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Abstract: A Disintegrin and Metalloproteinase with Thrombospondin motifs 19 (ADAMTS19) has
been reported to participate in the pathogenesis of solid cancers. However, its role in gastric cancer
(GC) remains undocumented. Using immunohistochemistry (IHC) staining and quantitative real-
time polymerase chain reaction (qRT-PCR) on GC tissues and adjacent normal tissues, we found
that ADAMTS19 was downregulated in GC tissues (IHC: p < 0.001; qRT-PCR: p = 0.017). Further
investigation revealed that ADAMTS19 correlated with distant metastasis (p = 0.008) and perineural
invasion (p = 0.018) and that patients with low ADAMTS19 had worse overall survival (p = 0.021).
Gain- and loss-of-function assays showed that ADAMTS19 suppressed cell migration and invasion
in vitro. Using bioinformatics analysis and co-immunoprecipitation, immunofluorescence, and dual-
luciferase reporter gene assays, we confirmed that ADAMTS19 binds with cytoplasm P65, decreasing
the nucleus phosphorylation of P65, a crucial transcription factor in the nuclear factor kappa-B
(NF-κB) pathway, thereby downregulating S100 calcium-binding protein A16 (S100A16) expression.
S100A16 acted as the downstream of ADAMTS19, reversing the suppression of cell migration and
invasion by ADAMTS19 in vitro. A combination of ADAMTS19 and S100A16 expression provided
the optimal prognostic indicator for GC. Patients with ADAMTS19high-S100A16low had better overall
survival than ADAMTS19low-S100A16high patients (p = 0.006). These results suggest that ADAMTS19
suppresses cell migration and invasion by targeting S100A16 via the NF-κB pathway and that
ADAMTS19 and S100A16 are potential metastasis and survival biomarkers for GC.

Keywords: ADAMTS19; gastric cancer; migration; invasion; S100A16; NF-κB

1. Introduction

Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading
cause of cancer-related deaths worldwide, with over 1,000,000 new gastric cancer cases
in 2018 and an estimated 783,000 related deaths [1,2]. Radical surgery and chemotherapy
remain the main treatments. Although screening for early GC has improved overall survival
rates, the prognosis of GC remains poor compared to that of other solid tumors [3] because
most GC patients are still diagnosed at an advanced stage with either regional, distant or
both, metastasis [2], which undermines treatment effectiveness. Hence, it is necessary to
reveal the molecular mechanisms underlying the carcinogenesis and progression of GC
and find suitable metastasis predictors or therapeutic targets to improve its prognosis.
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The A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS)
family comprises 19 members [4]. Aberrant expression or function of ADAMTS family
members has been associated with tumor biology [4–7]. Members of the ADAMTS family,
such as ADAMTS2, ADAMTS5, ADAMTS12, and ADAMTS15, can act as cancer suppres-
sors or promoters [8–11]. Hypermethylation of the ADAMTS19 gene has been observed in
gastrointestinal cancers, and epigenetic inactivation of ADAMTS19 can promote metastatic
spread in colorectal cancer [12]. However, the role and function of ADAMTS19 in GC
remains undocumented.

S100 calcium-binding protein A16 (S100A16) is a member of the EF-hand Ca2 +-
binding proteins and participates in tumorigenesis [13,14]. In breast cancer, S100A16
promotes epithelial-mesenchymal transition (EMT) via the Notch1 pathway and correlates
with poor prognosis [15]. In pancreatic cancer, it promotes metastasis and progression
through the FGF19-mediated AKT and ERK1/2 pathways [16]. In GC, it also acts as
a target gene regulating proliferation, invasion, and EMT [17]. However, no studies
have investigated the correlation of S100A16 with clinicopathological characteristics and
prognosis in GC.

In this study, we focused on the correlation of ADAMTS19 expression with clini-
copathological characteristics and overall survival (OS); meanwhile, the mechanisms of
ADAMTS19 in GC progression were studied at the molecular level by in vitro assays.

2. Materials and Methods
2.1. Patients and Cancer Tissue Samples

In our previous study [10], we obtained 176 primary cancer tissue samples collected in
the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, from December
2007 to March 2012. Tissue specimens were constructed using tissue microarrays (TMAs)
for immunohistochemistry (IHC), the correlations between ADAMTS19 and S100A16 and
clinicopathological characteristics were analyzed based on IHC. The patients were followed
up until death or until December 31, 2018. Patients lost to follow-up were excluded from
the analysis. The interval between the date of surgery and the date of death or last follow-
up visit was considered OS. The American Joint Committee on Cancer Staging System
(7th edition) was used for GC staging. A group comprising 53 pairs of primary gastric can-
cerous and adjacent normal mucous tissues (collected in the Sixth Affiliated Hospital of Sun
Yat-Sen University, Guangzhou, China, from August 2018 to December 2018) was analyzed
immunohistochemically to evaluate the differential expression of ADAMTS19. Another
group comprising 24 pairs of primary gastric cancerous and adjacent normal mucous
tissues (collected in the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou,
China, from March 2019 to August 2018) was used to evaluate the differential expression
of S100A16. Informed consent was obtained from all patients. The study was approved by
the Research Ethics Committee of Sun Yat-Sen University and complied with the principles
of the Declaration of Helsinki.

