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Abstract: The vascular endothelium acts as a selective barrier to regulate macromolecule exchange
between the blood and tissues. However, the integrity of the endothelium barrier is compromised
in an array of pathological settings, including ischemic disease and cancer, which are the leading
causes of death worldwide. The resulting vascular hyperpermeability to plasma molecules as well
as leukocytes then leads to tissue damaging edema formation and inflammation. The vascular
endothelial growth factor A (VEGFA) is a potent permeability factor, and therefore a desirable
target for impeding vascular hyperpermeability. However, VEGFA also promotes angiogenesis,
the growth of new blood vessels, which is required for reperfusion of ischemic tissues. Moreover,
edema increases interstitial pressure in poorly perfused tumors, thereby affecting the delivery of
therapeutics, which could be counteracted by stimulating the growth of new functional blood vessels.
Thus, targets must be identified to accurately modulate the barrier function of blood vessels without
affecting angiogenesis, as well as to develop more effective pro- or anti-angiogenic therapies. Recent
studies have shown that the VEGFA co-receptor neuropilin 1 (NRP1) could be playing a fundamental
role in steering VEGFA-induced responses of vascular endothelial cells towards angiogenesis or
vascular permeability. Moreover, NRP1 is involved in mediating permeability signals induced by
ligands other than VEGFA. This review therefore focuses on current knowledge on the role of NRP1
in the regulation of vascular permeability signaling in the endothelium to provide an up-to-date
landscape of the current knowledge in this field.
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1. Introduction

The vascular system consists of a complex network of blood vessels organized as
a closed circulatory system in all vertebrates as well as some invertebrates [1,2]. The
vascular system carries blood through all the districts of the organism to deliver oxygen
and nutrients, which are necessary for organ and tissue homeostasis, and to remove
waste and catabolites. Therefore, it does not surprise that the vascular system is the first
organ system to form in the developing vertebrate embryos [3,4], at a time when blood
vessels also contribute to primitive hematopoietic development [5,6]. Moreover, circulating
immune cells interact with blood vessels to extravasate and provide immunosurveillance
and establish innate or adaptive immunity in pathological conditions [7].

2. Vascular Permeability

The inner lining of all blood vessels is formed by a monolayer of endothelial cells
(ECs) that are anchored to a basement membrane on the abluminal side and joined together
by intercellular junctional complexes. The primary function of the vascular endothelium
is to serve as a selective barrier between the blood and each tissue in the body, whereby
the permeability of the endothelium to blood cells, plasma macromolecules and water
can be adapted according to the physiological need and localization. For instance, blood
vessels in the kidney and in endocrine organs show a high basal permeability to enable
plasma filtration and hormone release into the bloodstream, respectively. In contrast, the
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blood-brain barrier forms a tight, highly impenetrable interface to maintain the central
nervous system in a more protected environment [8].

Vascular permeability, i.e., the movement of solutes and molecules from the luminal
to the abluminal side of the endothelial barrier, can be modulated by the exposure to
permeabilizing agents. However, certain molecules can cause the permeability of the
vascular endothelium to become excessive, resulting in acute or chronic vascular leakage.
Such vascular hyperpermeability contributes to the pathophysiology of several human
disorders, including cancer, heart, brain and limb ischemia, neovascular eye diseases and
chronic inflammatory conditions [9–12].

3. Vascular Permeability in Pathology

Vascular permeability can be beneficial after acute tissue injury through the delivery
of coagulation factors, antibodies and cytokines. However, the leakage of plasma molecules
during chronic hyperpermeability can cause pathological tissue edema, which is the accu-
mulation of fluids in the extracellular space that induces deleterious swelling and increases
interstitial pressure. Moreover, vascular hyperpermeability can foster leukocyte recruit-
ment, which favors inflammation, often promoting disease progression (reviewed by [12]).
In addition, vascular hyperpermeability is recognized as a cardinal feature of newly formed
blood vessels in those diseases characterized by an expansion of the vasculature, usually
abnormal or disorganized, by a process called pathological angiogenesis [8].

In cancer, disruption of the vascular barrier may potentiate tumor cell intravasation
and/or extravasation, leading to widespread metastatic disease, while increased interstitial
pressure often prevents efficient drug delivery to cancer sites (reviewed by [12]). More-
over, tumor angiogenesis results in cerebral edema in glioblastoma multiforme, and in
ascites and pleural effusions in liver metastasis and lung cancer, respectively [13–15]. In
ophthalmic diseases, such as the proliferative form of diabetic retinopathy that leads to
diabetic macular edema (DME) and the wet form of age-related macular degeneration
(AMD), abnormal vessel growth and increased vascular permeability promote retinal
edema, which disrupts neural function and subsequently results in visual loss (reviewed
by [16]). Vascular hyperpermeability may also contribute to increased lipid deposition in
atherosclerosis, resulting in neointimal hyperplasia [17]. Furthermore, the acute phase of
ischemic events, such as myocardial infarction, is accompanied by edema contributing to
tissue damage and disease outcome [18].

