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Abstract: Gut microbiota-mediated inflammation promotes obesity-associated low-grade inflam-
mation, which represents a hallmark of metabolic syndrome. To investigate if lifestyle-induced
weight loss (WL) may modulate the gut microbiome composition and its interaction with the host
on a functional level, we analyzed the fecal metaproteome of 33 individuals with metabolic syn-
drome in a longitudinal study before and after lifestyle-induced WL in a well-defined cohort. The
6-month WL intervention resulted in reduced BMI (−13.7%), improved insulin sensitivity (HOMA-IR,
−46.1%), and reduced levels of circulating hsCRP (−39.9%), indicating metabolic syndrome reversal.
The metaprotein spectra revealed a decrease of human proteins associated with gut inflammation.
Taxonomic analysis revealed only minor changes in the bacterial composition with an increase
of the families Desulfovibrionaceae, Leptospiraceae, Syntrophomonadaceae, Thermotogaceae and
Verrucomicrobiaceae. Yet we detected an increased abundance of microbial metaprotein spectra
that suggest an enhanced hydrolysis of complex carbohydrates. Hence, lifestyle-induced WL was
associated with reduced gut inflammation and functional changes of human and microbial enzymes
for carbohydrate hydrolysis while the taxonomic composition of the gut microbiome remained
almost stable. The metaproteomics workflow has proven to be a suitable method for monitoring
inflammatory changes in the fecal metaproteome.

Keywords: metaproteomics; fecal samples; obesity; metabolic syndrome; gut inflammation; micro-
biome; weight loss

1. Introduction

The development of obesity and metabolic syndrome depends to a large extent on an
individual’s unique metabolic processing of foods, genetics, lifestyle, and gut microbiome
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composition. Experimental and observational evidence suggests that obesity-associated
inflammation plays a central role in metabolic dysfunction and disease progression. Recent
studies indicate that gut microbiome-mediated inflammation may promote metabolic
disorders and obesity-associated low-grade inflammation [1]. Accordingly, taxonomic and
functional alterations of the gut microbiome are typically observed in inflammatory gut
diseases [2] but also in metabolic diseases such as diabetes mellitus [3] or obesity [4,5]. In
addition, fecal microbiota transplantation in mice even revealed that the microbiome might
cause obesity [6].

Close spatial and functional interactions of the host and gut microbiota require a well-
tuned balance. In particular, the host immune system must tolerate mutualistic bacteria
but also prevent a perfusion of the bacteria through the intestinal epithelia. Gut microbiota
may affect host physiology through metabolic activities and fermentation of nondigestible
dietary components and synthesis of vitamins and signaling molecules [7]. Conversely, gut
microbiome is influenced by diet and caloric intake [8]. Hence, chronic consumption of a
high-fat diet may lead to intestinal barrier defects, enabling microbial metabolites [9] but
also gut-derived microbiota [10] to enter into the circulation. Lifestyle-induced weight loss
(WL) is regarded as efficient therapy to reverse metabolic syndrome [11]. However, the
definition of the microbiome’s role in resolution of metabolic disease following lifestyle-
induced WL remains elusive.

Available data about the gut microbiome are mainly derived from genetic approaches
focusing on microbiome composition while neglecting actual protein expression and bac-
terial interaction with the host. The aim of our study was to simultaneously analyze if
lifestyle-induced WL for a period of 6 months modulates the gut microbiome and its
interaction with the host on a functional level. Hence, we employed a metaproteomics
approach to identify proteomic alterations from both the host and the microbiome by using
a 24 h protocol [12]. For this protocol, the cells were lysed and the proteins were extracted
by phenol extraction in a ball mill. Subsequently, the proteins were digested via FASP
digestion and the peptides were analyzed by an LC-MS/MS (Orbitrap Elite™ Hybrid Ion
Trap-Orbitrap MS) with a 120 min gradient. The protein identification was carried out with
the MetaProteomeAnalyzer software.

To avoid the huge variation between the microbiome of different subjects [13], this
study was designed to analyze longitudinal changes in the gut metaproteome in paired
feces samples before and after lifestyle-induced WL.