2.2. Immunohistochemistry

We used a biotin-streptavidin horseradish peroxidase (HRP) detection system (ZSGB
Bio, Beijin, China) for IHC staining as previously described [10]. In brief, primary rabbit
antibodies against ADAMTS19 (ab190073, Abcam, Cambridge, UK, 1:1000) and S100A16
(11456-1-AP, Proteintech, Wuhan, China, 1:1200) were incubated with specimens at 4 ◦C
overnight. The specimens were then incubated with secondary antibodies. Finally, the
specimens (TMAs) were developed with diaminobenzidine and counterstained with hema-
toxylin. A primary antibody diluent was used as a negative control. The ADAMTS19
and S100A16 expression scores were assigned by two pathologists independently. We
subsequently used X-tile (Version 3.6.1, Rimm Lab, Connecticut, New Haven, CT, USA)
software to select the best cutoff score (5.5 for ADAMTS19 and 6.0 for S100A16) based
on a previous study [18]. A group comprising 53 pairs of primary gastric cancerous and
adjacent normal mucous tissues was analyzed immunohistochemically to evaluate the
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differential expression of ADAMTS19. Another group comprising 24 pairs of primary
gastric cancerous and adjacent normal mucous tissues was used to evaluate the differ-
ential expression of S100A16. The TMAs that contained the 176 primary cancer tissue
specimens were used to evaluate the expression of ADAMTS19 and S100A16 and their
correlations with clinicopathological characteristics and prognosis in GC. Meanwhile, ac-
cording to the cutoff scores of ADAMTS19 and S100A16, we divided 176 patients into
four groups: ADAMTS19high-S100A16low (ADAMTS19 score ≥ 5.5 and S100A16 score
< 6.0), ADAMTS19high-S100A16high (ADAMTS19 score ≥ 5.5 and S100A16 score ≥ 6.0),
ADAMTS19low-S100A16low (ADAMTS19 score < 5.5 and S100A16 score < 6.0) and
ADAMTS19low-S100A16high (ADAMTS19 score < 5.5 and S100A16 score ≥ 6.0); and the OS
of the four groups was also evaluated.

2.3. Public Online Databases and Related Analyses

The public database Oncomine (https://www.oncomine.org/resource/main.html,
access date: 25 September 2018) was used to search for the differential expression of
ADAMTS19 in GC and normal tissues. The correlation analysis between S100A16 and P65
was based on GEPIA 2 (http://gepia2.cancer-pku.cn/#index, access date: 12 June 2020).
The MEXPRESS database (http://mexpress.be, access date: 24 March 2020) was used to
analyze the correlation between ADAMTS19 expression and promoter methylation.

2.4. Cell Lines and Culture

Seven human GC cell lines (MKN1, MKN45, MGC803, BGC803, HGC27, SGC7901,
and AGS) and one human normal gastric mucosal cell (GES1) were obtained from the Type
Culture Collection Cell Bank of the Chinese Academy of Sciences Committee (Shanghai,
China). AGS was cultured in DMEM/F12, whereas the other cell lines were cultured in an
RPMI 1640 medium. All media were supplemented with 10% fetal bovine serum. The cells
were cultured at 37 ◦C in a humidified atmosphere containing 5% CO2.

2.5. Plasmid Construction and Transfection

Full-length cDNA encoding ADAMTS19 was amplified using polymerase chain reac-
tion (PCR) from the complete open reading frame (ORF) of ADAMTS19 (NM_133638.4).
Then, it was cloned into a pCDH-CMV-MCS-EF1-CopGFP-T2A-Puro (PCHD) vector be-
tween the NheI and EcoRI sites. Additionally, two oligonucleotides (5-GGAATTCTCACTT
GTCATCGTCGTCCTTGTAGTCACTCTTCTGCTGCAG-3 and 5-CGGCTAGCATGCGCCT
GACTCACATC-3) were used to introduce a FLAG epitope at the EcoRI site. Finally, a
PCDH-ADAMTS19 plasmid was constructed successfully. Another plasmid, pCDNA3.1-
ADAMTS19-3xFlag, was constructed using the same method. The recombinant vectors
were transformed into competent Escherichia coli DH5α cells (Takara, Kyoto, Japan) for
amplification. The identity of the recombinant vectors was confirmed by sequencing.
Virus packaging was performed in human embryonic kidney epithelial cell line 293T
cells using a Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. Briefly, PCDH-ADAMTS19 were co-transfected with
pCMV-∆8.91 and pCMV-VSVG plasmids into the 293T cells. Virus supernatants were
harvested 48 and 72 h after co-transfection, and the virus titers were determined. For
infection, a lentiviral suspension containing approximately 4 × 106 lentiviral particles (mul-
tiplicity of infection = 10) and polybrene (5 µg/mL) were added to MGC803 and MKN45
cells. The infected cells were screened by puromycin (Sangon Biotech, Shanghai, China).
Puromycin-resistant single-cell clones stably expressing ADAMTS19 were established and
verified by quantitative real-time PCR (qRT-PCR) and Western blotting. For ADAMTS19
knockdown, ADAMTS19-shRNA lentiviral and control shRNA vectors were purchased
from Genechem (Shanghai, China). The targeting sequence of ADAMTS19-shRNA was
5-GGATGCAGCTATACTTATA-3. BGC823 and SGC7901 cells were also infected using
the abovementioned packaged lentiviral vector.

https://www.oncomine.org/resource/main.html
http://gepia2.cancer-pku.cn/#index
http://mexpress.be
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To construct the plasmid of S100A16 and P65, full-length cDNA was amplified from the
complete ORF of S100A16 (NM_080388.3) and P65 (NC_000011.10) using PCR. Then, it was
cloned into pCDNA3.1 vector, and the recombinant vectors were confirmed by sequencing.
Transient transfection was completed using a Lipofectamine 3000 reagent according to
the manufacturer’s instructions. Small interfering RNA (siRNA) of S100A16 (RiboBio,
Guangzhou, China) was transfected into cells using a Lipofectamine RNAiMAX reagent
(Invitrogen, Carlsbad, USA). The siRNA-targeted sequences were as follows: siS100A16-1,
5-GCGAGATGCTCCAGAAAGA-3 (forward); siS100A16-2, 5-GAACCTGGATGCCAATC
AT-3 (forward).

2.6. RNA Extraction and qRT-PCR

A TRIzol reagent (Invitrogen, Carlsbad, USA) was used to extract total RNA from
tissues according to the manufacturer’s instructions, and an RNA-Quick Purification Kit
(ES-RN001; Yishan Biotechnology, Shanghai, China) was used to extract total RNA from
cells according to the manufacturer’s instructions. Reverse transcription PCR and qRT-
PCR were performed as previously described [18]. For the assessment of ADAMTS19,
the messenger RNA (mRNA) levels in GC were evaluated using 45 pairs of fresh-frozen
primary cancerous and adjacent normal tissues. For the assessment of S100A16, the mRNA
levels in GC were evaluated using 80 pairs of fresh-frozen primary cancerous and adjacent
normal tissues.

