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Abstract: The circadian rhythmicity of endogenous metabolic and hormonal processes is controlled 

by a complex system of central and peripheral pacemakers, influenced by exogenous factors like 

light/dark-cycles, nutrition and exercise timing. There is evidence that alterations in this system may 

be involved in the pathogenesis of metabolic diseases. It has been shown that disruptions to normal 

diurnal rhythms lead to drastic changes in circadian processes, as often seen in modern society due 

to excessive exposure to unnatural light sources. Out of that, research has focused on time-restricted 

feeding and exercise, as both seem to be able to reset disruptions in circadian pacemakers. Based on 

these results and personal physical goals, optimal time periods for food intake and exercise have 

been identified. This review shows that appropriate nutrition and exercise timing are powerful tools 

to support, rather than not disturb, the circadian rhythm and potentially contribute to the preven-

tion of metabolic diseases. Nevertheless, both lifestyle interventions are unable to address the real 

issue: the misalignment of our biological with our social time. 
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1. Introduction 

Humans are responsive to a multitude of metabolic and hormonal “background” 

processes dictating daily life [1]. From the days of the Stone Age until the 21st century, 

humans have submitted to the fundamental daily light/dark cycle on Earth, which is the 

foundation of our wake/sleep cycle called the circadian rhythm [2]. This highly complex 

cycle has a major influence on our metabolic and hormonal health [3,4]. Throughout hu-

man evolution, wake/sleep cycles have influenced our lives as much as our dietary intake. 

The human genome evolved during the hunter-gatherer period, which led to a selection 

of genes and traits that define the humane gene pool today [5,6]. A major contributing 

factor in defining our genome is the interplay of food scarcity and food abundance that 

accompanied humans throughout their evolution, enabling human metabolism to store 

surplus energy [7,8]. 

In earlier days, extended periods of fasting led to metabolic stress, which increased 

the demand for food or promoted pathways of energy preservation by extending sleep 

periods. Across all species on earth, sleeping behavior has shown a remarkable flexibility 

to counteract metabolic stress, whereas the circadian rhythm remains the fundament, yet 

duration, sleep architecture and timing of sleep may adapt autonomously. 
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With industrialization and the ubiquitous availability of food, the ability of the hu-

man body to be as efficient as possible at storing surplus energy gave rise to several com-

mon diseases and the “global burden of diabetes” [9]. However, this burden to public 

health has not only emerged due to a disturbed metabolic milieu leading to an excessive 

gain in body weight but also due to our modern lifestyle, which is characterized by phys-

ical inactivity and overconsumption of food [10,11]. Our metabolism demands physical 

activity since similar to our metabolic response to the absence/presence of food, our ge-

nomes support a “physical activity cycle” as discussed by Chakravarthy et al., which, if 

ignored can be an origin of disease [6]. The sheer complexity in maintaining a balanced 

calorie intake, sufficient physical activity and adequate sleep has previously been the sub-

ject of investigation [12,13]. However, the hormonal background, potential interactions 

and confounding variables remain a matter of investigation. 

In recent years, intermittent fasting in particular time restricted feeding, described as 

the limited consumption of foods and calorie-containing beverages in a set window of a 

few hours per day and constantly abstaining from calorie-dense products for the remain-

ing hours, has shown health benefits [14,15]. The effects of fasting and the interaction with 

the circadian rhythm and its hormonal response in “re-setting the clock” have previously 

been discussed in several reviews [16–18]. However, it is unclear how physical exercise 

can be incorporated into this complex metabolic and hormonal interaction. Even though 

advocated as the “poly-pill” for the treatment of certain diseases, prescribing exercise in 

type, intensity, duration and mode may have a major impact on circadian rhythm and 

intermittent fasting strategies [19,20]. Therefore, this present review aimed to summarize 

novel information on fasting strategies, intermittent fasting, circadian rhythm and exer-

cise with respect to metabolic and hormonal responses to define recommendations of how 

to incorporate exercise for a healthy lifestyle. 

2. Materials and Methods 

For this narrative review, a literature search on PubMed was conducted in December 

2020 for research studies involving intermittent fasting (16/8), circadian rhythm, metabolic 

pathways and their interaction with physical exercise. Key articles from these broad areas 

of research were included. 

3. Results 

3.1. Circadian Rhythm 

The obligate need for a chocolate brownie after lunch and craving for sweet bever-

ages during the day when actually being overfed, or being overexcited when you are tired, 

sometimes seems like an arbitrary reaction of the body. Nevertheless, metabolic processes 

in the human sleep/wake and feeding/fasting cycle are influenced by a complex network 

of circadian pacemakers. They are synchronized by the suprachiasmatic nucleus (SCN) 

[21,22], which is located at the base of the hypothalamus, functioning as a central clock, 

and several peripheral tissue-specific clocks. The rhythmicity, which is sculpted by a cen-

tral transcription-translation autoregulatory feedback loop [23], roughly reflects the 24 h 

daily rhythm [24]. Anticipatory adjustments of rhythmicity of both, the SCN and periph-

eral clocks, are induced by changes in the exogenous physical environment. This leads to 

the formation of individual circadian rhythms. These rhythms interact with several phys-

iological processes, like sleep homeostasis [25–27], metabolic function [28–30] and the im-

mune system [31,32]. Additionally, numerous peripheral modulators are responsible for 

the control of tissue-specific processes. They are partly located in other brain regions like 

the pineal or pituitary gland [33], but are also localized outside the brain like cardiomyo-

cytes, liver and muscle cells [34–37]. 
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3.1.1. Hormonal Pathways and its Effects on the Circadian Rhythm 