2. Materials and Methods

This study was conducted based on a previous study analyzing the impact of lifestyle-
induced WL on serum bile acids in individuals with metabolic syndrome [14]. The trial
included nonsmoking, nondiabetic men aged between 45 and 55 years with metabolic syn-
drome as defined by the National Cholesterol Education Program Adult Treatment Panel III
guidelines, which is abdominal obesity (waist circumference > 102 cm or BMI > 30 kg/m2)
combined with at least two of the following criteria: fasting triglyceride (TG) concentration
≥ 1.7 mmol/L; high-density lipoprotein (HDL) cholesterol < 1.05 mmol/L; fasting glucose
≥ 5.6 mmol/L; blood pressure ≥ 130/85 mmHg or treatment for hypertension. Exclusion
criteria were smoking, type 2 diabetes mellitus, a history of surgical procedure for WL,
severe renal dysfunction (creatinine concentration > 2.0 mg/dL), known liver disease,
obesity of known endocrine origin, or inability to walk at least 30 min per day. Participants
of the lifestyle-induced WL intervention were advised to lower their calorie intake by
500 kcal/day, to follow a low-carbohydrate diet with preference for carbohydrates with a
low glycemic index (as previously described [15]), and to increase their usual daily physical
activity by 500 kcal/day but to keep the pulse below 120/min. Moreover, participants
recorded body weight daily and received weekly written feedback commenting on their
individual weight progress. In total, 59 individuals participated in the lifestyle-induced
WL treatment. Thirty-three participants (n = 33) provided paired sample sets before and
after the WL that were stored at −80 ◦C and subsequently analyzed by metaproteomics.
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Clinical measurements were performed by qualified medical personnel according to
standard operating protocols before and after the 6-month intervention period. All blood
samples were collected in the morning (8 a.m. to 9 a.m.) from the antecubital vein after
a 12 h overnight fast. Glucose was determined in sodium fluoride plasma. Laboratory
measurements were performed at the Institute of Clinical Chemistry and Pathobiochem-
istry, OvGU, Magdeburg, Germany, as described previously [14]. Concentrations of high
sensitive CRP (hsCRP) were analyzed using a particle-enhanced immunoturbidimetric
assay (Cobas c 501, Roche Diagnostics, Mannheim, Germany).

For the metaproteomic characterization of the microbiomes, we used a previously
described and validated workflow [12]. In brief, the cells were lysed and the proteins were
extracted by phenol extraction in a ball mill. The protein concentration was quantified by
an amido black assay and the proteins were digested via FASP digestion. Subsequently,
the peptides were measured by LC-MS/MS (Orbitrap Elite™ Hybrid Ion Trap-Orbitrap;
Thermo Fisher Scientific, Bremen, Germany) using a 120 min gradient reversed-phase
gradient. For more details, please refer to Supplementary Note 1. Protein identification
was carried out with the MetaProteomeAnalyzer software, version 3.0 [12] along with the
search engines X!Tandem, OMSSA, and Mascot using the following parameters: enzyme
trypsin, one missed cleavage, monoisotopic mass, carbamidomethylation (cysteine) as
fixed modification, oxidation (methionine) as variable modifications, ±10 ppm precursor
and ±0.5 Da MS/MS fragment tolerance, 113C, +2/+3 charged peptide ions, and a false dis-
covery rate adjustment to 1%. The protein database comprised the UniProtKB/SwissProt
database (16/01/2019) and the gut metagenome published by Qin et al. (2010) [16]. MS files
are accessible in the PRIDE Archive proteome experiment database under the accession
number PXD020902. For identified metaproteins lacking a taxonomic or functional annota-
tion, a BLAST search was conducted against UniProtKB/SwissProt [17]. All BLAST hits
sharing the best e-value below 10-4 were combined and used to annotate the metaprotein
identifications based on the lowest common ancestor approach. Redundant homologous
protein identifications were merged to a protein group (hereafter called metaprotein) if
they shared at least one peptide identification. Finally, a matrix of all metaproteins over all
samples containing the spectral count for each sample and also the annotation information,
e.g., NCBI taxonomy, enzyme commission numbers, KEGG orthologies, the UniProtKB
reference clusters, and the UniProtKB keywords, was exported and used for data analysis.