The qRT-PCR primer sequences were as follows: ADAMTS19, 5-AGGCCAGTAACTGC
TTGCTAC-3 (forward) and 5-GTCTAGCTTGGTTCTGCATTCTT-3 (reverse); GAPDH, 5-
GACAGTCAGCCGCATCTTCTT-3 (forward) and 5-AATCCGTTGACTCCGACCTTC-3 (re-
verse); S100A16, 5-GCTGTCGGACACAGGGAAC-3 (forward) and 5-TGATGCCGCCTATC
AAGGTC-3 (reverse).

2.7. Western Blot Analysis

Cell protein was extracted using a T-PER Tissue Protein Extraction Reagent (Thermo
Fisher Scientific, Massachusetts, MA, USA) and supplemented with protease and phos-
phatase inhibitors (ApexBio, Houston, TX, USA) according to the manufacturer’s instruc-
tions. The protein concentration was measured using a BCA protein assay kit (Beyotime,
Shanghai, China) according to the manufacturer’s instructions. Briefly, lysates containing
40 µg of protein were separated by SDS-PAGE and then transferred to polyvinylidene
fluoride membranes (Millipore, Massachusetts, MA, USA). The membranes were then
blocked with 5% skimmed milk or 5% bovine serum albumin (BSA) at room temperature
for 1 h and incubated with primary antibodies at 4 ◦C overnight. They were subsequently
incubated with corresponding HRP-conjugated secondary antibodies (goat anti-mouse
IgG: SA00001-1, 100 µL, Proteintech, 1:10,000; mouse anti-rabbit IgG light chain specific:
SA00001-7L, 100 µL, Proteintech; 1:10,000) at room temperature for 1 h. The bands were
then detected with an enhanced chemiluminescence reagent and were observed using a
ChemiDoc Touch Imaging System (Bio-Rad, California, CA, USA). The bands were quanti-
fied using ImageJ (version 1.52v, National Institutes of Health, Bethesda, MD, USA) and
normalized with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Membranes were
incubated with the following primary antibodies: ADAMTS19 (ab190073, Abcam, Cam-
bridge, UK, 1:1000), S100A16 (11456-1-AP, Proteintech, Wuhan, China, 1:1000), P65 (#8242,
Cell Signaling Technology, Massachusetts, MA, USA, 1:1000), Phospho-P65 (#3033, Cell
Signaling Technology, Massachusetts, USA, 1:1000), E-cadherin (20874-1-AP, Proteintech,
Wuhan, China, 1:1000), β-catenin (17565-1-AP, Proteintech, Wuhan, China, 1:1000), GAPDH
(60004-1-Ig, Proteintech, Wuhan, China, 1:10,000), and PCNA (10205-2-AP, Proteintech,
Wuhan, China, 1:2000).
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2.8. Migration and Invasion Assay

Transwell chambers (#353097, Falcon, New York, NY, USA) with and without Matrigel
(#356234, Corning, New York, NY, USA) were used to assess GC cell migration and invasion.
In brief, 4 × 104 cells were transferred into the upper chamber with 100 µL of serum-free
RMPI-1640, whereas the lower chamber was filled with 700 µL of 10% serum RMPI-
1640 to generate a chemoattractant. The cells in the lower chamber were fixed using 4%
paraformaldehyde after adequate culturing, and crystal violet was used to stain the cells
on the lower membrane surface. Five random fields of the lower membrane surface were
photographed using a microscope (Olympus, Tokyo, Japan), and the numbers of migration
and invasion cells were calculated using ImageJ. The assays were performed at least
in triplicate.

2.9. Wound Healing Assay

A sterile tip of a 200-µL pipette was used to make a wound after seeding 1 × 106 cells
in a 12-well plate. The cells were then cultured with 1% serum RMPI-1640 for up to six days.
An IncuCyte ZOOM system (Essen BioScience, Michigan, MI, USA) was used to capture
images of the wound area every 2 h during culturing. Finally, the initial wound area
was defined 100%, and ImageJ was used to calculate the percentage of wound closure at
the end of the culturing process. The assays were performed at least in triplicate.

2.10. RNA Sequencing Array and Bioinformatics Analysis

Whole-transcript deep sequencing (RNAseq) was performed on a BGISEQ-500 plat-
form (BGI, Shenzhen, China). The analysis was designed with two groups of paired
MGC803-Vector/ADAMTS19 cells. Heat map analysis of the altered genes was per-
formed using OmicShare Heatmap tools (http://www.omicshare.com/tools, access date:
3 July 2020). The data were also analyzed using the Gene Ontology (GO) method with the
free online analysis tool, Database for Annotation, Visualization and Integrated Discovery
(DAVID; https://david.ncifcrf.gov/, access date: 3 July 2020) [19,20]. The results of the GO
analysis were displayed using the online analysis tool, SangerBox
(http://sangerbox.com/Index, access date: 23 December 2020). Gene set enrichment
analysis (GSEA) was performed using a GSEA preranked tool, R (version 4.0.3, The R
Foundation, New York, NY, USA), and RStudio (1.4.1103, RStudio, Boston, MA, USA).

2.11. Dual-Luciferase Reporter Assay

After constructing a pGL4-S100A16 plasmid that contained 1000 bp upstream of the
S100A16 promoter region, the identity of the recombinant vector was confirmed by sequenc-
ing. The pGL4-S100A16, pRL-TK, pCDNA3.1-ADAMTS19-3xFlag, and pCDNA3.1-P65
plasmids were co-transfected into MGC803 and BGC823 cells using Lipofectamine 3000
according to the manufacturer’s instructions. After culturing for 24–48 h, luciferase activity
was measured using a Dual-Luciferase Reporter Gene Assay System (Promega, Wiscon-
sin, WI, USA) according to the manufacturer’s instructions. The assays were performed
in triplicate.

