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Abstract: Although the incidence of central nervous system (CNS) cancers is not high, it significantly
reduces a patient’s quality of life and results in high mortality rates. A low incidence also means a
low number of cases, which in turn means a low amount of information. To compensate, researchers
have tried to increase the amount of information available from a single test using high-throughput
technologies. This approach, referred to as single-omics analysis, has only been partially successful
as one type of data may not be able to appropriately describe all the characteristics of a tumor.
It is presently unclear what type of data can describe a particular clinical situation. One way to
solve this problem is to use multi-omics data. When using many types of data, a selected data
type or a combination of them may effectively resolve a clinical question. Hence, we conducted
a comprehensive survey of papers in the field of neuro-oncology that used multi-omics data for
analysis and found that most of the papers utilized machine learning techniques. This fact shows
that it is useful to utilize machine learning techniques in multi-omics analysis. In this review, we
discuss the current status of multi-omics analysis in the field of neuro-oncology and the importance
of using machine learning techniques.

Keywords: multi-omics analysis; machine learning; neuro-oncology; glioma

1. Introduction

The global incidence rate of brain and nervous system cancers is 4.63 per 100,000 person-
years, and they account for 2% of all cancers [1]. Furthermore, it is the most common
cause of death in childhood (between 0 and 19 years). Glioblastoma multiforme (GBM), the
most malignant primary brain tumor (glioma) according to the World Health Organization
(WHO), has the worst prognosis with only 6.8% patients with a 5-year survival rate [2].
Therefore, it is imperative to understand neuro-oncology more deeply and develop effective
treatment; paradoxically, this is hindered by the relatively small number of patients [3]
and the consecutive little information that can be obtained. One possible solution is
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making an animal model; however, as there are significant differences in biometrics and
anatomy between human and animal models, information derived directly from humans
is absolutely essential [4–6]. The traditional solution to this problem has been to increase
the frequency and resolution of the test. As such, tests can be invasive for the patient,
more emphasis has been placed on increasing the resolution of the test. For example, using
computed tomography (CT) or magnetic resonance imaging (MRI) instead of radiographs
provides a more accurate picture of the tumor. Next-generation sequencing (NGS) is a
high-throughput technology that provides more information than immunostaining [7]. The
data obtained by these techniques were referred to as “omics data”. Analyzing one type
of data is sometimes referred to as single-level omics analysis [8] and has been partially
successful. The NGS-based analysis of 324 cancer-associated genes, FoundationOne, is a
good example of success [8]. However, single-level omics data analysis has a limitation
as it is unclear as to which is the appropriate data type for representing clinical features.
Assuming that a tumor is tested for drug resistance, which type of data would predict
drug resistance most accurately—DNA sequencing data of the tumor sample, the patient’s
blood test data, or MRI? The answer is, as yet, unknown. As drug resistance is the
result of a complex biological response, it is difficult to identify data types that may
significantly contribute to predict the resistance. For example, as only a subset of GBM
patients respond to immunotherapy, researchers are now seeking appropriate biomarkers
for the disease [9,10]. One solution to this problem is the use of multi-omics analysis. Even
if the appropriate data type required is unknown, the combination of one or more data
types may prove useful [11,12]. However, there remains the problem that it is impossible
for humans to find principals and make a decision because of too much information. In
single-level omics data also, data are in the form of huge matrices that have several hundred
rows (of number of patients) and tens of thousands of columns (number of features). In
multi-omics analysis, it is possible to integrate some of these matrixes to find laws. This is
a difficult problem, but one that can be solved using machine learning techniques. In the
field of machine learning, this research is called multi-view learning, where information
belonging to different layers can be integrated to find laws [13,14]. Thus, we postulate that
the combination of multi-omics analyses is crucial in neuro-oncology research wherein the
number of cases is relatively small. It is important to note that with the growing global
expectations for the medical application of artificial intelligence, many research results
on the application of machine learning and deep learning technologies to medicine have
been reported [15–24], and more than 60 AI-powered medical devices have been approved
by the US FDA [25]. Under these circumstances, it is essential to utilize machine learning
techniques appropriately in the field of neuro-oncology.