This study comprised 33 paired feces samples before and after the 6-month lifestyle-
induced WL intervention from individuals with metabolic syndrome. The spectral count
for each metaprotein was normalized to the total number of identified spectra for each
sample. For statistical analysis, R-Statistics version (1.2.5001) was used. Paired samples
were analyzed using the Wilcoxon signed-rank test using the method “wilcox.test”. Power
analysis based on 33 samples, significant p-values below 0.05, and a realistic standard
deviation of 2.66 spectra (for proteins with a spectral count of 5) [12] revealed that the
Wilcoxon signed-rank test could detect a twofold change with a power of 96.4%. For
further details about reproducibility and robustness of employed method please refer to
our previous publication [12]. We defined a cut-off of at least five identified spectra for
further results evaluation. For the violin plots the libraries “ggplot2”, “ggstatsplot”, and
the method “ggstatsplot:grouped_ggwithinstats” were used. Krona visualization was
performed as described in [18].

3. Results
3.1. Clinical and Laboratory Parameters

In total, 33 subjects of the entire cohort provided fecal samples before and after the
6-month lifestyle-induced WL intervention. Following lifestyle-induced WL participants
reduced their individual cardiovascular risk factors such as BMI (−13.7 ± 6.76%), systolic
blood pressure (−4.66 ± 9.74%), diastolic blood pressure (−4.36 ± 9.37%), homeostasis
model assessment index (HOMA-IR, −46.1 ± 28.6%), total cholesterol (−9.11 ± 14.4%),
LDL-cholesterol (−6.85 ± 21.4%), and TG levels (−30.5 ± 34.0%). Moreover, abundance of
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inflammatory parameters (hsCRP, −39.9 ± 43.0%) as well as liver enzymes (ALAT, −38.3
± 26.2% and ASAT, −19.6 ± 20.9%) were reduced. Above mentioned changes are given as
mean and standard deviation. Details are presented in Figure 1. In general, the changes
in these clinical and laboratory measurements are comparable with those obtained in the
whole cohort that initially completed the study [14].
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Figure 1. Clinical parameters of individuals with metabolic syndrome at baseline and after the 6-month lifestyle-induced
weight loss intervention period. Data are presented as violin plots showing distribution of the data by the inner box with
the median (black line) and the interquartile range as well as the kernel probability density of the data by the outer shape.
Furthermore, the average (“µ”) is shown and the changes of the values for each patient are indicated by the dashed black
lines. The Wilcoxon signed-rank test was used to analyze differences in paired samples (n = 33), * p < 0.05, *** p < 0.001.
Abbreviations: ALAT (alanine-aminotransferase), ASAT (aspartate-aminotransferase), BMI (body mass index, CRP (high
sensitive C-reactive protein), HDL (high-density lipoprotein cholesterol), HOMA-IR (homeostasis model assessment), LDL
(low-density lipoprotein cholesterol), RRDIA (diastolic blood pressure), RRSYS (systolic blood pressure), TG (triglycerides).
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3.2. Metaproteome Analysis

Metaproteome analysis resulted in an average of 7.234 ± 2.857 spectra (min: 2.904,
max: 14.569), 654 ± 177 metaproteins (min: 320, max: 1073), and 53 ± 14 taxonomic families
(min: 22, max: 78) for each sample (Table S1). Taxonomic assignment of all identified spectra
(Figure 2, Table S2) revealed 30.98 ± 11.16% (min: 13.02, max: 63.33) eukaryotic spectra,
22.32 ± 6.15% (min: 9.74, max: 35.65) bacterial spectra, 0.25 ± 0.20% (min: 0.00, max: 1.01)
archaeal spectral, and 0.03 ± 0.08% (min: 0.00, max: 0.42) viral spectra across all samples.
32.10 ± 5.32% of all detected spectra (min: 16.82, max: 42.71) could not be assigned to a
specific superkingdom (“UNASSIGNED Superkingdom”), whereas for 14.32 ± 3.74% of all
spectra (min: 8.76, max: 25.92) (“Unknown MG Entry”) the identified metagenome entries
could not be linked to any known protein by BLAST search.
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Figure 2. Taxonomic assignment of all identified spectra and significant changes due to weight loss.
The Krona plot scheme, 477,469 spectra. Spectra associated with multiple taxonomies and spectra
which could not be defined on the specific level are given as “UNASSIGNED” while spectra with no
taxonomic assignment are given as “UNKNOWN MG ENTRY”.

