on the osteogenic differentiation potential 

of HSFs, we detected the expression of β-actin-, α-actinin1-, and cytoskeleton-related pro-

tein PDLIM5 by RT-qPCR and Western blotting analyses in the osteogenic differentiation 

of HSFs. The results showed that the expression of RUNX2, ALP, OPN, β-actin, α-actinin1, 

and PDLIM5 were significantly upregulated in osteogenic medium (OS) (Figure 2A,B). It 

is suggested that the osteogenic differentiation of HSFs can increase the expression of actin 

cytoskeleton and its related proteins (such as PDLIM5) (Figure 2A,B), thus affecting the 

changes of cytoskeleton. Further, it has also been speculated that cytoskeleton and related 

protein PDLIM5 may play a role in the osteogenic differentiation of HSFs. Thus, the cells 

were further treated with microfilament inhibitor (CytoD) and stabilizer (JAS) and cul-
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tured in OS to observe the effects of microfilament on the osteogenic differentiation po-

tential of HSFs. Western blotting was used to evaluate the expression of β-actin and oste-

ogenesis-associated proteins. The results showed that the expression levels of RUNX2, 

ALP, and β-actin were significantly upregulated by OS. In the OS + CytoD group, the 

expression levels of RUNX2, ALP, and β-actin were significantly inhibited, and in the OS 

+ JAS group, the inhibitory effects in the OS + CytoD treatments on the osteogenic marker 

protein RUNX2 and other proteins were offset (Figure 2C). ALP staining at 14 and 21 days 

after osteogenic induction showed that the OS + CytoD group decreased the staining in-

tensity, while the OS + JAS group increased the staining intensity (Figure 2D). These re-

sults indicated that the disassembly of microfilaments inhibited the osteogenic ability of 

HSFs, while the polymerization of microfilament cytoskeleton molecules can promote the 

osteogenic ability of HSFs. 

The expression of PDLIM5 decreased during the depolymerization of microfilament 

cytoskeleton (Figure 2C). It has been speculated that PDLIM5 may play a synergistic role 

with the microfilament cytoskeleton to regulate the osteogenic differentiation ability of 

HSFs. Therefore, we examined the cellular localization of PDLIM5. Immunofluorescence 

analysis showed the co-localization of PDLIM5 and F-actin in osteogenic differentiation 

of HSFs (Figure 2E). Furthermore, immunofluorescence also showed that PDLIM5 and α-

actinin1 specifically co-localized to stress fibers (Figure 2F). We hypothesized that 

PDLIM5 may mediate the functional changes of cytoskeletal microfilaments by binding 

with α-actinin1, and thus affect the osteogenic differentiation of HSFs. Nonetheless, the 

relationship between PDLIM5 and α-actinin1 needs to be further verified. To test this hy-

pothesis, we evaluated the effects of PDLIM5 on the osteogenic differentiation of micro-

filaments and observed that down-regulation of PDLIM5 occurred in HSFs. 
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Figure 2. Microfilaments and related proteins are involved in osteogenic differentiation of HSFs. Detection of β-actin, α-actinin1, 

PDLIM5, and osteogenesis-associated gene expression by (A) Western blotting and (B) RT-qPCR analyses of HSFs treated with 

osteogenic differentiation medium (OS) on 0 d, 4 d, 7 d, 14 d, and 21 d. Effects of CytoD and JAS on the expression of HSFS osteo-

genic-associated protein and PDLIM5 by (C) Western blotting analyses. OS 7d, OS + CytoD, and OS + JAS 7d: HSFs treated with 

osteogenic differentiation medium, osteogenic differentiation medium containing 0.1 µg/mL of CytoD, and osteogenic differentia-

tion medium containing 10 nM/mL of JAS for 7 days, respectively. Densitometric quantification of the Western blotting bands nor-

malized to GAPDH. * p < 0.05, ** p < 0.01, *** p < 0.001, n = 3. Osteogenic differentiation of HSFs with CytoD or JAS in OS was deter-

mined by (D) ALP staining at 14 and 21 days. Scale bar = 100 µm. Immunofluorescence(E) detected the co-localization of PDLIM5 

and F-actin, and (F) analysis detected that PDLIM5 co-localized specifically with α-actinin1 on key stress fibers during osteogenic 

differentiation. Scale bar = 10 µm. Phalloidin: F-actin immunofluorescent dye; CytoD: inhibitors of actin polymerization; JAS: actin 

polymerization agonist. 
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3.3. PDLIM5 Knockdown Inhibited the Proliferation, Movement, and Migration Ability of HSFs 

To investigate the function of PDLIM5 in HSFS, a lentiviral vector with deletion of 

the PDLIM5 target gene was transfected and integrated into HSFs, which down-regulated 