Stimulating blood vessel growth through angiogenesis is considered a promising
treatment for organ ischemia and may provide a useful method to increase delivery of
therapeutics to poorly perfused tumors. However, any beneficial effect of supportive
angiogenesis will be hampered if accompanied by edema generation. This is unfortunately
the case for the most potent angiogenic factor described to date, the vascular endothe-
lial growth factor A (VEGFA), whose expression is associated with re-vascularization of
damaged tissues but also increases vascular permeability. In fact, VEGFA was originally
identified because of its potent permeability-inducing properties and accordingly first
named vascular permeability factor (VPF). After two decades of VEGFA research, it is still
not clear how VEGFA and its receptors selectively induce vessel growth versus vascular
permeability to meet specific physiological needs, and how excessive vascular permeability
may be controlled to limit tissue damage caused by edema. For these reasons, any novel
insight on the signaling pathways that modulate different vascular responses, for example
to attenuate vascular leakage in ischemic diseases without preventing new vessel growth,
will be of fundamental value for devising more efficient therapeutic interventions. This
review will therefore focus on the cellular mechanisms mediating vascular permeability
and, in particular, the latest updates on the molecular mechanisms by which the VEGFA
co-receptor neuropilin 1 (NRP1) modulates vascular responses to regulate permeability in
both physiological and pathological settings.
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4. Cellular Mechanisms of Vascular Permeability

Vascular permeability occurs via paracellular or transcellular routes [8,19,20]. Para-
cellular permeability describes the flow of fluid and solutes through the space between
endothelial cells, a process that is regulated by cell-cell junctional complexes. Endothelial
cell-cell junctions are assembled by a series of adhesion molecules that make up tight and
adherens junctions [21]. Both tight and adherens junctions are formed by transmembrane
proteins that generate a zipper-like structure along the cell border and mediate adhesion
to the adjacent cell. As the name suggests, tight junctions are the tightest and their major
transmembrane constituents that mediate intercellular interactions include claudins, the
junction-associated molecule (JAM) family and occludin, which exist in complex with
intracellular scaffold proteins such as cingulin, paracingulin and zona occludens (ZO)
family members. Adherens junctions, instead, are mainly composed by vascular endothe-
lial (VE)-cadherin (CDH5), which is a single-span transmembrane protein exclusively
expressed by endothelial cells and its extracellular domain forms homomeric dimers with
VE-cadherin molecules of adjacent cells. Weakening of VE-cadherin-mediated cell-cell
junction is triggered by tyrosine and serine phosphorylation of both cadherins and their
intracellular interactors, such as β-catenin, which results in internalization of the complex.
Ultimately, barrier function is affected by the disruption of the protein bridge linking
adherens junctions to the actin cytoskeleton [22,23]. Junctions are dynamically remodeled
to control vascular permeability and loss of junctional integrity increases both the amount
of paracellular leakage as well as the size of the macromolecules that are allowed to cross
the barrier. Indeed, vascular hyperpermeability in response to permeability-inducing
agents, such as VEGFA, have long being associated to a reduced expression shown by
staining for junctional proteins such as ZO1 [24], occludin [25] or VE-cadherin [25–28] at
the endothelial junctions.

Transcellular permeability describes the transfer of fluid and solutes through the cell
from the apical to basal side of the endothelium (or viceversa) via vesicles, e.g., caveolae
or vesicles complexes fusing into transendothelial channels such as the vesiculo-vacuolar
organelle (VVO) [29]. However, due to the requirement of electron microscopy and the lack
of definitive molecular markers or loss-of-function models, the study of this permeability
pathway has proven particularly challenging. So far, only caveolin 1, the signature protein
of endothelial cell caveolae, has been proven necessary for the regulation of VVO function,
but not VVO structure, in acute vascular hyperpermeability [30]. Finally, another ultra-
structural feature regulating the passage of macromolecules is represented by fenestrae,
also called fenestrations, within ECs that facilitate rapid transport across the endothelium
in endocrine tissues or organs specialized in blood filtration. Fenestrae are small pores
that, depending on the tissue, can be covered by a diaphragm composed by plasmalemma
vesicle associated protein (PLVAP) [31].

5. NRP1: Structure

The NRPs are a family of single pass transmembrane proteins of about 130 kDa. In
mammals and most vertebrates, two NRP family members exist, NRP1 and NRP2, which
share the same overall domain structure and are, on average, 44% identical at the amino
acid level [32]. In zebrafish, instead, genome duplication in a teleost ancestor resulted in
the presence of 4 members, nrp1a, nrp1b, nrp2a and nrp2b [33].