Of note, genomics [26], transcriptomics [27], or high-throughput proteomics [28], are
“–omics” approaches providing a substantial dataset of information from comprehensive
analysis of molecular substances. Regarding multi-omics analysis, from a broad perspective,
multi-omics analysis consists of three parts: input data, methods, and output data. Input
data is a starting point and uses for predicting something meaningful. Methods are analysis
methods like hierarchical clustering. Output data nearly equal results. To use culinary
analogy, input data are fresh ingredients, methods are recipes, and output data are dishes.
In this review, we focus on the main outcome and input data types of multi-omics analyses
in neuro-oncology, so we discuss ingredients and dishes in detail. Some previous review
papers have focused on the method of multi-omics analysis in oncology, but none have
focused on output and input data [11,29–32]. Although focusing on methods is important,
output and input are also important for the following reasons. First, it would be possible
to count backward from output you seek to the input required, if the right combination of
output and input data is known. Furthermore, more importantly, it is essential to extend
every concept of omics data. For example, the omics data obtained by molecular biologists
are often generated using high-throughput technologies, whereas those by radiologists are
often through medical images. No restriction should be placed on the type of data used as
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input by the researcher as every data type is produced by observing the same condition
from a different perspective.

In the first part of this review, we review a brief history of multi-omics analysis in the
field of neuro-oncology over the years; in the second, we highlight the current knowledge
on multi-omics analysis; and in the third, we discuss the future direction of research.

2. A Brief History of Multi-Omics Analysis in Neuro-Oncology
2.1. Beginning Of Neuro-Oncology Research and Treatment

The modern accounts of neurosurgery and neuro-oncology begin with Harvey Cush-
ing in the early 1930s [33,34]. In its infancy, surgical resection was the only treatment
for brain tumors until a landmark prospective randomized-controlled study on 1,3-bis(2-
chloroethyl)-1-nitrosourea (BCNU) and/or radiation therapy was carried out in patients
with anaplastic glioma in 1978 [35]. The study’s protocol was very innovative as it was the
first trial to determine whether a combination of treatment methods in anaplastic glioma
was effective or not. The integration of treatment methods, surgical resection, chemother-
apy and radiation therapy were completed for the moment in 2005, by “radiotherapy plus
concomitant and adjuvant temozolomide (TMZ) for glioblastoma” [36].

2.2. Genotyping

Previously, brain tumors could only be diagnosed by pathological analysis [37]. In
1998, Cairncross et al. discovered that the combined allelic loss of the chromosomes 1p and
19q was associated with both chemosensitivity and longer recurrence-free survival after
chemotherapy in patients with anaplastic oligodendrogliomas [38]. This was a monumen-
tal time in neuro-oncology research when genetic mutations and treatment responses were
linked for the first time. After this, many researchers began to enthusiastically search for clin-
ically meaningful gene alterations. The second breakthrough occurred in 2005. In addition
to gene mutation, epigenomic silencing of the O6-methylguanine–DNA methyltransferase
(MGMT) DNA-repair gene was related to good TMZ response in GBM patients [39]. In
2009, the third major discovery in the field occurred, that of isocitrate dehydrogenase
1 gene (IDH1) and IDH2 mutations in glioma patients [40], which showed that a single-
point mutation results in the enzymatic activity of the encoded protein and affects tumor
malignancy.

2.3. Beginning of Multi-Omics Analysis

As mentioned above, the history of treatment in the neuro-oncology field (Figure 1)
begins with the validation of the effectiveness of various treatment methods; the integration
of these methods is presently underway. The 2016 World Health Organization Classification
of the Central Nervous System (2016 CNS WHO) used molecular parameters in addition
to histology to define tumor entities probably for the first time [41], i.e., the diagnosis
made by the 2016 CNS WHO was an “integrated” diagnosis based on the phenotypic and
genotypic classification of the tumor. The paper that can be considered the beginning of
this “integration” trend was published in 2008 [42] and reported the interim results of the
Cancer Genome Atlas (TCGA) pilot project (Figure 2). It provided a network view of the
pathways that were altered in the development of GBM by using DNA copy number and
gene expression. This result was achieved by mapping the unequivocal genetic alternations
onto major pathways that have been implicated in GBM. Although this paper did not use
machine learning methods, there is no doubt that it was a landmark study in multi-omics
analysis in neuro-oncology. Also, as described later, it is worth mentioning that most
multi-omics studies in neuro-oncology field use the TCGA dataset.