2.12. Immunofluorescence Assay

MKN45 and MGC803 cells were fixed in 4% paraformaldehyde solution after being
transfected with pCDNA3.1-ADAMTS19-3xFlag using a Lipofectamine 3000 reagent and
cultured for 48–72 h. The cell membranes were penetrated with a 0.25% Triton X100
(meilunbio, Dalian, China) solution. After 15 min, 1% BSA was transferred to block the
cells at room temperature for 30 min. Primary antibodies (Flag-tag: 390002, ZenBio, Sicuan,
China, 1:1000; P65: 10745-1-AP, Proteintech, Wuhan, China, 1:200) were incubated at
4 ◦C for 12–16 h. Primary antibody binding and nuclei were observed using fluorescence
secondary antibodies (anti-rabbit: A11034, Invitrogen, 1:200; anti-mouse IgG: A11003,
Invitrogen, 1:200) and DAPI (4’,6-diamidino-2-phenylindole; #C1002, Beyotime, Shanghai,

http://www.omicshare.com/tools
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China, 1:1000) staining, respectively. Finally, the transfected MKN45 and MGC803 cells
were observed and photographed using a confocal microscope (Leica, Weztlar, Germany).

2.13. Nuclear and Cytoplasmic Protein Extraction Assay

A nuclear and cytoplasmic protein extraction assay was performed using a NE-PER
Nuclear and Cytoplasmic Extraction Reagent Kit (#78833, Thermo Fisher Scientific, Mas-
sachusetts, USA) according to the manufacturer’s instructions. In brief, after protein
extraction, 20 µg of protein was added into each well of 8% SDS-PAGE. Subsequently,
Western blotting was performed as described above.

2.14. Co-Immunoprecipitation Assay

Stably overexpressed ADAMTS19 and control MGC803 cells were lysed using Pierce
IP Lysis Buffer (#87788, Thermo Fisher Scientific, Massachusetts, USA) according to
the manufacturer’s instructions. Cell supernatants were centrifuged at 4 ◦C, and then
50 µL of a protein A/G agarose bead solution was added to every 100 µL of cell super-
natant. ADAMTS19 (ab190073, Abcam, Cambridge, UK) and P65 (#8242, Cell Signaling
Technology, Massachusetts, USA) primary antibodies were used to pull down the proteins
interacting with ADAMTS19 and P65 at 4 ◦C overnight. Immunoglobulin G protein was
used as a positive control. After protein extraction, detections were performed by Western
blotting as described above.

2.15. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics version 21.0 (IBM,
New York, NY, USA). Continuous variables were presented as the means ± standard
deviations and analyzed by Student’s t test. Categorical variables were assessed using
the chi-squared test, or the Wilcoxon signed-rank test as appropriate. Overall survival
was calculated using the Kaplan–Meier method, and comparisons were performed us-
ing the log-rank test. Potential prognostic factors for survival were assessed in multi-
variate analysis using Cox proportional hazards regression following a backward elim-
ination process. The correlation with ADAMTS19 with promoter methylation were as-
sessed using Pearson’s correlation coefficient. A p-value of less than 0.05 was considered
statistically significant.

3. Results
3.1. ADAMTS19 Is Downregulated in Human GC

We used Oncomine and GC specimens from our institution to evaluate the expression
of ADAMTS19. The Oncomine analysis revealed that ADAMTS19 mRNA levels were
significantly lower in cancer tissues than in adjacent normal tissues (median rank: 1450.5,
p < 0.001; Figure 1A). Similar results were obtained by qRT-PCR from 45 pairs of cancer
and normal tissues (4.67 ± 8.72 vs. 12.76 ± 20.96, p = 0.017; Figure 1B) and by IHC from
53 pairs (0.9 ± 1.72 vs. 3.8 ± 3.00, p < 0.001; Figure 1C). Representative IHC images are
shown in Figure 1D. Pearson’s correlation coefficient showed that ADAMTS19 expression
negatively correlates with promoter methylation (Figure S1). Taken together, these results
suggest that ADAMTS19 is downregulated in human GC.
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with the color code bars, the median rank is used to demonstrated the gene rank in each analysis. (B) Quantitative real-
time polymerase chain reaction (qRT-PCR) on 45 paired samples showed that ADAMTS19 mRNA expression levels were 
lower in tumor tissue than in adjacent normal tissue. (C) Immunohistochemistry (IHC) analysis of 53 paired samples 
showed that ADAMTS19 expression was lower in tumor tissue than in adjacent normal tissue. (D) Representative IHC 
images of tumor and adjacent normal tissue. (E) High ADAMTS19 expression predicted better overall survival than low 
ADAMTS19 expression in GC patients (the best cutoff score of 5.5 was obtained using X-tile). The data are presented as 
means ± standard deviations. * p < 0.05; *** p < 0.001. 
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teristics in 176 GC samples using IHC. ADAMTS19 protein expression was significantly 
associated with the M stage (Distant Metastasis, p = 0.008; Table 1), Lauren’s classification 
(p = 0.007; Table 1), and perineural invasion (p = 0.018; Table 1). In contrast, it did not 
significantly correlate with age, gender, histologic type, differentiation, T stage (Invasion 
Depth), N stage (Lymph Node Metastasis), TNM stage, and vessel invasion. Patients with 
high ADAMTS19 expression had significantly better OS than low ADAMTS19 patients (p 
= 0.021; Figure 1E). Univariate analysis identified five prognostic indicators: invasion 
depth, lymph node metastasis, distant metastasis, vessel invasion, and ADAMTS19 ex-
pression. However, in multivariate analysis, ADAMTS19 was not an independent prog-
nostic marker (Table 2). Nevertheless, taken together, the results suggest that ADMTS19 
could be a predictor of metastasis and a prognostic marker in GC. 