All NRPs are composed of a relatively large extracellular portion, a short transmem-
brane domain and a cytoplasmic domain of 43-44 amino acids [34–37]. NRP1 extracellular
region includes five domains: a1, a2, b1, b2 and c. The a1 and a2 domains bind the core
seven-bladed Sema domain of class 3 semaphorins, [38,39], while the b1 and b2 medi-
ate binding to VEGFA, the basic tail of semaphorins and heparin and they additionally
promote cell adhesion [40,41] (we refer to the next chapter for a more detailed descrip-
tion of NRP1 ligands). The c and the transmembrane domains are involved in receptor
dimerization, whereas the cytoplasmic tail does not contain a signaling domain but a PDZ
(PSD-95/Dlg/ZO-1) binding-motif with a SEA amino acid triplet at the carboxy terminus
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that allows the formation and stimulation of signaling complexes. Alternative splicing
events can also produce soluble forms of both NRP1 and NRP2 (sNRP1, sNRP2) or an
isoform of NRP2 without a SEA motif [42].

6. NRP1: Molecular Function and Ligands

NRP1 is able to form homodimers or heterodimeric complexes with NRP2 [43], even
though genetic studies showing the requirement of NRP1 but not NRP2 in angiogene-
sis [38,44] and vascular permeability [45] suggest that it does not mainly function as a
heterodimer in endothelial cells. NRP1 acts primarily as a co-receptor, binding secreted
ligands and forming complexes with the ligand-specific receptors that promote down-
stream signaling, e.g., vascular endothelial growth factor receptors (VEGFRs) for VEGFA
and plexins for class 3 semaphorins. Despite the highly conserved amino acid sequence of
the NRP1 cytoplasmic tail across species, which suggests an essential role for this domain
(Figure 1), NRP1 lacks an intracellular catalytic activity and is generally considered not
to possess intrinsic signaling capabilities [46], although a few reports seem to indicate
that its cytoplasmic tail can signal independently of other receptors [47,48]. Instead, the
short intracellular domain of NRP1 acts by recruiting proteins to the cytoplasmic side
of NRP1-containing receptor complexes. For example, it binds synectin, a PDZ-domain
protein, also called GIPC1 (GAIP-interacting protein C terminus, member 1), to enhance
VEGFA signaling in ECs and promote VEGFA-induced arteriogenesis [49–53].
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Nrp1b, including the complete cytoplasmic domain. Alignment performed with Clustal Omega (European Bioinformatics
Institute; EBI). Asterisks indicate positions at which residues are conserved in all three species; colons and period indicate
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NRP1 has been widely studied as a receptor for the secreted glycoprotein VEGFA.
VEGFA gene contains 8 exons and, judging from transcript levels, is expressed as three
main isoforms that differentially include exons 6 and 7 [54,55]. In humans, these isoforms
are termed VEGFA121, VEGFA165 and VEGFA189 to reflect the number of amino acids
in each isoform after subtraction of the 26 amino acid long signal peptide (total 147, 191
and 215 amino acids, respectively). Each isoform in mice is one amino acid shorter. The
protein domains encoded by exons 6 and 7 provide VEGFA with affinity for the extracel-
lular matrix, which in turn affects the diffusibility of each isoform. Thus, VEGFA121 and
VEGFA189 are the most and the least diffusible among the major isoforms, respectively,
whilst VEGFA165, whose mRNA is the most abundant in most organs [54,55], shows inter-
mediate properties [56]. The differential distribution of each isoform in the extracellular
space and the formation of chemotactic gradients is critical for normal vascular morphogen-
esis [57]. Moreover, VEGFA isoforms show distinct receptor binding properties. Thus, all
the isoforms can bind the two main VEGFA tyrosine kinase receptors, VEGFR1 (FLT1) and
VEGFR2 (KDR, previously also known as FLK1), while NRP1 binds with higher affinity the
larger VEGFA isoforms, such as VEGFA165 and VEGFA189, compared to VEGFA121 by in-
teracting with the heparin binding domain encoded by exon 7, even though the interaction
between VEGFA and NRP1 also involves the exon 8 encoded epitope, which is common to
all the isoforms [58–61]. NRP1 has also been reported to interact with other ligands that
share homology with VEGFA, such as VEGFB, VEGFC, VEGFD and the placental growth
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factor 2 (PLGF2, also known as PGF), as well as other heparin-binding growth factors, such
as hepatocyte growth factor (HGF), members of the fibroblast growth factor (FGF) family
and transforming growth factor beta 1 (TGF-β1) [37]. More recently NRP1 has been shown
to interact also with ANGPTL4 (angiopoietin like 4) [47].

Moreover, NRP1 also interacts with other extracellular binding partners that do
not belong to growth factors. In fact it was also originally discovered as an adhesion
protein on the axons of the developing frog nervous system [62] and later identified in
mammals as a receptor for the class 3 semaphorin family (SEMA3), which includes secreted
molecules that act as axon guidance cues but can also modulate endothelial function, such
as SEMA3A [63,64]. Indeed, NRP1 is required to translate semaphorin cues during neural
patterning [65,66].