This paper was the starting point for many multi-omics analysis studies in neuro-
oncology. The details of these studies are described in the next section.
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Figure 2. Expected signaling pathway changes in neuro-oncology. This result is achieved by mapping the unequivocal
genetic alternations onto major pathways that are already known to be implicated in glioblastoma. Abbreviations: EGFR,
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3. Review of Multi-Omics Analysis in the Field of Neuro-Oncology
3.1. Search Strategy

We retrieved publications by searching the PubMed database for glioma OR glioblas-
toma OR medulloblastoma OR meningioma OR schwannoma AND multi omics* OR
multiomic* (* means wild-card).

3.1.1. Eligibility Criteria

We selected relevant studies by screening their titles and abstracts, and then reviewed
the full texts. We selected papers according to the following criteria.

1. Studies that were not review articles.
2. Studies that were focused on or related to neuro-oncology.
3. Studies that used multi-omics data.

3.1.2. Categories of Papers

We categorized the selected papers according to three main outputs. (i) Pathways and
networks—papers that aimed at discovering pathways or networks that were upregulated
or downregulated in a tumor situation and included a study point to detect biomarkers; (ii)
clinical status—the representative clinical status was prognosis; and (iii) miscellaneous—
papers that did not fit into either category were defined as miscellaneous.

3.2. Overall Result

Based on the abovementioned criteria, we selected 23 papers (Table 1). The pathways
and networks category contained 12 papers, the largest number of papers, the clinical
status category contained 7 papers, and 4 papers were categorized as miscellaneous. In
terms of the dataset employed, 18 cases, i.e., two-thirds of the total papers, used the TCGA
dataset (Supplementary Table S1). The most commonly used input data type was gene
expression, which was used in 20 studies. As shown in Supplementary Table S2, the input
data styles of copy number change profiles, somatic mutation, and DNA methylation were
followed in 13, 12, and 9 studies, respectively. Metabolic profiling, histopathological images,
mRNA expression, magnetic resonance imaging (MRI), clinical data, and whole exome
sequencing (WES) were used in only one study each. Importantly, most of the papers
utilized machine learning techniques to perform regression, classification, clustering, and
dimensionality reduction. This fact shows the effectiveness of machine learning techniques
in the multimodal analysis of multilayered omics data.

Table 1. Summary of the studies short-listed for this review.

No. Year Title Dataset Input Data
Category Tumor Type Output

Category Analysis Method

1 2008

Comprehensive
genomic

characterization
defines human

glioblastoma genes
and core pathways

[42]

TCGA

Somatic
mutation, copy
number change

profiles

GBM Pathway and
network

Genomic Identification of
Significant Targets in

Cancer (GISTIC)
algorithm and Genome
Topography Scan (GTS)

utilizing polynomial
regression*

2 2013

Joint and individual
variation explained
(JIVE) for integrated
analysis of multiple

data types [43]

TCGA
Gene expression,

miRNA
expression

GBM Pathway and
network

Joint and Individual
Variation Explained (JIVE),

which is an extension of
PCA* or the SVD* that

decomposes the data into
low-rank and orthogonal

joint and individual
components

3 2015

Integrative
multi-omics module
network inference

with Lemon-Tree [44]

TCGA
Gene expression,

copy number
change profiles

GBM Pathway and
network

The module network
method, a special type of

Bayesian network*
algorithms, with

Lemon-Tree
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Table 1. Cont.

No. Year Title Dataset Input Data
Category Tumor Type Output

Category Analysis Method

4 2015

Identifying core gene
modules in

glioblastoma based on
multilayer

factor-mediated
dysfunctional

regulatory networks
through integrating
multi-dimensional
genomic data [45]

TCGA

Gene expression,
copy number

change profiles,
somatic

mutation, DNA
methylation,

miRNA
expression

GBM Pathway and
network

Core Modules Driving
Dysregulation in cancer
(CMDD) using PLSR*

5 2016

Causal mechanistic
regulatory network for

glioblastoma
deciphered using
systems genetics

network analysis [46]