Figure 1. ADAMTS19 is downregulated in gastric cancer (GC). (A) Oncomine analysis revealed that ADAMTS19 mRNA
expression levels are lower in tumor tissue than in normal tissue by meta-analysis. The intensity gene expression indexed
with the color code bars, the median rank is used to demonstrated the gene rank in each analysis. (B) Quantitative
real-time polymerase chain reaction (qRT-PCR) on 45 paired samples showed that ADAMTS19 mRNA expression levels
were lower in tumor tissue than in adjacent normal tissue. (C) Immunohistochemistry (IHC) analysis of 53 paired samples
showed that ADAMTS19 expression was lower in tumor tissue than in adjacent normal tissue. (D) Representative IHC
images of tumor and adjacent normal tissue. (E) High ADAMTS19 expression predicted better overall survival than low
ADAMTS19 expression in GC patients (the best cutoff score of 5.5 was obtained using X-tile). The data are presented as
means ± standard deviations. * p < 0.05; *** p < 0.001.

3.2. ADAMT19 Is Associated with Clinicopathological Characteristics and Survival in GC

We evaluated the correlations between ADAMTS19 and clinicopathological charac-
teristics in 176 GC samples using IHC. ADAMTS19 protein expression was significantly
associated with the M stage (Distant Metastasis, p = 0.008; Table 1), Lauren’s classification
(p = 0.007; Table 1), and perineural invasion (p = 0.018; Table 1). In contrast, it did not
significantly correlate with age, gender, histologic type, differentiation, T stage (Invasion
Depth), N stage (Lymph Node Metastasis), TNM stage, and vessel invasion. Patients with
high ADAMTS19 expression had significantly better OS than low ADAMTS19 patients
(p = 0.021; Figure 1E). Univariate analysis identified five prognostic indicators: invasion
depth, lymph node metastasis, distant metastasis, vessel invasion, and ADAMTS19 expres-
sion. However, in multivariate analysis, ADAMTS19 was not an independent prognostic
marker (Table 2). Nevertheless, taken together, the results suggest that ADMTS19 could be
a predictor of metastasis and a prognostic marker in GC.
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Table 1. Correlation between ADAMTS19, S100A16 expression and clinicopathological characteristics of gastric patients
(n = 176).

Clinicopathological
Characteristics

Low
ADAMTS19

High
ADAMTS19 p-Value Low S100A16 High S100A16 p-Value

Number 94 82 112 64
Age 0.120 0.864

<60 years 50 (53.2) 34 (41.5) 54 (48.2) 30 (46.9)
≥60 years 44 (46.8) 48 (58.5) 58 (51.8) 34 (53.1)

Gender 0.224 0.072
Male 62 (65.9) 61 (74.4) 73 (65.2) 50 (78.1)

Female 32 (34.1) 21 (25.6) 39 (34.8) 14 (21.9)
Histologic type 0.186 0.672

Tubular or papillary
adenocarcinoma 75 (79.8) 73 (89.1) 92 (82.1) 56 (87.5)

Signet-ring cell carcinoma 13 (13.8) 6 (7.3) 14 (12.5) 5 (7.8)
Mucinous adenocarcinoma 6 (6.4) 2 (2.4) 5 (4.5) 3 (4.7)

a Others 0 (0) 1 (1.2) 1 (0.9) 0 (0)
Differentiation 0.055 0.011

Well-Moderately 76 (80.9) 56 (68.3) 21 (18.8) 23 (35.9)
Poor 18 (19.1) 26 (31.7) 91 (81.2) 41 (64.1)

Lauren’s classification 0.007 0.020
Diffuse type 54 (57.5) 28 (34.1) 60 (53.6) 22 (34.4)

Intestinal type 31 (32.9) 39 (47.6) 36 (32.1) 34 (53.1)
Mixed type 9 (9.6) 15 (18.3) 16 (14.3) 8 (12.5)

Invasion Depth 0.077 0.576
T1 + T2 15 (15.9) 22 (26.8) 25 (22.3) 12 (18.8)
T3 + T4 79 (84.1) 60 (73.2) 87 (77.7) 52 (81.2)

Lymph Node Metastasis 0.055 0.795
N0 19 (20.2) 27 (32.9) 30 (26.8) 16 (25.0)

N1/N2/N3 75 (79.3) 55 (67.1) 82 (73.2) 48 (75.0)
Distant Metastasis 0.008 0.145

M0 72 (76.6) 75 (91.5) 97 (86.6) 50 (78.1)
M1 22 (23.4) 7 (8.5) 15 (13.4) 14 (21.9)

TNM Stage 0.110 0.486
I+II 26 (27.7) 32 (39.1) 39 (34.9) 19 (29.7)

III+IV 68 (72.3) 50 (60.9) 73 (65.1) 45 (70.3)
Perineural Invasion 0.018 0.493

Absent 36 (38.3) 46 (56.1) 50 (44.6) 32 (50.0)
Present 58 (61.7) 36 (43.9) 62 (55.4) 32 (50.0)

Vessel Invasion 0.287 0.327
Absent 51 (54.3) 51 (62,2) 68 (60.7) 34 (53.1)
Present 43 (45.7) 31 (37.8) 44 (39.3) 30 (46.9)

Statistical analyses were performed by the Pearson χ2 test; a Others: hepatoid adenocarcinoma and squamous carcinoma.
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Table 2. Univariate and multivariate analyses for the prognostic factors of overall survival in gastric
cancer patients (n = 176).

Variable Univariate Analysis Multivariate Analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Age (≥60 years vs. <60 years) 0.812
(0.515–1.281) 0.370 0.589

(0.367–0.964) 0.028

Gender (male vs. female) 0.859
(0.526–1.404) 0.545

Histology (tubular/papillary
adenocarcinoma

1.150
(0.591–2.238) 0.681

vs. the others)

Differentiation (well/moderate
vs. poor)

0.732
(0.421–1.272) 0.732

Invasion depth (T3/T4 vs.
T1/T2)

7.051
(2.572–19.335) < 0.001

Lymph Node Metastasis
(N+ vs. N0)

5.690
(2.466–13.130) <0.001

Distant metastasis (M1 vs. M0) 3.487
(2.110–5.761) <0.001 2.333

(1.387–3.925) 0.001

Perineural Invasion
(present vs. absent)