Eukaryotic spectra can be divided into spectra of the host (Hominidae: 3.13 ± 1.30%;
min: 1.06, max: 6.75) and spectra of food components (e.g., Fabaceae 0.95 ± 2.31%; min: 0.00,
max: 10.70). Bacterial spectra were mainly assigned to the microbial families Bacteroidaceae
(3.47 ± 1.88%; min: 0.47, max: 8.82), Clostridiaceae (0.76 ± 0.39%; min: 0.09, max: 1.63),
Enterobacteriaceae (0.65 ± 0.53%; min: 0.08, max: 3.55), Bacillaceae (0.59 ± 0.28%; min:
0.18, max: 1.31), and Porphyromonadaceae (0.40 ± 0.33%; min: 0.00, max: 1.33).

Overall, the microbial family richness did not significantly change due to the WL
intervention (baseline 39.52 ± 11.91%, after WL 42.85 ± 12.39%) (Table S2). Regarding the
microbial evenness, a significant decrease from 96.29 ± 0.49% (min: 94.99, max: 97.42) to
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96.02 ± 0.55% (min: 94.91, max: 97.14) was observed. A significant shift in the ratio between
Bacteroidetes to Firmicutes was not observed (before 1.62, after WL 1.61). Regarding indi-
vidual microbial families, a significant increase was observed for the low abundant families
Desulfovibrionaceae (average abundance 0.02%, ratio 3.17, gram negative), Leptospiraceae
(average abundance 0.01%, ratio 2.10, gram negative), Syntrophomonadaceae (average
abundance 0.004%, ratio 7.50, gram positive), Thermotogaceae (average abundance 0.06,
ratio 2.57, gram negative) and Verrucomicrobiaceae (average abundance 0.005%, only after
WL, gram negative) (Table 1). Furthermore, an increase in the plant family Rutaceae (aver-
age abundance 0.002%, ratio 5.85) and the phage family Siphoviridae (average abundance
0.002%, ratio 4.64) was detected.

Table 1. Summary about significantly altered microbial families.

Family Abundance Baseline Abundance after WL Fold Change p-Value

Thermotogaceae 3.1 × 10−4 ± 4.3 × 10−4 8.0 × 10−4 ± 1.3 × 10−3 2.6 0.01
Desulfovibrionaceae 1.1 × 10−4 ± 2.1 × 10−4 3.4 × 10−4 ± 4.8 × 10−4 3.2 0.01

Leptospiraceae 7.0 × 10−5 ± 2.1 × 10−4 1.5 × 10−4 ± 2.6 × 10−4 2.1 0.04
Syntrophomonadaceae 1.0 × 10−5 ± 4.0 × 10−5 7.5 × 10−5 ± 1.6 × 10−4 7.5 0.03

Siphoviridae 7.4 × 10−6 ± 3.0 × 10−5 3.4 × 10−5 ± 6.3 × 10−5 4.6 0.03
Rutaceae 4.4 × 10−6 ± 2.5 × 10−5 2.6 × 10−5 ± 5.8 × 10−5 5.9 0.05

Verrucomicrobiaceae Not Detectable 1.0 × 10−4 ± 3.7 × 10−4 Only in WL 0.04

The Wilcoxon signed-rank test was used to analyze differences in paired samples (n = 33). The table shows the average abundance at
baseline and after weight loss with the corresponding standard deviation.

A distinction between microbial (bacteria, archaea, fungi, virus) and host metaproteins
(metazoa) was made. (Table S2). The majority of identified host metaproteins corresponded
to hydrolysis enzymes (12.0 ± 5.8% of all identified spectra), immunoglobulins (total
2.3 ± 1.7%), structural proteins of the intestinal barrier (2.2 ± 1.1%), neutrophil granulo-
cytes (1.8 ± 0.9%), lysozymes (0.01 ± 0.01%), and angiotensin-converting enzymes (0.01
± 0.02%) (Figure 3A,B). Lifestyle-induced WL significantly reduced the abundance of
ten human metaproteins (Table 2), e.g., pancreatic alpha-amylase (metaprotein 33, ratio
0.39, phylum Chordata), epithelia associated proteins cadherin-1 (metaprotein 370, ratio
0.51, phylum Chordata), HLA class II histocompatibility antigen (metaprotein 1852, ratio
only before WL, species Homo sapiens), calcium-activated chloride channel regulator 1
(metaprotein 67, ratio 0.70, class Mammalia), and fibrillin-1 (metaprotein 3996, ratio only
before WL, class Mammalia). A decreased abundance was also observed for the neutrophil
granulocyte-associated proteins neutrophil gelatinase-associated lipocalin (metaprotein
169, ratio 0.49, species Homo sapiens), α-1-antichymotrypsin (metaprotein 197, ratio 0.63,
family Hominidae), and protein S100-A9 (metaprotein 159, ratio 0.60, species Homo sapi-
ens). Furthermore, the abundance of immunoglobulin kappa decreased (metaprotein
212, ratio 0.62, species Homo sapiens; metaprotein 600, ratio 0.38, species Homo sapiens)
whereas the abundance of immunoglobulin J chain (metaprotein 1571, ratio 1.75, species
Homo sapiens) increased following WL.
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Table 2. Summary of significantly altered metaproteins.