TCGA

Somatic
mutation, gene

expression,
miRNA

expression

GBM Pathway and
network

Systems Genetics Network
Analysis (SYGNAL)

pipeline using cMonkey2
biclustering algorithm*

6 2016

MONGKIE: an
integrated tool for

network analysis and
visualization for

multi-omics data [47]

TCGA

Somatic
mutation, copy
number change

profiles

GBM Pathway and
network

Modular Network
Generation and

Visualization with
Knowledge Integration

Environments
(MONGKIE) using graph

clustering*

7 2017

Incorporating prior
information into

differential network
analysis using

non-paranormal
graphical models [48]

TCGA
Gene expression,

copy number
change profiles

GBM Pathway and
network

Prior
information-dependent

differential network
analysis (pDNA) using

GGM*

8 2017

A systemic analysis of
transcriptomic and
epigenomic data to
reveal regulation

patterns for complex
disease [49]

TCGA

Gene expression,
DNA

methylation,
miRNA

expression

GBM Pathway and
network

Integrative analysis
framework by

incorporating sparse
model, multivariate
analysis, elastic net

penalized regression*,
GGM*, and network

analysis

9 2018

Repression of Septin9
and Septin2

suppresses tumor
growth of human

glioblastoma cells [50]

GEO +
cell line

Gene expression,
protein

expression
GBM Pathway and

network

Multiple analyses
combining GBM

expression studies from
the GEO repository

10 2019

Integrated proteomic
and metabolomic

profiling the global
response of rat glioma

model by
temozolomide
treatment [51]

Mouse
model

(cell line)

Protein
expression,

metabolomic
profiling

GBM Pathway and
network

Ingenuity pathway
analysis

11 2019

A multi-cohort and
multi-omics

meta-analysis
framework to identify
network-based gene

signatures [52]

TCGA,
GEO,

CGGA

Gene expression,
DNA

methylation
GBM, LGG Pathway and

network

Multi-cohort and
multi-omics meta-analysis

framework using
perturbation clustering*

12 2020

Identifying cancer
driver lncRNAs

bridged by functional
effectors through

integrating
multi-omics data in
human cancers [53]

TCGA

Gene expression,
copy number

change profiles,
somatic

mutation, DNA
methylation,

miRNA
expression

GBM Pathway and
network

DriverLncNet is proposed
to integrate multi-omics
data to identify lncRNAs

as drivers of human
cancer using PLSR*
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Table 1. Cont.

No. Year Title Dataset Input Data
Category Tumor Type Output

Category Analysis Method

13 2016

Integrated multi-omics
analysis of

oligodendroglial
tumors identifies three
subgroups of 1p/19q
co-deleted gliomas

[54]

POLA

Gene expression,
DNA

methylation,
miRNA

expression

OT Clinical
status k-means clustering*

14 2018

Whole-genome
multi-omic study of
survival in patients

with glioblastoma [55]

TCGA

Gene expression,
DNA

methylation,
somatic

mutation, copy
number change

profiles

GBM Clinical
status

Multi layered Bayesian
regression*

15 2019

Group lasso
regularized deep

learning for cancer
prognosis from
multi-omics and

clinical features [56]

TCGA

Gene expression,
copy number

change profiles,
somatic

mutation,
protein

expression

GBM Clinical
status

Group lasso regularized
deep learning*

16 2019

A novel MKL Method
for GBM prognosis

prediction by
integrating

histopathological
image and multi-omics

data [57]

TCGA

Histopathological
images, gene

expression, copy
number change
profiles, mRNA

expression

GBM Clinical
status Multiple kernel learning*

17 2020

Integration of
radiomic and

multi-omic analyses
predicts survival of

newly diagnosed
IDH1 wild-type

glioblastoma [58]

TCIA,
TCGA,
MUHC

MRI, gene
expression,

somatic
mutation,

clinical, protein
expression

IDH1
wild-type

GBM
Clinical
status Random forest*

18 2020

Multi-dimensional
omics characterization

in glioblastoma
identifies the

purity-associated
pattern and prognostic

gene signatures [59]

TCGA,
GEO,

CGGA

Gene expression,
copy number

change profiles,
somatic

mutation, DNA
methylation

GBM Clinical
status LASSO*

19 2020

Integrating genomic
data with

transcriptomic data for
improved survival
prediction for adult
diffuse glioma [60]