7. NRP1: Expression Pattern and Vascular Function

During development, NRP1 is highly expressed in blood vessels to promote angio-
genesis [67]. Accordingly, constitutive NRP1 knockout mice are embryonically lethal due
to severe vascular defects in several organs [44,68,69] together with defective remodeling
of the cardiac outflow tract and formation of the aortic arch [70]. In particular, we and
others have shown that NRP1 is required within the angiogenic endothelium to generate
the specialized tip cells that lead vessel sprouts [44,68,69]. Surprisingly, NRP1’s essential
role in angiogenesis is only partly explained by its ability to bind VEGFA164 [71,72], with
recently identified pathways including NRP1-dependent modulation of both extracel-
lular matrix [45,73] and TGFβ signaling [74]. NRP1 role in outflow tract remodeling is
also independent of VEGFA, whereby endothelial NRP1 translates neural crest-derived
SEMA3C signals to promote endothelial-to-mesenchymal transition leading to outflow
tract septation [75].

More recently, we have shown that NRP1 expression is maintained in the adult
quiescent endothelium, including postcapillary venules (Figure 2) [45], where vascular
hyperpermeability events mostly occur [8]. Thus, NRP1 concentrated to areas enriched
for the adherens junction proteins PECAM1 (platelet endothelial cell adhesion molecule 1)
and CDH5 (VE-cadherin) (Figure 2) [45], in agreement with a role for NRP1 in regulating
vascular permeability.Biomolecules 2021, 11, 666 6 of 19 
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Figure 2. Whole-mount immunostaining of the superficial plexus of adult mouse retina for NRP1, the
adherens junction protein CDH5 (VE-Cadherin) and the adhesion molecule PECAM1 (top panels).
The panels at the bottom show immunostaining for the same markers but omitting the primary
antibody for NRP1 and CDH5. The panels on the right show the green channels as inverted black
and white. Arrowheads indicate examples of endothelial junction sites enriched for NRP1 in capillary
and venules (top panels) and similar sites in the no primary control (bottom panels). Bar, 50 µm.
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8. NRP1 and Its Ligands in Vascular Permeability

Since NRP1 is able to interact with multiple ligands and co-receptors, NRP1 can
promote a wide range of functions, including the promotion of vascular permeability.

8.1. VEGFA Signaling in Vascular Permeability

While VEGFA is best known as an angiogenic growth factor, it was originally described
as a vascular permeability factor because it disrupts endothelial barrier function and
thereby increases vascular leakage and interstitial pressure [76]. Most studies on the
underlying mechanisms of VEGFA-induced vascular hyperpermeability have focused on
VEGFA165 alone, or VEGFA164 if in mouse, since it is the most abundant and the most
pathological VEGFA isoform [77]. Yet, all VEGFA isoforms have been shown to induce
vascular hyperpermeability [45,48,78–80].

The tyrosine kinase receptor VEGFR2 has been implicated as the main VEGFA receptor
for promoting endothelial hyperpermeability signaling in various organs, including the
lung, skin and brain [12,81–85]. The role of the other tyrosine kinase receptor, VEGFR1,
in promoting VEGFA-induced permeability remains unclear. Using the Miles assay as an
in vivo technique to study vascular hyperpermeability through the proxy measurement
of vascular leakage [45,86], two separate studies have shown seemingly contradicting re-
sults. On the one hand, loss of VEGFR1 appears to enhance VEGFA-induced permeability,
suggesting the receptor mainly functions as a decoy [87], as widely accepted during devel-
opmental angiogenesis [88], whilst on the other hand targeting VEGFR1 kinase domain
reduces vascular leak in response to VEGFA [89]. Interestingly, uneven apicobasal distribu-
tion of VEGFR1 and VEGFR2 in some endothelia, such as in the central nervous system,
results in polarized signaling responses to VEGFA, with abluminal VEGFR2 mediating
permeability signals while VEGFR1 leads to cytoprotection [84], suggesting that VEGFR2
is more likely to act as the main VEGFA receptor in vascular permeability.

In response to VEGFA, VEGFR2 undergoes dimerization and autophosphorylation
at several sites, including the tyrosine (Y) 949 residue (Y951 in human) that is essential to
transduce VEGFA signals into increased vascular leakage via sequential phosphorylation
of cytoplasmic SRC family kinases (SFKs) and junctional VE-cadherin [85]. Within the
SFK family, only SRC (also known as c-Src) and YES1 kinases have been implicated in
promoting VEGFA-induced permeability signaling in vivo [90,91], even though recent
findings suggest that loss of SRC does not affect endothelial cell-cell adhesion, which is
required for vascular integrity maintenance [92]. Instead, the closely related FYN [90] and
LYN [93] have been shown to be dispensable for promoting permeability in vitro, with LYN
even being implicated in preventing vascular permeability. Future in vivo work deploying
cell type-specific null mutations for SRC and YES1 in mice will allow the precise function
and relative importance of these two SFKs in VEGFA-induced permeability to be defined.