Microbial Metaproteins (ID) Description Taxonomy Average % Abundance p-Value Fold Change

87 Phosphoenolpyruvate carboxykinase (ATP) Superkingdom: Bacteria 1.5 × 10−2 0.03 0.8
1176 5-keto-D-gluconate 5-reductase Unknown Superkingdom 4.6 × 10−4 0.04 1.6
3789 Endoglucanase A Order: Clostridiales 3.3 × 10−4 0.00 Only in WL
346 Galactokinase Unknown Superkingdom 2.3 × 10−4 0.00 2.5

8627 Endoglucanase A Species: Clostridium thermocellum 1.3 × 10−4 0.04 Only in WL
1745 Flagellin Superkingdom: Bacteria 9.0 × 10−5 0.01 7.7
6585 Rubredoxin Species: Clostridium acetobutylicum 4.5 × 10−5 0.01 Only in WL
1838 Beta-1,4-mannooligosaccharide phosphorylase Species: Ruminococcus albus 4.5 × 10−5 0.04 Only in WL
6265 Phosphate propanoyltransferase Species: Thermotoga maritima 1.4 × 10−5 0.04 Only in WL

Human Metaproteins (ID) Description Taxonomy Average % Abundance p-Value Fold Change

33 Pancreatic alpha-amylase Phylum: Chordata 1.9 × 10−2 0.00 0.4
67 Calcium-activated chloride channel regulator 1 Class: Mammalia 3.8 × 10−3 0.01 0.7
159 Protein S100-A9 Species: Homo sapiens 2.4 × 10−4 0.01 0.6
197 Alpha-1-antichymotrypsin Family: Hominidae 1.7 × 10−4 0.02 0.6
212 Immunoglobulin kappa variable 1–33 Species: Homo sapiens 8.5 × 10−4 0.03 0.6
370 Cadherin-1 Phylum: Chordata 6.1 × 10−4 0.03 0.5

1571 Immunoglobulin J chain Species: Homo sapiens 6.1 × 10−4 0.02 1.7
169 Neutrophil gelatinase-associated lipocalin Species: Homo sapiens 3.3 × 10−4 0.05 0.5
600 Immunoglobulin kappa variable 3–15 Species: Homo sapiens 2.3 × 10−4 0.04 0.4

3996 Fibrillin-1 Class: Mammalia 6.3 × 10−5 0.02 0.0

1852 HLA class II histocompatibility antigen, DRB1-4
beta chain Species: Homo sapiens 7.6 × 10−6 0.04 0.0

Altered human and microbial metaproteins with an abundance > 7.6 × 10−6 are summarized. In total, 74 metaproteins were significantly changed (Table S1). Housekeeping metaproteins or unknown
metaproteins were excluded. The taxonomy column shows the lowest confirmed taxonomic rank. The Wilcoxon signed-rank test was used to analyze differences in paired samples (n = 33).
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metaproteins (D). Data are presented as normalized average spectral abundance. All metaproteins assigned to the kingdom
Metazoa were considered as host metaproteins. “Human trypsin” was shown as separated bar in (B) since its abundance
was potentially increased due to the trypsin used for the tryptic digestion. The Wilcoxon signed-rank test was used to
analyze differences in paired samples (n = 33, * p < 0.05). Bar graphs show mean ± standard deviation.