3.067
(1.836–5.126) <0.001 2.539

(1.486–4.340) 0.001

Vessel Invasion
(present vs. absent)

2.662
(1.672–4.236) <0.001

ADAMTS19 expression
(high vs. low)

0.596
(0.373–0.953) 0.031

S100A16 expression
(high vs. low)

1.681
(1.068–2.647) 0.025 1.666

(1.052–2.638) 0.030

3.3. ADAMTS19 Suppresses GC Cell Migration and Invasion

To reveal the underlying biological function of ADAMTS19 in GC, we used GC cell
lines to perform functional assays in vitro. Western blot analysis revealed the expression
of ADAMTS19 in GC cell lines (Figure 2A). MGC803 and MKN45 with low expression
of endogenous ADAMTS19 were chosen to construct stably overexpressed ADAMTS19
cells transfected with a lentiviral vector (Figure 2B). BGC823 and SGC7901 with high
endogenous ADAMTS19 were chosen to construct stably knockdown ADAMTS19 cells
transfected with a lentiviral vector (Figure 2B). Transwell assays revealed that ectopic
expression of ADAMTS19 inhibited cell migration (356.66 ± 32.47 vs. 267.66 ± 18.93,
p = 0.011, Figure 2C; 168.67 ± 25.27 vs. 68.89 ± 13.50, p < 0.001, Figure 2D). Similarly, inva-
sion assays revealed that ADAMTS19 inhibited cell invasion (200.00 ± 2.82 vs. 177.50 ± 6.36,
p = 0.045, Figure 2C; 120.44± 34.62 vs. 64.33± 24.92, p = 0.001, Figure 2D). Conversely, as spec-
ulated, ADAMTS19 knockdown promoted cell migration (56.33 ± 11.01 vs.
88.00 ± 3.61, p = 0.009, Figure 2E; 17.90 ± 9.71 vs. 41.50 ± 7.25, p < 0.001 Figure 2F) and
invasion (87.80 ± 27.09 vs. 153.44 ± 38.65, p < 0.001, Figure 2E; 81.40 ± 20.42 vs. 138.70
± 15.76, p < 0.001, Figure 2F). Wound healing assays revealed that overexpression of
ADAMTS19 inhibited wound healing (72.88 ± 5.19 vs. 61.62 ± 5.60, p = 0.011, Figure 2G;
100.00 ± 0.00 vs. 69.60 ± 7.39, p < 0.001, Figure 2H). Conversely, ADAMTS19 knockdown
promoted wound healing (47.59 ± 2.97 vs. 64.71 ± 3.41, p < 0.001, Figure 2I; 62.23 ± 10.60 vs.
86.96 ± 4.95, p = 0.005, Figure 2J). These results suggest that ADAMTS19 suppresses GC
cell migration and invasion.
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Figure 2. ADAMTS19 suppresses GC cell migration and invasion in vitro. (A) ADAMTS19 protein
expression levels measured in seven gastric cancer cell lines (MKN1, MKN45, SGC7901, AGS,
BGC823, HGC27, and MGC803) and one normal gastric epithelial cell line (GES1) by Western blotting.
(B) MGC803 and MKN45 cells with low expression of endogenous ADAMTS19 were chosen to
construct stably-overexpressed ADAMTS19 cells transfected with a lentiviral vector, and BGC823
and SGC7901 cell lines with high endogenous ADAMTS19 were stably transfected with shRNA
through a lentiviral vector. ADAMTS19 expression in stably transfected cells was confirmed by
Western blotting. (C–F) Overexpression of ADAMTS19 suppressed GC cell migration and invasion,
while ADAMTS19 knockdown reversed the effects. (G–J) Wound healing assays showed that
overexpression of ADAMTS19 significantly inhibited wound healing in MKN45 and MGC803,
whereas ADAMTS19 knockdown promoted wound healing in BGC823 and SGC7901. The data are
presented as means ± standard deviations. * p < 0.05; ** p < 0.01; *** p < 0.001.
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3.4. S100A16 Is a Downstream of ADAMTS19 and Acts as a Tumor Promoter, Promoting Cell
Migration and Invasion

We used RNAseq assays and bioinformatics analysis to detect gene expression changes
triggered by ADAMTS19 overexpression. Heat map analysis showed distinct genes after
ADAMTS19 overexpression (Figure 3A; details on the genes are displayed in Supple-
mentary Table S1). Gene Ontology analysis was performed to evaluate related biological
processes of the identified genes based on variability ranking. Consistent with our ob-
servations in vitro, the GO analysis showed that ADAMTS19-related genes were mostly
involved in pathways such as cell adhesion, extracellular matrix organization, inflamma-
tory response, and cell surface receptor signaling pathway (Figure 3B). Moreover, HALL-
MARK_TNFA_SIGNALING_VIA_NFKB and other pathways were enriched in GSEA
(Figure 3C). Among the dysregulated genes, S100A16 attracted our attention and was
confirmed by a dual-luciferase reporter gene assay (Figure 3D). Furthermore, qRT-PCR
and Western blot analysis showed that S100A16 expression was affected by ADAMTS19
expression (Figure 3E,F). Conversely, Western blot analysis showed that S100A16 expres-
sion did not affect ADAMTS19 expression (Figure 3F). We further investigated the role of
S100A16 by functional assays in vitro. Overexpression of S100A16 reversed the suppression
of cell migration (183.50 ± 42.63 vs. 240.50 ± 17.54, p = 0.048, Figure 3G) and invasion
(237.75 ± 19.61 vs. 347.50 ± 80.28, p = 0.037, Figure 3G) by ADAMTS19 overexpression.
Conversely, S100A16 silencing inhibited migration (siNC: 270.67 ± 13.05 vs. siS100A16-1:
67.00 ± 9.54, p < 0.001; siNC: 270.67 ± 13.05 vs. siS100A16-2: 89.33 ± 10.21, p < 0.001;
Figure 3H) and invasion (siNC:173.00 ± 43.97 vs. siS100A16-1: 54.00 ± 6.08, p < 0.001; siNC:
173.00 ± 43.97 vs. siS100A16-2: 36.33 ± 6.03, p < 0.001; Figure 3H) promoted by ADAMTS19
knockdown. These findings indicate that ADAMTS19 is the upstream regulator of S100A16.
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Figure 3. S100A16 is a downstream of ADAMTS19 and acts as a tumor promoter, promoting cell migration and invasion.
(A) Heat map analysis showed altered genes in MGC803-ADAMTS19 and MGC803-vector cells. (B) Gene Ontology analysis
showed that the altered genes are involved in biological processes, such as cell adhesion, extracellular matrix organization,
inflammatory response, and cell surface receptor signaling pathway. (C) Gene set enrichment analysis (GSEA) showed
the enrichment of ADAMTS19-associated genes in HALLMARK_TNF_SIGNALING VIA_NFKB and other pathways. The
plot was drawn using R and RStudio. (D) Dual-luciferase gene reporter assays revealed that ADAMTS19 could regulate
the S100A16 transcription directly in MKN45 and BGC823. (E,F) Quantitative RT-PCR and Western blot analysis showed
that S100A16 protein levels were affected by ADAMTS19. (G,H) Ectopic expression of S100A16 reversed the inhibition of
cell migration and invasion by ADAMTS19 in MGC803 and BGC823 cells. The data are presented as means ± standard
deviations. * p < 0.05; ** p < 0.01; *** p < 0.001.