In order to activate SFKs, the VEGFR2 Y949 phosphosite has been shown to recruit
an adaptor molecule, T cell-specific adaptor (TSAd, also known as SH2D2A), which can
directly interact with SFKs to translate VEGFA permeability signals [83]. Our recently
published work has shown that VEGFA165-SFK activation is additionally regulated by
the ABL kinases, ABL1 and ABL2 (also known as ARG). Specifically, VEGFA stimulation
activates ABL1 and ABL2 in human ECs in vitro [94] and ABL kinase inhibition or depletion
is sufficient to impair the VEGFA165-stimulated activation of SFKs in cultured primary
human endothelial cells (HDMECs) [45]. Moreover, ABL kinase activation is essential for
VEGFA-induced vascular permeability in the Miles assay [95,96].

Following a distinct VEGFR2-dependent pathway, disassembly of adherens junctions
in response to VEGFA can also occur via phosphorylation of AKT1 and subsequent ac-
tivation of endothelial nitric oxide synthase (eNOS), whereby NO production induces
S-nitrosylation of β-catenin that will cause its dissociation from VE-cadherin [97,98]. Other
intracellular mediators involved in translating VEGFA permeability signals include Rho
GTPases, actin cytoskeleton, focal adhesion kinase (FAK) and cell-matrix adhesion as
recently reviewed [9].
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8.2. NRP1 Role in VEGFA Permeability Signaling

Since it is widely accepted that VEGFA121 does not signal through NRP1 due to the
isoform’s low affinity for this receptor, several reports in the last two decades focused on
the role of NRP1 in vascular hyperpermeability induced by VEGFA165. Evidence to sup-
port a role for NRP1 in VEGFA165-induced vascular hyperpermeability was obtained by
genetic studies in which mice lacking endothelial NRP1 expression [45,99] showed reduced
intradermal leakage in response to VEGFA164 in the Miles assay. Moreover, a peptide
blocking VEGFA164 binding to NRP1 inhibits serum albumin leak in a mouse model of
diabetic retinal injury [100], and function-blocking antibodies for NRP1 suppress intrader-
mal vascular leak induced by VEGFA164 injection [101], as well as VEGFA164-induced
pulmonary vascular leak [102]. In contrast, other studies argued against an important
role for NRP1 in VEGFA-induced vascular permeability, with one study showing that an
antibody blocking VEGFA164 binding to NRP1 impaired corneal neovascularization, but
not VEGFA164-induced intradermal vascular permeability in mice [103], and another study
finding that NRP1 deletion does not impair VEGFA164-induced permeability of retinal
vasculature [104]. To conclusively resolve these controversies we recently took advantage
of a comprehensive range of mouse mutants to demonstrate an essential contribution of
NRP1, which is dependent on its VEGFA164-binding pocket [45,99]. These findings are
compatible with a model in which VEGFA164 binding to NRP1 induces complex formation
between NRP1 and VEGFR2, whereby VEGFR2 depends on NRP1 to evoke a maximal
permeability response to VEGFA164 through ABL-mediated SFK activation [45]. NRP1
closely related family member, NRP2, is instead unlikely to be involved in VEGFA-induced
vascular hyperpermeability, as VEGFA165 has a 50-fold lower affinity for NRP2 compared
to NRP1 [58], even though direct experimental evidence would be required to prove it.

Recently, we demonstrated that mice lacking the NRP1 cytoplasmic domain displayed
less leakage when stimulated with VEGFA164 in the Miles assay [45]; an unexpected result
as the cytoplasmic tail of NRP1 lacks kinase activity and does not participate in NRP1
functions during both developmental and pathological angiogenesis [53,105]. Moreover,
the cytoplasmic tail of NRP1 promotes the VEGFA-dependent activation of ABL kinases
and SFKs [45], which are both essential for translating VEGFA permeability signals (see
above) (Figure 3B). NRP1 cytoplasmic domain can therefore discriminate between NRP1
angiogenesis and permeability functions. The only known intracellular interactor of NRP1
is GIPC1 that, upon complex formation of VEGFA, VEGFR2 and NRP1, is recruited to
the cytoplasmic tail of NRP1 to traffic the receptor complex into signaling endosomes
to promote arteriogenesis [53]. However, mice that lack GIPC1 display normal vascular
leakage in response to VEGFA164 [45]. Hence, permeability and arteriogenic VEGFA
signaling both rely on NRP1 cytoplasmic domain but can be distinguished by GIPC1
dispensability for VEGFA-induced vascular leakage. Unfortunately, the identity of the
NRP1 cytoplasmic domain-binding partner that promotes hyperpermeability remains so
far unknown. Further work is therefore still necessary to shed light on a mechanism
that, if targeted, may be a useful therapeutic strategy in neovascular disease to reduce
VEGFA165-induced edema without compromising vessel growth.