Microbial metaprotein spectra were assigned to hydrolysis (0.9 ± 0.6%) as well as to
transport proteins for carbohydrates (3.7 ± 1.6%), peptides/amino acids (0.5 ± 0.3%), and
glycerol (0.4 ± 0.3%) (Figure 3B,C). Furthermore, transporters for iron, sulfate, and vitamin
B12 were detected. However, quantitative assessment of these transporters was imprecise
since the different transporters have highly homologous protein sequences. Moreover,
microbial metaprotein spectra were assigned to glycolysis (12.5 ± 3.0% of the identified
spectra), pentose phosphate pathway (1.7 ± 0.7%), pyruvate degradation (3.2 ± 1.4%),
and tricarboxylic acid cycle/succinate fermentation (1.7 ± 0.6%) to acetate (0.2 ± 0.2%),
propionate (4.1 ± 1.8%), and butyrate (1.5 ± 0.8%) (Figure 3D). In several samples, evidence
of enzymes for the production of ethanol (0.2 ± 0.4%), lactate (0.1 ± 0.1%), format (0.2 ±
0.2%), carbon dioxide (0.1 ± 0.1%), and methane (0.05 ± 0.1%) was found. Concerning
amino acid degradation, a multitude of enzymes degrading amino acids to metabolites used
in glycolysis or tricarboxylic acid cycle were observed. For example, alanine dehydrogenase
(metaprotein 4616, superkingdom Bacteria), which degrades alanine to ammonium and
pyruvate. Besides metaproteins involved in metabolization, a multitude of high abundant
housekeeping or structural metaproteins, such as 50S ribosomal protein (metaprotein
126, superkingdom Bacteria) or flagellin (metaprotein 47, unknown superkingdom) were
detected.
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Lifestyle-induced WL was associated with specific alterations of microbial metapro-
teins that were assigned to hydrolysis and carbohydrate utilization, i.e., increased abun-
dance of endoglucanase A (metaprotein 3789, only in WL, order Clostridiales; metaprotein
8627, ratio only in WL, species Clostridium thermocellum), β-1,4-mannooligosaccharide
phosphorylase (metaprotein 1838, ratio only found after WL, species Ruminococcus al-
bus), galactokinase (metaprotein 346, ratio 2.54, unassigned superkingdom), and 5-keto-
D-gluconate 5-reductase (metaprotein 1176, ratio 1.58, unassigned superkingdom). Fur-
thermore, lifestyle-induced WL resulted in an increase of microbial flagellin (metapro-
tein 1745, ratio 7.67, superkingdom Bacteria), rubredoxin (metaprotein 6585, ratio only
found after WL, species Clostridium acetobutylicum), and phosphate propanoyltrans-
ferase (metaprotein 6265, ratio 1000, species Thermotoga maritima) as well as a decrease
of phosphoenolpyruvate carboxykinase (ATP) (metaprotein 87, ratio 0.81, superkingdom
Bacteria).

4. Discussion

Recent studies suggest that metabolic syndrome is associated with a maladaptive
gut microbiome that promotes obesity-associated low-grade inflammation [1] leading to
progression of diabetes mellitus and cardiovascular disease [5]. We used a metaproteomic
approach to study the effects of lifestyle-induced WL on the gut microbiome and its
interaction with the host by simultaneous analyses of host- and microbiota-derived proteins
in fecal samples. Since fecal samples can be collected at home by the patient and the
metaproteomics workflow can be performed within 24 h [12], the used workflow has a
huge clinical potential to monitor changes in the host and its microbiota not only for weight
loss but also for other diseases such as inflammatory bowel diseases [2].

Most strikingly, abundance of host metaprotein spectra that are assigned to inflam-
matory processes, e.g., calprotectin, neutrophil gelatinase-associated lipocalin, as well as
α-1-antichymotrypsin (metaproteins 169, 159, 197), were decreased following lifestyle-
induced WL. Recent studies indicate that obesity-related microbiome composition has a
proinflammatory effect resulting in elevated abundance of inflammatory markers such
as calprotectin in fecal samples [19]. Consistent with initially increased values, fecal
metaproteomic analysis showed that the proinflammatory changes are reversible upon
lifestyle-induced WL. Furthermore, obesity associated gut inflammation is a possible source
for increased plasma levels of CRP, calprotectin, and α-1-antichymotrypsin in obese indi-
viduals [20,21]. Our results indicate that attenuated gut inflammation may reduce systemic
inflammation as suggested by the reduced levels of circulating CRP. In concordance, we
observed a reduction of several epithelial host proteins, e.g., cadherin-1 (metaprotein 370),
HLA class II histocompatibility antigen (metaprotein 1852), calcium-activated chloride
channel regulator 1 (metaprotein 67), and fibrillin-1 (metaprotein 3996), indicating im-
proved epithelia integrity of the gut. Since calprotectin is discussed as a nonspecific marker
for colorectal cancer [22], our results suggest that lifestyle-induced WL may also reduce
the risk for colon cancer.