Biomolecules 2021, 11, 561 13 of 18

3.5. ADAMTS19 Inhibits Cell Migration and Invasion via the NF-κB/S100A16 Axis

We further explored the underlying ADAMTS19-S100A16 mechanism. ADAMTS19
overexpression downregulated nucleus phospho-P65, whereas ADAMTS19 knockdown
significantly upregulated it (Figure 4A). Co-immunoprecipitation assays revealed that
ADAMTS19 could bind with P65 in cytoplasm (Figure 4B). Immunofluorescence assays
showed that ADMTS19 was co-localized with P65 in cytoplasm in MKN45 and MGC803
after transfection of the pCDNA3.1-ADAMTS19-3xFlag plasmid (Figure 4C). Correla-
tion analysis powered by GEPIA 2 revealed that S100A16 positively correlated with P65
(p < 0.001; Figure 4D). Furthermore, dual-luciferase reporter gene assays showed that P65
promoted the transcriptional activity of S100A16 in MGC803 and BGC823 cells (Figure 4E).
These results suggest that ADAMTS19 regulates S100A16 by influencing phospho-P65 of
the NF-κB pathway, suppressing cell migration and invasion.

3.6. S100A16 Correlates with Clinicopathological Characteristics and Prognosis in GC

We further analyzed the expression of S100A16 in cancer tissues and adjacent normal
tissues. Quantitative RT-PCR (1.33 ± 0.77 vs. 1.10 ± 0.69, p = 0.038; Figure 5A) and IHC
(8.89 ± 2.93 vs. 7.08 ± 3.02, p = 0.023; Figure 5B) showed that S100A16 expression was
higher in cancer than in adjacent normal tissues. Representative IHC images are shown in
Figure 5C. Furthermore, we analyzed the correlation of S100A16 with clinicopathological
characteristics and prognosis in 176 GC patients. S100A16 significantly correlated with
the degree of Lauren’s classification (p = 0.020; Table 1) and differentiation (p = 0.011;
Table 1). In contrast, no significant correlations were found between S100A16 and age,
gender, histologic type, perineural invasion, T stage, M stage, N stage, TNM stage, and
vessel invasion (Table 1). Representative IHC images are shown in Figure 5D. Further,
S100A16 expression negatively correlated with ADAMTS19 expression (6.55 ± 4.33 vs.
4.98 ± 3.65, p = 0.001; Figure 5E). Patients with high S100A16 expression had signifi-
cantly worse OS than low S100A16 patients (p = 0.023; Figure 5F). Further investigation
revealed that the co-expression of ADAMTS19 and S100A16 correlated with OS, with
ADAMTS19high-S100A16low patients having better OS than ADAMTS19low-S100A16high

patients (p = 0.006; Figure 5G). Multivariate analysis revealed that S100A16 expression was
an independent prognostic marker of GC (p = 0.030; Table 2). These results suggest that
S10016 is associated with differentiation and is an independent GC prognostic factor.
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(A) Nucleus phospho-P65 was decreased in MGC803-ADAMTS19 and increased in BGC823-shADAMTS19 cells. (B) Co-
immunoprecipitation assays revealed that ADAMTS19 interacted with P65 in MGC803. (C) Double immunofluorescence assays
revealed that ADAMTS19 was co-localized with P65 in cytoplasm in MGC803 and MKN45 cells after transfection with pCDNA3.1-
ADAMTS19-3xFlag, and nucleus P65 was significantly downregulated in MGC803 cells. (D) The positive correlation between S100A16
and P65 was verified using GEPIA 2. (E) Dual-luciferase reporter gene assays showed that P65 acted as a transcription factor of
S100A16. (F) Brief schematic model showing that ADAMTS19 regulated S100A16 via the NF-κB pathway and participated in P65
phosphorylation. The data are presented as means ± standard deviations. * p < 0.05; ** p < 0.01; *** p < 0.001.
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was higher in tumor tissue than in adjacent normal tissue. (B) IHC analysis of 24 paired tissues
showed that S100A16 expression was higher in tumor tissue than in adjacent normal tissue. (C,D)
Representative IHC images of S100A16 and ADAMTS19 at the same points of tissue microarrays. (E)
The negative correlation between ADAMTS19 and S100A16 was confirmed by IHC. (F) High S100A16
expression predicted poorer overall survival than low expression in GC patients (the best cutoff score
of 6.0 was obtained using X-tile). (G) Survival analysis layered by the expression of ADAMTS19
and S100A16 in tissue microarrays of GC patients showed that ADAMTS19high-S100A16low patients
had the best overall survival (OS), whereas ADAMTS19low-S100A16high patients had the worst OS.
* p < 0.05; ** p < 0.01.