To recapitulate, Figure 3A shows a summary of the molecular mediators involved in
VEGFA-induced permeability signaling and their relative expression pattern in published
transcriptomic data from cultured HDMECs [106,107], which are widely used to study
endothelial barrier function in vitro [8,108].
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Figure 3. (A) Summary of the molecular mediators involved in VEGFA-induced permeability signal-
ing and their relative expression pattern in published transcriptomic data from cultured HDMECs.
The GEO identification number for two different microarray studies are indicated on top of the
graphs. CDH5 expression is used as a positive control whilst expression of the myeloid-specific
(ITGAM) and neuronal-specific (RBFOX3) genes are shown as negative controls. (B) Current working
models for the early signaling events mediated by NRP1 to transduce vascular permeability signals
from different ligands. While the intracellular targets of VEGFA165, SEMA3A and ANGPTL4 signal-
ing convey to the destabilization of EC-EC junction via different pathways to promote paracellular
permeability, the permeability route induced by the CendR peptide stimulation of NRP1 has not
been definitively explored yet (see text). NRP1 cytoplasmic domain is shown in transparent mode in
the SEMA3A pathway because, on the contrary of VEGFA165 and CendR, SEMA3A permeability
signaling does not require it, while for ANGPTL4 is not yet known. Even though, each ligand and
receptor are known to mostly act as homodimers, for simplicity reasons we represented them as
monomers. Created with BioRender (https://biorender.com/, accessed on 19 April 2021).
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8.3. C-End Rule Peptides

Like VEGF ligands, most of the known natural proteins or artificially generated
peptides with NRP1-binding activity bind through a carboxy (C)-terminal R/KXXR/K
minimal sequence motif (X stands for any amino acid); this requirement is called the
C-end rule (CendR [101]). All the peptides sharing the same sequence motif bind to the
ligand-binding pocket domain in the b1/b2 domains of NRP1 [34,109]. In a combination
of both in vitro and in vivo assays, Roth and colleagues recently showed that a tetrameric
CendR peptide induces NRP1 accumulation at endothelial cell-cell contacts and vascular
leakage [48]. Even though this process is regulated by the NRP1 cytoplasmic domain, the
signaling pathway is distinct from the one mediated by VEGFA165, since it does not include
activation of VEGFR2, AKT1, p38 (MAPK14), ERK1/2 (MAPK3/1) or FAK (PTK2) [48].
In fact, CendR peptides bind NRP1 to induce vascular permeability independently of
VEGFR2 activation [48] (Figure 3B). In agreement with different pathways triggered by
CendR peptides versus VEGFA, a previous study has demonstrated that GIPC1 interaction
with NRP1 is required for CendR peptide-mediated endocytosis [110], and might similarly
be involved in CendR peptide-mediated permeability. Moreover, the authors further
suggest that CendR peptide internalization leads to the formation of VVOs [110]. It is
therefore possible that CendR peptide-mediated vascular leakage could result from a
transcellular route.

8.4. SEMA3A

In addition to binding VEGFs, NRPs are co-receptors for members of the semaphorin
family. In particular, on top of its original role in axonal guidance, SEMA3A has been widely
reported to affect endothelial behavior, including the regulation of vascular barrier, with
NRP1 being a key player in the regulation of this pathway. Thus, SEMA3A induces vascular
hyperpermeability in a NRP1-dependent mechanism in the mouse Miles assay [45,99] and
SEMA3A association with NRP1 induces the loss of the blood-brain [111] or blood-retinal
barrier integrity [104].

The VEGFA and SEMA3A permeability pathways have been proposed to diverge,
despite their shared NRP1 dependence. The difference between these two pathways
involves ligand binding to different extracellular domains of NRP1. Indeed, crystallo-
graphic evidence revealed that VEGFA165 and SEMA3A do not directly compete for
NRP1, but rather can simultaneously bind to NRP1 at distinct, nonoverlapping sites [112]
(Figure 3B). The NRP1 cytoplasmic domain is required for VEGFA-induced SFK activation
and vascular leakage while both SFKs and the cytoplasmic tail of NRP1 are dispensable
for SEMA3A-induced vascular barrier disruption [45,99]. Moreover, SEMA3A-induced
vascular permeability has been shown to require the PLXNA1 transducing receptor to
destabilize EC-EC junctions integrity through VE-cadherin serine phosphorylation and
internalization [113] (Figure 3B). Mechanistically, stimulation with SEMA3A transiently
disrupts the serine/threonine phosphatase PP2A interaction with VE-cadherin, thereby
allowing VE-cadherin phosphorylation [113] (Figure 3B).

In complete antithesis with the literature reviewed above, one study reported that
SEMA3A can also induce permeability signals by acting via NRP2 and VEGFR1, indepen-
dently of NRP1, in cultured brain endothelial cells [114]. Even though NRP2 has been
shown to bind SEMA3A also in cellular contexts other than ECs [65], among semaphorins,
NRP2 is well known to bind preferentially SEMA3F [66]. Contrarily to SEMA3A, SEMA3F
inhibited VEGFA-induced vascular permeability in the Miles assays in mice and, at equal
doses, SEMA3F protein was as effective as bevacizumab, a VEGFA-neutralizing antibody,
in blocking vascular permeability [115]. Since mice lacking Nrp2 show increased vascular
permeability in inflamed ears, the authors suggest that SEMA3F inhibition of vascular
permeability might be mediated by its co-receptor NRP2 [115]. Further work will there-
fore be required to understand the relative significance of NRP1- and NRP2-dependent
permeability signals driven by SEMA3A and SEMA3F in ECs.
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8.5. ANGPTL4