Regarding microbiota associated proteins, we detected functional changes. Decreased
abundance of metaproteins that correspond to enzymes of the tricarboxylic acid cycle (phos-
phoenolpyruvate carboxykinase (ATP), metaprotein 87) indicate a reduced fermentation to
succinate [23]. This is congruent with attenuated inflammation. Gut microbiota-derived
succinate levels are associated with inflammatory processes and increased production of
reactive oxygen species that promote local stress, tissue damage, and immune response [24].
Moreover, gut microbiota-derived succinate levels are elevated in insulin-resistant obese
individuals [25], indicating maladaptive microbiota–host crosstalk that promotes type
2 diabetes mellitus, cardiovascular disease, and associated inflammation. In addition,
we detected an increased abundance of metaproteins that are assigned to microbial en-
zymes for oxygen detoxification (metaprotein 6585, rubredoxin). Rubredoxin is known
to be associated with oxidative stress. A comparative metaproteomic analysis of fecal
samples from obese and lean adolescents by Ferrer et al. [4] showed that rubredoxin is
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only found in fecal samples from lean but not obese individuals. Rubredoxin contains a
single [Fe(SCys)4] site that is involved in the catalytic reduction of hydrogen peroxide and
superoxide [26]. Our results suggest that increased abundance of rubredoxin following
lifestyle-induced WL may protect against oxidative stress. Furthermore, we observed an
increase of microbial flagellin (metaprotein 1745, ratio 7.67, superkingdom Bacteria). Flagel-
lated bacteria are associated with metabolic syndrome and chronic inflammatory diseases.
A host–microbiota interaction implicated in inflammation and obesity is the sensing of
flagella through TLR5, which controls motile bacteria by different mechanisms, including
the production of antimicrobial peptides and anti-flagella immunoglobulins that regulate
the microbiota in the gut [27]. A recent study by Tran et al. [28] analyzed the microbial
proteome of feces in response to an obesogenic diet in mice. Most strikingly, levels of fecal
flagellin decreased by about five-fold following administration of the obesogenic diet. In
line with this, we observed an increased abundance of flagellin following WL. We speculate
that due to improved gut epithelial integrity, anti-flagella immunoglobulins decreased after
lifestyle-induced WL.

Interestingly, lifestyle-induced WL was associated with reduced abundance of the
human pancreatic alpha-amylase (metaprotein 33). Alpha-amylase is secreted for the diges-
tion of starch, promoting resorption of glucose. Of note, insulin has been shown to promote
synthesis of pancreatic amylase [29] and secretion of alpha-amylase is enhanced in obese
mice [30]. High secretion of pancreatic alpha-amylase is associated with accumulation
of visceral fat in animal models when fed a low-fat, high-starch diet [31]. We speculate
that the reduced abundance of alpha-amylase following lifestyle-induced WL was caused
by reduced insulin levels and by avoidance of carbohydrates with a high glycemic index,
which was part of the lifestyle intervention program. This is consistent with improved
insulin sensitivity as indicated by reduced HOMA-IR values following lifestyle-induced
WL. Next to its digestive function, secretion of alpha-amylase may also play a role in
the gut innate immune system and intestinal barrier function. Accordingly, inhibition of
exocytosis of the exocrine pancreas is associated with intestinal bacterial outgrowth and
dysbiosis [32]. Increased abundance of plant metaproteins (e.g., family Rutaceae) as well
as microbial metaproteins that correspond to the hydrolysis of complex carbohydrates
(metaproteins 8627, 3789, 1838) and of the enzymes galactokinase (metaprotein 346) and
5-keto-D-gluconate 5-reductase (metaprotein 1176) indicate dietary changes toward higher
consumption of fiber-rich foods. Taken together, analysis of fecal host and microbiota pro-
teins revealed that lifestyle-induced WL reduced gut inflammation and induced functional
changes in the gut microbiome.