TCGA

Gene expression,
DNA

methylation,
somatic

mutation, copy
number change

profiles

GBM, LGG Clinical
status Random forest*

20 2017

Multi-omics analysis
of primary

glioblastoma cell lines
shows recapitulation
of pivotal molecular
features of parental

tumors [61]

Private
dataset

Gene expression,
somatic

mutation, copy
number change

profiles

GBM Miscellaneous
Global Parameters Hidden
Markov Model (GPHMM)

algorithm*

21 2018

A mechanistic
pan-cancer pathway
model informed by
multi-omics data

interprets stochastic
cell fate responses to
drugs and mitogens

[62]

Cell line

Gene expression,
copy number

change profiles,
protein

expression

GBM Miscellaneous LASSO* and support
vector machine*
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Table 1. Cont.

No. Year Title Dataset Input Data
Category Tumor Type Output

Category Analysis Method

22 2019

Reduced neoantigen
expression revealed by

longitudinal
multiomics as a

possible immune
evasion mechanism in

glioma [63]

Private
dataset

Gene expression,
WES GBM, LGG Miscellaneous NetMHCpan using

artificial neural networks*

23 2020

Computational
identification and
characterization of
glioma candidate

biomarkers through
multi-omics

integrative profiling
[64]

GTEx,
TCGA,
CGGA,
GEO,

Ivy GAP

Gene expression,
DNA

methylation,
somatic

mutation,
protein

expression

Glioma Miscellaneous Computational integrative
multi-omics data analysis

Abbreviations: ML, Machine Learning; TCGA, The Cancer Genome Atlas; TCIA, The Cancer Imaging Archive; GEO, Gene Expression
Omnibus; GTEx, Genotype-Tissue Expression; CGGA, Chinese Glioma Genome Atlas; LGG, Lower-Grade Glioma; GBM, Glioblastoma
multiforme; POLA, Prise en charge des OLigodendrogliomes Anaplasiques; OT, Oligodendrogial Tumors; MUHC, McGill University
Health Centre; Ivy GAP, Ivy Glioblastoma Atlas Project; PCA, Principle Components Analysis; SVD, Singular Value Decomposition; PLSR,
Partial Least Squares Regression; GGM, Gaussian Graphical Model. *: Machine learning method.

3.3. Short Reviews Categorized by Main Outputs
3.3.1. Pathways and Networks

As the paper that was the starting point of multi-omics analysis in neuro-oncology
suggested the involvement of new pathways and networks in the disease, it makes sense
that the pathway and network analysis category garnered the largest number of papers [42].

Lock et al., using the matrix decompression technique, developed a data decomposing
method called joint and individual variation explained (JIVE). Using JIVE, the data were
separated into a sum of three terms: a low-rank approximation capturing joint structure
between data types, low-rank approximations capturing structure individual to each data
type, and residual noise. These predicted the network of gene-miRNA interactions using
the loadings of joint components [43].

Graph theory is often used to discover meaningful pathways and networks [45,48,52] and
originated from tools used for analyzing topological problems. In 1736, Swiss mathemati-
cian Leonhard Euler introduced the basic idea of graphs, known as the Seven Bridges of
Königsberg. Graph theory has been applied in various fields, such as social and information
systems, physics, chemistry, and biology as it is useful for representing relationships. A
graph consists of nodes (also called vertices or points) and edges (also called links or lines)
that connect nodes. When graph theory is applied to biological fields, proteins or genes
are often nodes. Zhang et al. proposed a new network analysis method called the prior
information-dependent differential network analysis (pDNA), which was based on differ-
ential network analysis [48]. The analysis takes into account the following information: (i)
a differential edge less likely to exist between two genes that do not participate together
in the same pathway; (ii) changes in the networks driven by certain regulator genes that
are perturbed across different cellular states; and (iii) the differential networks estimated
from multi-view gene expression data that likely share common structures. Zhang et al.
applied pDNA by using TCGA (gene expression and copy number change profiles) data
to identify the differential networks between the proneural and mesenchymal subtypes
of GBM. The results show that four genes were considered as a hub, large degree nodes.
PDGFRA and CDK4, which are often amplified in proneural-type GBM, were included
in the four genes. The other example was shown by Shafi et al. (Figure 3). They created
a subnetwork that consisted of methylation-driven genes, differentially expressed genes,
and known interaction (protein–protein interactions) using a network propagation algo-
rithm [52]. There are several studies that have used original datasets, not TCGA, to provide
important results [50,51]. Li et al. identified protein and metabolic markers that correlate to