The expression of ANGPTL4, a HIF1-regulated gene product, is increased in the
eyes of diabetic mice and patients with DME. ANGPTL4 is a multifunctional circulating
protein that undergoes proteolytic processing by membrane proprotein convertases upon
secretion. The resulting C-terminal domain (cANGPTL4) appears to have an important role
in vascular hyperpermeability [116–120]. However, cANGPTL4 is not able to bind TIE1
or TIE2 (TEK) receptors, which are the cognate receptors for other related angiopoietins,
ANGPT1 and ANGPT2 [121]. ANGPTL4 was therefore considered an orphan ligand
until a recent study demonstrated that cANGPTL4 is able to bind NRP1 and also NRP2
with similar affinities to VEGFA165. In particular, cANGPTL4 can form a complex with
both NRP1 and NRP2 to promote vascular permeability in vivo via RHOA activation [47]
(Figure 3B). Interestingly, this study also showed that VEGFR2 is not required for ANGPTL4
promotion of EC permeability [47]. Yet, the exact signaling pathway activated by this ligand
in ECs still remains to be elucidated, including the mechanism of cANGPTL4 binding to
NRP1, considering that its C-terminus does not follow the C-end rule (see above) and any
possible involvement of the NRP1 cytoplasmic domain.

9. NRP1 Regulation of Vascular Permeability in Disease

A non-physiological increase in vascular permeability is a common denominator of
several diseases. However, since the role of NRP1 in pathological vascular permeability
has been mainly studied in preclinical models of neovascular eye diseases and cancer, we
will now focus on NRP1 regulation of vascular permeability in these two sets of diseases.

9.1. Eye Diseases

The aberrant expression of proangiogenic factors such as VEGFA and other vasoactive
mediators can lead to the deterioration of the blood-retinal barrier culminating in the
accumulation of interstitial fluid in the macula, which can lead to macular edema, the
major cause of severe vision loss in the Western world working population [122]. Diabetes,
and more precisely diabetic retinopathy, is a common cause of macular edema, resulting in
DME. Different studies have shown that injection of soluble NRP1 is able to reduce retinal
vascular leakage in diabetic animals by sequestering either both VEGFA and ANGPTL4
or SEMA3A [47,104]. Interestingly, these different NRP1 ligands are involved in different
stages of the DME pathogenesis. For example, SEMA3A expression is robustly induced
in the early hyperglycemic stage of diabetes in humans and in a mouse model of type 1
diabetes induced by streptozotocin treatment, raising the possibility that it could represent
a valid therapeutic target to stem excessive vascular permeability in DME [104]. Moreover,
SEMA3A elevates vascular permeability and contributes to tissue damage also in models
of brain ischemia [114].

Edema in DME and AMD can be significantly reduced with anti-VEGFA thera-
pies [123]; however, recent studies in the mouse suggest that global VEGFA blockade
in retinal diseases might have detrimental side effects in the long-term. In particular,
VEGFA is a survival factor for retinal neurons [124,125], and reducing VEGFA levels in
the mouse eye compromises the maintenance of the choroidal vasculature that is essential
for photoreceptor health [124,126]. Accordingly, NRP1-based therapeutics might provide
an alternative approach for treating vascular leakage in eye disease when anti-VEGFA
treatment is not suitable or effective. Moreover, an alternative strategy to prevent ocular
vessel leakage may involve targeting both VEGFA and SEMA3A signaling at the same
time. Such an approach would involve either 2 separate drugs each specific for one of the
2 pathways or a single molecule able to block both ligand-binding domains in NRP1 or to
inhibit a common downstream target.

Instead of targeting the extracellular binding of NRP1 ligands, targeting the NRP1 cy-
toplasmic domain-mediated signaling pathway was recently suggested. Thus, in a mouse
model of choroidal neovascularisation with pathological vascular changes akin to those
observed in exudative AMD [125], mice lacking the NRP1 cytoplasmic domain had sig-
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nificantly reduced ocular vascular leakage, while neovascularization was unchanged [45].
A therapeutic strategy targeting the permeability signaling controlled by NRP1 cytoplas-
mic domain may be particularly useful to selectively treat VEGFA165-induced vascular
leak without compromising other VEGFA functions; especially when VEGFA-dependent
cytoprotection or the formation of new blood vessels are required, for example in ischemic
tissues and not only in the eye.

9.2. Cancer

Tumor vasculature usually displays hierarchical disorganization, increased tortuosity,
poor perfusion and instability, as well as increased vascular leakage. Since anti-angiogenic
strategies have shown some beneficial effects in cancer treatment but to a minor extent
than what was expected from earlier preclinical studies, a current trend in the field is to
focus instead on the normalization of the tumor vessels, in particular to attenuate their
exaggerated permeability. Therapies aimed at targeting NRP1-dependent permeability
signals could therefore find an application for this purpose.