PDLIM5 expression in human fibroblasts. Green fluorescent protein (GFP) expression was 

observed by fluorescence microscopy and we determined that the transfection efficiency 

of lentivirus transfection was about 90% (Figure 3A). The knockdown of PDLIM5 in HSFs 

was further assessed by RT-qPCR, Western blotting, and immunofluorescence analyses 

(Figure 3B–D). The CCK8 assay, wound-healing assay, and cell migration tests using the 

transfected HSFs showed that after knocking down of PDLIM5, the proliferation and mo-

bility of fibroblasts were significantly inhibited (Figure 3E–G). These results indicated that 

PDLIM5 was involved in the growth and differentiation process of HSFs and may affect 

the biological behavior of cells as a key regulatory factor. 



Biomolecules 2021, 11, 759 11 of 18 
 

 

 

Figure 3. PDLIM5 knockdown inhibits the proliferation, movement, and migration ability of HSFs. (A) HSFs fluorescence intensity 

5 days after virus infection. Scale bar = 100 µm. Gene expression of PDLIM5 by (B) RT-qPCR and (C) Western blotting analyses 

after lentivirus infection. *** p < 0.001, n = 3. The expression of knockdown PDLIM5 was detected by (D) immunofluorescence. Scale 

Bar = 10 µm. Knockdown of PDLIM5 inhibits HSFs proliferation (E), movement (F) and migration (G). *** p < 0.001, n = 3. Scale Bar 

= 100 µm. Con: blank control group: shScr: empty plasmid negative control group; shPDLIM5: experimental group of knock-down 

PDLIM5. 
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3.4. PDLIM5 Knockdown Attenuated the Osteogenic Differentiation of HSFs Mediated by 

Microfilament 

To examine the effects of PDLIM5 on osteogenic differentiation of HSFs, the expres-

sion of osteogenesis-associated genes was assessed by RT-qPCR and Western blotting 

analyses after knocking down PDLIM5. The results showed that, compared with the neg-

ative control group (shScr), the expression levels of osteogenic marker protein and mRNA 

in the down-regulated PDLIM5 group (shPDLIM5) were significantly decreased, and pro-

tein and mRNA levels of β-actin and α-actinin1 also decreased after knock-down of 

PDLIM5 expression (Figure 4A,B). Consistent with these results, PDLIM5 knockdown 

weakened the alkaline phosphatase (ALP) staining during osteogenic differentiation of 

HSFs (Figure 4C). In addition, we also found that knocking down PDLIM5 not only inhib-

ited the expression of actin on osteogenesis, but also changed the morphology of micro-

filaments. Immunofluorescence analysis at 7 days post-osteogenic induction of HSFS 

showed that, compared with the shScr negative control group, the microfilaments in the 

shPDLIM5 group changed from their original neatly arranged filaments to short, wide, 

and thick filaments (Figure 4(Db)), while in the uninduced group, the morphology of 

microfilaments did not change before or after the down-regulation of PDLIM5 expression 

(Figure 4(Da)). These results suggest that PDLIM5 may exert a similar role as the depoly-

merizing agent of microfilaments, thereby inhibiting the expression of microfilaments and 

mediating changes in microfilaments stability so as to regulate the osteogenic differentia-

tion of cells. 

3.5. Stable Microfilaments Reversed the Inhibitory Effect of Knockdown PDLIM5 on Osteogenic 

Differentiation of HSFs 

To determine the effects of PDLIM5 on the microfilament skeleton, the cells were 

treated with a microfilament stabilizer (JAS) and treated in OS medium for 7 days with or 

without PDLIM5-knockdown. Western blotting analysis showed that JAS reversed the in-

hibition of knocked-down PDLIM5 on ALP, RUNX2, β-actin, α-actin 1, and PDLIM5 lev-

els (Figure 4E). ALP staining showed that the JAS reversed the inhibitory effect of PDLIM5 

knockdown on HSFs osteogenesis (Figure 4F). Taken together, these results suggested that 

PDLIM5 was involved in mediating osteogenic differentiation of fibroblasts by influenc-

ing the expression of microfilament cytoskeleton proteins and morphological changes. 
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Figure 4. PDLIM5 knockdown attenuates the osteogenic differentiation of HSF mediated by microfilaments. HSFs treated with 

osteogenic differentiation medium (OS) with or without knock-down of PDLIM5 at 7 days. β-actin and osteogenesis-associated 

gene expression by (A) RT-qPCR and (B) Western blotting analyses. Densitometric quantification of the Western blotting bands 

normalized to GAPDH. * p < 0.05, ** p < 0.01, ***p < 0.001, n = 3. ALP staining (C) at 14 days. Scale bar = 100 µm. The effect of knock-

ing down PDLIM5 on the morphology of microfilament skeleton was detected by immunofluorescence (D), a: knockdown PDLIM5 

in GM (undifferentiated) group; b: knockdown PDLIM5 in osteogenic medium group for 7 days, Scale bar = 10 µm. (E) The effect of 