Taxonomic metaproteome analysis revealed that the composition of the core mi-
crobiome remained stable following lifestyle-induced WL, confirming comparable stud-
ies [33,34]. The ratio between Bacteroidetes to Firmicutes was not affected by lifestyle-
induced WL. Our metaproteome analyses indicate that this ratio is not influenced by dietary
changes. This conclusion is in accordance with other findings suggesting that the ratio of
Bacteroidetes to Firmicutes evolves during different life stages and strongly depends on
the individual’s age [35].

Although we did not observe a significant higher microbial family richness, we de-
tected an increase of five lower abundant bacterial families, reflecting adaptations of the
microbiome to lifestyle-induced WL. We detected an increased abundance of the fam-
ily Verrucomicrobiaceae, which includes the mucus degrader Akkermansia muciniphila.
Akkermansia muciniphila is reduced in genetically and diet-induced obesity [36]. More-
over, supplementation with Akkermansia muciniphila may improve insulin sensitivity
in insulin-resistant obese individuals [37]. We hypothesize that increased abundance of
Verrucomicrobiaceae may reflect beneficial crosstalk between the host and gut microbiota
following lifestyle-induced WL. The increase of the family Thermotogales may reflect
enhanced fermentation of short-chain fatty acids as indicated by increased abundance of
phosphotransacetylase (metaprotein 6265). We assume that elevation of Thermotogales
was caused by dietary changes and increased consumption of complex carbohydrates with
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a low glycemic index. Accordingly, the most abundant proteins of this family were the
hydrolysis enzymes amylopullulanase (metaprotein 3465) and pullanase (metaprotein 23).

Furthermore, lifestyle-induced WL was associated with an increase in metaproteins
assigned to Desulfovibrionaceae, Leptospiraceae, and Syntrophomonadaceae. Of note,
these families were not linked to obesity or the gut microbiome before. While Desulfovibri-
onaceae are increased in mice fed a high-fat diet [38], in other rodents Desulfovibrionaceae
increase in response to fasting [39]. The identified metaproteins for Desulfovibrionaceae
catalyze dissimilatory sulfate reduction of sulfate to hydrogen sulfide [40], matching to the
release of sulfate during mucus degradation. Although, hydrogen sulfide may become
toxic, identification of enzymes for the thermodynamically less favorable methanogenesis
suggests that its concentration is still quite low. Further studies are required to evaluate
the role of Desulfovibrionaceae, Leptospiraceae, and Syntrophomonadaceae on the gut
microbial community and on gut inflammation.

The current study had limitations. Study participants were instructed to increase
physical activity, to reduce calorie intake, and to perform a low-carbohydrate diet with
preference for low glycemic carbohydrates. Beyond these instructions, no special diet, e.g.,
specific macronutrients, was recommended. Therefore, unfortunately, it is not possible
to separate the effects of dietary components on changes in the intestinal metaproteome.
Moreover, results from the current study were based on the abundance of identified protein
spectra. To evaluate taxonomic composition in detail, a combination with metatranscrip-
tomics and metagenomics would be necessary.

Another shortcoming of the study design was the stringent selection criteria as we
only enrolled middle-aged Caucasian males with metabolic syndrome, which precludes
generalization of the data to, e.g., females, other racial/ethnic groups, older or younger
individuals, or to individuals without metabolic syndrome. Yet at the same time this is a
strength as the stringent selection criteria reduced the complexity of the dataset and hence
of the analyses. Other advantages of the study were the prospective study design, a strong
effect regarding WL as the primary outcome (−13.9%) and robust statistical analyses of
paired datasets (before and after intervention). Furthermore, all analyses were conducted
in a blinded manner and laboratory measurements were performed according to standard
operating protocols, yielding high-quality data.

5. Conclusions

In conclusion, lifestyle-induced WL is associated with reduced gut inflammation
and functional changes of human and microbial enzymes for carbohydrate hydrolysis.
The recently developed metaproteomics workflow has turned out to be a suitable tool
to monitor inflammation-associated alterations of host- and microbiota-derived proteins
within the gut.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11050726/s1, Table S1: Comprehensive evaluation of all identified metaproteins, Table S2:
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the methods.
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