Interestingly, Treps and colleagues reported that extracellular vesicles released by
glioblastoma cancer cells transport SEMA3A, which enhances vascular permeability through
NRP1 independently of VEGFA [127]. Despite its known permeability-inducing prop-
erty, SEMA3A has also been proposed as a normalizing agent for anti-tumoral treat-
ment [128,129]. To this aim, the authors engineered a mutant version of SEMA3A that
cannot interact with NRP1 to prevent vascular permeability, while preserving other desired
properties of SEMA3A, such as the repulsion of migrating ECs that promotes blood vessel
normalization in vivo and ultimately inhibits tumor growth and dissemination to distant
organs [130].

Opposite to eye diseases, whereby vascular permeability is considered a valid ther-
apeutic target only when inhibited, a few teams have proposed to exploit NRP1 pro-
permeability properties to promote penetration of co-injected anti-cancer drugs and de-
velop more efficient delivery systems [131,132]. Thus, studies on the permeability-inducing
properties of CendR peptides are of fundamental translational importance as such peptides
can be exploited to enhance tumor penetration of chemotherapeutic drugs and conse-
quently their efficacy while reducing their side effects [133]. CendR properties have also
been combined to those of RGD peptides to generate a tumor-penetrating peptide, iRGD,
that homes to tumors by initially binding to αv integrins that are specifically expressed on
the endothelium of tumor vessels. iRGD is then proteolytically cleaved in the tumor and,
despite losing much of its integrin-binding activity, the truncated peptide gains affinity
for NRP1 because of the C-terminal exposure of a CendR motif [134,135]. Moreover, the
peptides can be administered either in combination or conjugated to anti-cancer molecules
or paramagnetic nanoparticles usable in magnetic resonance imaging to improve tumor
homing and penetration [134–138]. These strategies are considered promising applications
especially in glioblastoma to enhance the penetration of the blood-brain barrier [139,140].

10. Conclusions/Perspectives

NRP1 ability of binding different types of extracellular ligands as well as its involve-
ment in multiple signaling pathways makes it a fascinating pharmacological target, whose
blockade or exploitation may be beneficial in diseases associated with vascular leakage
or that require improved tissue penetration, respectively. While the existing data already
provide extensive insights, further studies are clearly needed to better define the precise
effector mechanisms that enable NRP1 to convey disparate signals into the induction of
vascular permeability.

The interest in NRP1 targeting further increased following the COVID-19 outbreak.
In fact, NRP1 has very recently been shown to serve as an entry factor and potentiate
SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro [141]. By modulating SARS-CoV-2
infectivity as well as the adhesion and permeability of ECs, NRP1 could very well play a
role in severe COVID-19 associated with vascular pathologies [142].
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Abbreviations

VEGF vascular endothelial growth factor
NRP neuropilin
EC endothelial cell
DME diabetic macular edema
AMD age-related macular degeneration
VPF vascular permeability factor
JAM junction-associated molecule
ZO zona occludens
VE vascular endothelial
CDH5 cadherin 5
VVO vesiculo-vacuolar organelle
PLVAP plasmalemma vesicle associated protein
GIPC1 GAIP-interacting protein C terminus, member 1
VEGFR vascular endothelial growth factor receptor
FLT1 Fms Related Receptor Tyrosine Kinase 1
FLK1 kinase Insert Domain Receptor 1
PLGF2 placental growth factor 2
PGF placental growth factor 2
HGF hepatocyte growth factor
FGF fibroblast growth factor
ANGPTL4 angiopoïetine like 4
SEMA3 semaphorin 3
TGF-β transforming growth factor beta
PECAM1 platelet endothelial cell adhesion molecule 1
SFK Src family of protein tyrosine kinases
SRC SRC Proto-Oncogene, Non-Receptor Tyrosine Kinase
YES1 YES Proto-Oncogene 1, Src Family Tyrosine Kinase
FYN FYN Proto-Oncogene, Src Family Tyrosine Kinase
LYN LYN Proto-Oncogene, Src Family Tyrosine Kinase
HDMEC human dermal microvascular EC
MLEC mouse lung EC
MBEC mouse brain EC
TSAd T cell-specific adaptor
ABL Abelson tyrosine kinase
AKT1 RAC-alpha serine/threonine-protein kinase
NOS3, eNOS nitric Oxyde Synthase 3, endothelial NOS
FAK focal adhesion kinase
KDR kinase Insert Domain Receptor
ITGAM integrin Subunit Alpha M
RBFOX3 RNA Binding Fox-1 Homolog 3
CendR C-end rule
MAPK mitogen-activated protein kinases
ERK extracellular signal-regulated kinases
PLXNA1 plexin A1
PP2A protein phosphatase 2
HIF1 hypoxia-inducible factor 1
COVID-19 coronavirus disease of 2019
SARS-CoV-2 severe acute respiratory syndrome coronavirus-2
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