4. Discussion

Members of the ADAMTS family are involved in the progress of solid tumors [5,6].
Members such as ADAMTS2, ADAMTS5, ADAMTS12, and ADAMTS15 act as cancer
suppressors or promoters [8–11]. Moreover, ADAMTS19 is downregulated and correlates
with prognosis in colorectal cancer [12]. However, its role in GC has hitherto been unknown.
This is the first study to explore its exact role in GC. Using qRT-PCR and IHC, we found
that ADAMTS19 is downregulated in cancer tissues compared to adjacent normal tissues.
The results were consistent with our Oncomine analysis.

DNA methylation is frequently described as a “silencing” epigenetic marker. Methyla-
tion blocks the start of transcription, not elongation [21]. We used the MEXPRESS database
to analyze the correlation between ADAMTS19 expression and promoter methylation [22].
In line with a previous study on colorectal cancer [12]. Pearson’s correlation coefficient
showed that ADAMTS19 expression negatively correlates with promoter methylation
(Figure S1). This result indicates that promoter hypermethylation leads to downregulated
ADAMTS19 expression in GC. Hence, we speculate that ADAMTS19 is a tumor inhibitor
and plays a crucial role in the pathogenesis of GC.

We also found that ADAMTS19 protein significantly correlates with distant metastasis,
Lauren’s classification, differentiation and perineural invasion in GC. Survival analysis re-
vealed that patients with low ADAMTS19 expression have worse OS than high ADAMTS19
patients, which is consistent with the findings of a study on colorectal cancer [12]. Sub-
sequent cell functional assays showed that ADAMTS19 suppresses GC cell migration
and invasion. We further performed mechanistic experiments and rescue assays and
demonstrated that S100A16 is the downstream of ADAMTS19, acting as a tumor pro-
moter involved in carcinogenesis. This finding is consistent with previous studies on
S100A16 [15,23]. In contrast, ADAMTS19 and S100A16 were not associated with EMT
significantly, but they tended to affect the levels of E-cadherin and β-catenin measured by
Western blot (Figure S2).

Although previous studies have reported that S100A16 tends to act as a tumor pro-
moter [16,23,24], none examined the correlation between S100A16 expression and clin-
icopathological characteristics of GC. This is the first study to show that high S100A16
expression tends to result in poor differentiation and that patients with high S100A16
expression have worse OS than low S100A16 patients. We also showed that S100A16
is an independent predictor of GC prognosis, with ADAMTS19high-S100A16low patients
having the best OS and ADAMTS19 low-S100A16 high patients having the worst OS. In
addition, our study reveals that both ADAMTS19 and S100A16 were correlated with Lau-
ren’s classification, but not WHO classification (Table 1). WHO classification and Lauren’s
classification are the two main classifications of histologic type of gastric cancer. WHO
classification includes not only the common types of gastric cancer, but also the rare and
special types. However, WHO classification is not suitable for prognosis analysis of gastric
cancer due to its relatively fine classification and great differences in biological behaviors
between different types of gastric cancer. The advantages of Lauren’s classification are
simplicity, ease of grasping, and high repeatability between different observers. However,
the disadvantage of Lauren’s typing is that it is too general to distinguish gastric cancer
with different biological behaviors. In our study, there were no significant differences in
the WHO classification (Figure S4A) and Lauren’s classification (Figure S4B) of 176 patients.
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The intestinal type has a trend to obtain better OS than diffuse type and mixed type, the
non-significant difference between the groups may be caused by small sample size.

We further explored the regulatory ADAMTS19-S100A16 mechanism. The NF-κB
pathway, especially its important member P65, has a complicated relationship with can-
cer [25–28]. Shan et al. demonstrated that P65 binds to the mortalin promoter and promotes
ovarian cancer cell proliferation and migration via regulating mortalin [26]. Zhang et al.
showed that it can directly bind to the promoter of cyclin D1, mediating an increase in the
protein’s expression [28]. In this study, we found that ADAMTS19 can bind to cytoplasm
P65 and inhibit the nuclear translocation of P65, decreasing nucleus phospho-P65. We also
found that P65 can regulate the transcription of S100A16 and positively correlates with
S100A16 expression. We thus demonstrated that ADAMTS19 inhibits cell migration and
invasion via the NF-κB/S100A16 axis.

To our knowledge, our study is not only the first to reveal the correlation between
ADAMTS19 and S100A16 in GC but also the first to explore the correlation of the differential
co-expression of ADAMTS19 and S100A16 with the prognosis of GC. Moreover, it is the first
study to elucidate the regulatory ADAMTS19-S100A16 mechanism. The role of ADAMTS19
and S100A16 warrants further research. Studies on animal models should be conducted to
further explore the role of ADAMTS19 in GC cell migration and invasion. Moreover, future
studies should further investigate the specific methylation mechanism of ADAMTS19.
Finally, further research is needed to clarify the exact transcriptional mechanism of S100A16
regulated by P65.

5. Conclusions

In conclusion, this study demonstrates that ADAMTS19 is downregulated and S100A16
is upregulated in GC. Both ADAMTS19 and S100A16 correlate with clinicopathological char-
acteristics and the prognosis of GC. ADAMTS19high-S100A16low patients have the best OS,
whereas ADAMTS19low-S100A16high patients have the worst OS. Functionally, ADAMTS19
suppresses GC cell migration and invasion in vitro. Mechanistically, ADAMTS19 physi-
cally binds to cytoplasm P65, downregulating S100A16, thereby suppressing cell migration
and invasion. The clinical and biological significance of the ADAMTS19/NF-κB/S100A16
axis suggests that ADAMTS19 and S100A16 can serve as prognostic biomarkers of GC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11040561/s1, Figure S1: Pearson’s correlation coefficients in MEXPRESS showed that
ADAMTS19 expression negatively correlated with promoter methylation; Figure S2: ADAMTS19
tended to affect the levels of E-cadherin and β-catenin measured by Western blot; Figure S3:
Uncropped Western blots; Table S1: Distinct genes after ADAMTS19 overexpression; Figure S4:
The overall survival based on WHO classification and Lauren’s classification.
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