Biomolecules 2021, 11, 565 10 of 17

TMZ and discovered a protein-metabolic regulatory network using a mouse GBM model by
integrating proteomics and metabolomics. Multi-omics analysis tends to focus on complex
mathematical models, but it is important to combine the results of biological experiments
and conduct new ones if needed, with mathematical models, as in this study.
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3.3.2. Clinical Status

Clinical status is often the output of multi-omics analysis. Among clinical status, a
prognosis is the most frequent output of multi-omics analysis [44,55–59]. The input data are
also mostly derived from TCGA. Two unique studies are presented here (Figure 4). First,
Zhang et al. performed an integrated analysis of histopathological images by combining
multi-omics data (gene expression, copy number, and mRNA expression data) and clinical
data [57]. They handled histopathological images as data, not as a picture, using the
open-source software CellProfiler. By doing so, histopathological images could be used
as the input data for the machine learning model, similar to that from multi-omics data.
Interestingly, they described that combining multi-omics features with histopathological
features could predict prognosis more accurately than by using only histopathological
features. Chaddad et al. reported a study based on a similar perspective [58]. They used
features from MRI, instead of histopathological images, as input data in a machine learning
model. They reported that the combination using features from MRI and multi-omics
data (genomics, transcriptomics, and proteomics/IHC) marked the maximal area under
the curve.
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Xiong et al. demonstrated that the average tumor purity that was calculated using
multi-omics data by multiple methods correlated with prognosis [59]. This study differs
from others in that it indirectly predicts prognosis. Kamoun et al. focused on oligo-
dendroglial tumors [54], not GBM, using an original dataset—the Prise en charge des
oligodendrogliomes anaplasiques (POLA) cohort. First, they proved the validity of their
integrative clustering techniques, named the cluster of clusters, by showing a strong corre-
lation between the classification result based on their techniques and 1p/19q co-deletion
and IDH mutation status. Next, they showed three subgroups within 1p/19q co-deleted
tumors, that were associated with the specific expression patterns of nervous cell types:
oligodendrocyte, oligodendrocyte precursor cell (OPC), and neuronal lineage. Last, they
reported that the OPC-like group is associated with more aggressive clinical and molecular
patterns, including MYC genomic gain, MAX genomic loss, MYC hypomethylation, and
microRNA-34b/c downregulation.

Biomolecules 2021, 11, x FOR PEER REVIEW 11 of 17 
 

tumors, that were associated with the specific expression patterns of nervous cell types: 
oligodendrocyte, oligodendrocyte precursor cell (OPC), and neuronal lineage. Last, they 
reported that the OPC-like group is associated with more aggressive clinical and molecu-
lar patterns, including MYC genomic gain, MAX genomic loss, MYC hypomethylation, 
and microRNA-34b/c downregulation. 

Figure 4. The summary of References [53] and [54]. Chaddad et al. treated MRI (A) and Zhang et al. treated histopatho-
logical images (B) as data similar to a high-throughput one rather than as merely pictures to obtain clinical data. 

  

B 

A 

Figure 4. The summary of References [53,54]. Chaddad et al. treated MRI (A) and Zhang et al. treated histopathological
images (B) as data similar to a high-throughput one rather than as merely pictures to obtain clinical data.

3.3.3. Miscellaneous

The studies categorized in miscellaneous are unique and interesting [61–64]. A method
has been established to create cancer cell lines and animal models from GBM surgical
specimens [65,66]. Rosenberg et al. measured and compared the molecular profiles of a
set of parental tumors and paired GBM patient-derived cell lines (GBM-PDCLs) by using
multi-omics analysis [61]. From their report, overall, the molecular profiles of GBM-PDCLs
and paired-parental tumors resemble each other; however, some driver aberrations are lost
or gained in the passage from tumor to GBM-PDCLs.