JAS on the osteogenic differentiation of HSF after knocking down PDLIM5. Densitometric quantification of the Western blot nor-

malized to GAPDH. * p < 0.05, ** p < 0.01, *** p < 0.001, n = 3. ALP staining (F) at 14 days of HSFs osteogenic medium with JAS after 

knocking down PDLIM5 expression. Scale bar = 100 µm. 
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3.6. PDLIM5-Knockdown Inhibited the Nuclear Localization of YAP 

In the process of HSFs osteogenesis induced by chemical stimulation, we found that 

YAP protein expression tended to increase (Figure 5A). Immunofluorescence analysis 

showed that the distribution of YAP protein in the GM group was reduced, and the nuclei 

appeared not clearly defined, while in the OS 7d treatment group, the nuclei containing 

YAP protein were increased, and the nuclei were clearly formed (Figure 5B). These results 

indicated that YAP could be induced to enter the nucleus in the osteogenic environment 

of HSFs. Therefore, to further understand the role of YAP in osteogenesis of HSFs, we 

examined the expression of YAP during the osteogenic differentiation of HSFs by knock-

ing-down PDLIM5 expression. Western blotting analysis showed that the nuclear YAP 

protein expression level in the shPDLIM5 group was significantly decreased compared 

with the negative control shScr group (Figure 5C). Immunofluorescence analysis showed 

that nuclear YAP expression was lower in the shPDLIM5 group, in which the nuclear 

shape and outline were not clearly defined, while in the blank control group and empty 

plasmid control (shScr) group the nuclear YAP expression was marked, and the nuclear 

shape was clearly demarcated (Figure 5D). The results indicated that knockdown of 

PDLIM5 expression reduced the nuclear localization of YAP in osteogenic induction of 

HSFs. 

 

Figure 5. PDLIM5 knockdown inhibited nuclear localization of YAP. YAP gene expression by (A) Western blotting analyses in oste-

ogenic medium (OS) of HSFs at 0 d, 4 d, 7 d, 14 d, and 21 d. (B) The expression of nuclear YAP in HSFs with GM or OS for 7 days 

by immunofluorescence. The expression of nuclear YAP in HSFs treated with osteogenic differentiation medium with or without 

knocking down PDLIM5 at 7 days by (C) Western blotting analyses. Densitometric quantification of the Western blotting bands 

normalized to Histone 3. ** p < 0.01, n = 3. PDLIM5-knock-down reduced the nuclear localization of YAP and was detected by (D) 

immunofluorescence. Scale bar = 10 µm. 
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4. Discussion 

Fibroblasts present the same morphology as human mesenchymal stem cells (hMSC) 

and are derived from many different tissues. Studies have shown that fibroblasts express 

the same markers as hMSC and have the ability to differentiate into different lineages 

[41,42]. Fibroblasts have attracted attention for their potential application in bone tissue 

engineering [10]. In this study, the role of PDLIM5 in osteogenic differentiation of HSFs 

was detected, and the potential mechanisms involving PDLIM5-F-actin interaction in os-

teogenic differentiation were identified, as was the effect of PDLIM5 on YAP activity by 

osteogenic signals. 

A few studies are available on investigating the molecular mechanism of osteogenic 

differentiation of fibroblasts. Actin is the most abundant cytoskeleton protein and is con-

sidered to be a key factor in mediating intracellular and extracellular signal responses 

[43,44]. Studies have shown that microfilaments mediate the osteogenic differentiation of 

stem cells and regulate the transduction of the osteogenic signal pathway [45,46]. How-

ever, the mechanism involved in microfilaments regulating osteogenic differentiation of 

fibroblasts is not completely clear. In this study, microfilaments in the depolymerized 

state significantly inhibited the osteogenic ability of HSFs, while polymerization could 

promote the osteogenic ability of HSFs. This is consistent with the results of osteogenic 

differentiation of stem cells mediated by microfilaments [47]. Interestingly, during the de-

polymerization of the microfilament skeleton, the expression of PDLIM5 in osteogenic 

differentiation also decreased. Western blotting and qRT-PCR also showed that protein 

and mRNA levels of PDLIM5 were increased during the osteogenic differentiation of 

HSFs, suggesting that PDLIM5 may act as a regulatory factor affecting the osteogenic abil-

ity of cells. 