Cancer is a diverse disease, and two people with the same cancer often respond
differently to the same stimuli. To answer this question, Bouhaddou et al. tried to build
a mechanistic mathematical model that describes the interactions between commonly
mutated pan-cancer signaling pathways [62]. They arranged the model to obtain multi-
omics data from the MCF10A cell line, a non-transformed mammalian cell line, and trained
the model using existing reports and new experimental results to refine biochemical
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parameters and phenotypic predictions. They reported that their tailored model for glioma
could predict an increase in the sensitivity of glioma cell line death to AKT inhibition.

In recent years, neoantigens have received a lot of attention due to their possible role
in prognosis and immune therapeutic effect. Nejo et al. evaluated neoantigen expression
between primary and recurrent paired 25 glioma samples by using multi-omics data [63].

A study aimed to identify glioma candidate biomarkers using multi-omics analysis
was conducted by Liu et al. [64]. The study was characterized by the sheer volume of
data and five public datasets. First, these scientists searched for brain-specific biomarkers.
Then, they narrowed their search down to those detectable in the cerebrospinal fluid and,
finally, they further narrowed their search down to the biomarkers specific to glioma. As
a result, they reported that Protein kinase C Gamma (PRKCG) has great potential as a
glioma-specific biomarker.

4. Discussion and Future Directions

In this review article, we describe the multi-omics analysis in the field of neuro-
oncology, focusing on the main output and input data. Although the research on neuro-
oncology is increasing, only 23 papers were eligible for our review criteria. The diversity
of research is not high and the field is still in its infancy. However, we believe multi-
omics analysis will play a central role in precision medicine era for the following reasons.
The most important and innovative point of multi-omics analysis is its ability to handle
different types of information as parallel and integrate it for human use. In fact, multi-omics
analysis is something that human doctors or researchers have been doing unconsciously.
Assume that a human doctor predicts the prognosis of a cancer patient. In this case, a
skilled doctor would consider not only tumor type and driver gene mutation but also
Karnofsky Performance Status, the patient’s medical image, and blood tests, as well as sex,
age and familial background. This is because he knows empirically that he can predict
more accurately if he takes all of these into account. However, this human-dependent
multi-omics analysis has a limitation in that there is no reproducibility and explicability.

Nonetheless, as we have reviewed above, the combination of multi-omics analysis and
machine learning could solve this problem. Importantly, judging from the fact that machine
learning techniques were utilized in most of the papers presented in this review paper, it
can be concluded that machine learning is a useful technique in multi-omics analysis. For
this reason, we believe that the following properties of machine learning techniques, which
we have previously introduced [67], are important.

1. Multimodal learning: Different types of medical data (genomic, epigenomic data, etc.)
can be integrated and treated as input.

2. Multi-task learning: Multiple different tasks can be learned simultaneously by sharing
part of the model.

3. Representation learning and semi-supervised learning: Acquiring a representation of
the data from a large amount of unlabeled data, which can then be learned from a
small amount of labeled data.

4. Automatic acquisition of hierarchical features: Higher-order correlations of inputs
can be captured.

What is also expected to become important in the future is research that deals with
and integrates information that has not historically been considered analytical data, such as
radiological and histopathological images [57,58]. In this review, we have focused on papers
on multimodal analysis of omics information such as multilayered genomic information.
Recently, radiomics and radiogenomics, which integrate radiological images with clinical
information and omics data, have been attracting attention, and successful examples have
been published in the field of neuro-oncology [68,69]. There are also some excellent reviews
published in the field of radiomics and radiogenomics, which you may be interested in
reading [70–72].

One of the most important findings from our survey of various papers is the attempt
to reproduce human-dependent multi-omics analysis with machine learning models. All
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data associated with disease are obtained by observing the disease from different angles.
Fragments of the disease have been integrated by humans so far, but they are expected to
be integrated by machine learning models in the future (Figure 5). Multi-omics analysis
will allow us to understand the nature of the disease more deeply and has the potential to
change all medical fields such as drug discovery and therapeutic effects, predict prognosis,
and discover the best treatment for each patient [9,11,14,29–32,67,73–82]. In addition, as
the flow of information is bidirectional, it may be possible to reduce the noise of individual
data with integrated information. It has been suggested that integrated data may be more
robust than individual data. Thus, multi-omics analysis and machine-learning techniques
are just beginning to open the door to a new era in neuro-oncology.
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