Most studies have shown that PDLIM5 and its family members play key roles in the 

differentiation and functioning of various cell types through PDZ and LIM domains. For 

example, RIL is an actin-associated protein that stimulates actin binding by interacting 

with the actin cross-linking protein α-actinin1 to increase its affinity with filamentous ac-

tin [48]. Following binding to α-actinin, the PDZ-LIM protein CLP-36 was found to be 

localized in the actin stress fibers via its PDZ domain [49]. These results revealed the rela-

tionship between PDZ-LIM protein and microfilaments. As a member of the PDZ-LIM 

family, PDLIM5 was clearly shown to be an actin skeleton-related protein. It plays an in-

dispensable role in the functional activity of cell biology [27,39]. In the present study, 

knocking down PDLIM5 significantly inhibited the proliferation, movement, and migra-

tion of fibroblasts, suggesting that PDLIM5 participates in the biological function of HSFs. 

To verify the role of PDLIM5 in osteogenic differentiation of HSFs, we examined the ef-

fects of PDLIM5 knockdown on the expression of osteogenesis-related genes. The results 

showed that knockdown of PDLIM5 significantly inhibited the expression of β-actin and 

osteogenesis-related genes. Furthermore, PDLIM5 knockdown also changed the morphol-

ogy of microfilaments, suggesting that PDLIM5 may mediate the osteogenic differentia-

tion of HSFs by affecting the activity of microfilaments. To further investigate the effects 

of PDLIM5 on microfilaments of the cytoskeleton, cells were treated with a microfilament 

stabilizer after lentivirus down-regulation of PDLIM5 expression. The results showed that 

the microfilament stabilizer could reverse the inhibitory effect of missing PDLIM5 expres-

sion on osteogenesis. Thus, these findings suggested that PDLIM5 may mediate the oste-

ogenic differentiation of fibroblasts by affecting the expression of microfilament cytoskel-

eton protein and inducing morphological changes. In this study, we preliminarily dis-

cussed the role of PDLIM5 in chemical osteogenesis induction. The specific signaling 

pathway of PDLIM5-mediated microfilaments involved in osteogenic differentiation 

needs to be further evaluated in future research. In addition, as a mechanical sensitive 

element, how PDLIM5 plays a role in other mechanical stimuli is the direction we need to 

further explore. Therefore, our next step is to investigate how PDLIM5 participates in the 

mechanical signal transduction of osteogenic differentiation through cytoskeleton under 

mechanical stimulation by applying mechanical stimulation under Flexcell tensiometer.  
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We also showed that knockdown of PDLIM5 significantly reduced the expression of 

YAP in the nucleus and its nuclear localization. The YAP pathway has been shown to be 

involved in the process of cell osteogenesis [50,51]. YAP signaling is one of the more stud-

ied and complex pathways involved in osteogenic differentiation. It has been reported 

that F-actin polymerization enhances the expression of RhoA and transcription factor 

YAP/TAZ, which promotes the osteogenic differentiation of mesenchymal stem cells [52]. 

In addition, through the response to different ECM stiffness, Yap and TAZ move in and 

out of the nucleus under the control of MT1-MMP, where YAP/TAZ can be activated on 

the hard matrix to make the cells differentiate into osteoblasts [53,54]. Thus, we hypothe-

sized that PDLIM5 may mediate the transcriptional activity of the key osteogenic tran-

scription factor RUNX2 through the regulation of YAP access to the nucleus, thereby par-

ticipating in the osteogenic differentiation of cells. As a protein closely related to the actin 

skeleton, PDLIM5 needs further research on YAP signaling to improve the influence of 

the signal axis of PDLIM5-F-Actin-YAP on the osteogenic differentiation of fibroblasts.  

In conclusion, the present study showed that human skin fibroblasts present an os-

teogenic differentiation potential as adipose stem cells, but the osteogenic differentiation 

of fibroblasts may be delayed and the bone-forming capacity is lower than hASCs. This 

potential can be reduced by the effect of PDLIM5 on the expression and morphology of 

microfilaments. These data provide more theoretical basis for the study of the seed source 

of fibroblasts in the field of bone tissue engineering, and propose novel ideas for the study 

of bone tissue engineering. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-

273X/11/5/759/s1, Figure S1: Determination of Lentiviral pre-Transduction Effect, Figure S2: Struc-

ture of PDLIM5 virus vector：Ubi-MCS-3FLAG-CBh-gcGFP-IRES-puromycin, Figure S3: Alizarin 

red staining of hASCs and HSFs on 21 days under osteogenic induction medium, (Scale bar = 100 

µm). 
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