The circadian rhythmicity in mammals is driven by the primary transcriptional-

translational autoregulatory feedback loop in the SCN including the key transcriptional 

activators, circadian locomotor output cycles kaput (CLOCK) and brain and muscle Arnt-

like 1 (BMAL1) [38]. The CLOCK:BMAL1 heterodimer subsequently formed initiates the 

expression of Period (Per) and Cryptochrome (Cry) genes. Specific messenger ribonucleic 

acid (mRNA) is then translated into the mPER and mCRY proteins in the cytoplasm. The 

PER:CRY heterodimers translocate to the nucleus and inhibit their own transcription by 

interacting with CLOCK:BMAL1 [24,39–41]. mPER and mCRY proteins form a part of the 

negative limb of the feedback loop. A second regulatory loop is initiated by 

CLOCK:BMAL1-activated transcription of retinoic acid-related orphan receptors Rev-

erbα,β and Rorα,β,γ. The translated proteins, REV-ERBα,β and RORα,β,γ, bind to retinoic 

acid-related orphan receptor response elements (ROREs). ROREs, which are present in 

the BMAL1 promoter, modulate transcription of Bmal1. REV-ERBα,β and RORα,β,γ in-

fluence expression in different ways. RORα,β,γ enhances Bmal1 mRNA levels, while REV-

ERBα,β represses them [42,43]. Both proteins are crucial in modulating the positive site of 

the autoregulatory feedback loop. Besides the central clock gene (CG) expression, many 

other peripheral cells show a rhythmical oscillation of CGs, as seen in liver, gut, heart, 

testis or adipose tissue [44–47]. In addition to CGs, peripheral tissues show transcription 

of thousands of clock-controlled genes (CCGs) regulated by clock output genes [48]. They 

influence, for example, the circadian rhythm of endocrine processes, including the for-

mation of adrenocorticotropic hormone (ACTH) or other glucocorticoids [49,50] or rhyth-

micity of metabolism [51,52]. 

3.1.2. External Stressors of the Circadian Rhythm 

Whenever the natural circadian rhythm is altered by external factors, this has physi-

ological (metabolic stress) as well as psychological (cognitive function and mental health) 

consequences [53]. The level of information about potential relationships between shift 

work and various diseases of civilization such as various types of cancer, metabolic or 

cardiovascular disease, or in combination, can be considered as inconsistent and rather 

inconclusive [54]. However, a factor for an increased risk of developing disease is a shifted 

rhythm of the sleep hormone melatonin, which has been shown previously [55,56]. Mela-

tonin is responsible for controlling thermoregulatory processes. The lowering of core body 

temperature when melatonin is released, results in the onset of sleepiness in the evening 

and a drop in melatonin concentration in the morning leads to awakening [57]. Exposure 

to light at night leads to an inhibition of melatonin release and, in shift workers, results in 

a shortened over-all sleep duration on workdays [58] and an increased prevalence of sleep 

disorders due to a shifted sleep-wake cycle [59,60]. In the morning, decreasing melatonin 

levels go hand in hand with formation of cortisol, which is regulated by the hypothalamic-

pituitary-adrenal (HPA) axis. Elevated total cortisol levels right after waking up [61] as 

well as a rise in absolute cortisol concentrations [62] were observed in shift workers pre-

viously. This indicates a disruption of the pituitary-adrenal response to light stimuli, 

which can already be observed after only five days of nighttime work [63]. The influence 

of increased cortisol and thus decreased melatonin levels on glucose metabolism was re-

viewed by Cipolla-Neto et al. They discussed studies on pinealectomized animals with a 

loss in endogenous pineal melatonin production, showing an increased peripheral and 

central insulin resistance, as well as decreased glucose tolerance and a reduction in glu-

cose transporter type 4 (GLUT4) mRNA in adipose and muscle tissue [64–66]. Therefore, 

an appropriate melatonin replacement therapy for populations with a lack in diurnal mel-

atonin production, like in shift workers and in the elderly, for either preventing, eliminat-

ing, or both, metabolic diseases is recommended [67]. This demonstrates the distinct in-

fluence of shift work on glucose homeostasis. Shift work also affects other endocrine func-

tions such as the secretion of ghrelin and leptin. Leptin, a satiety hormone produced by 
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the adipose tissue, is important in regulating appetite and energy metabolism [68]; its syn-

thesis is regulated by nutritional status. Ghrelin can be understood as an antagonist to 

leptin and is produced in the pancreas and the gastric mucosa. Higher ghrelin levels pro-

mote a decreased fat oxidation that leads to an increase of adipose tissue and food intake 

[69], whereas higher serum leptin levels represent an adequate nutritional status [70]. Lep-

tin is reduced and higher ghrelin levels are observed in subjects with shorter sleep dura-

tions [71], as regularly seen in shift workers [58,60,72], leading to a state of increased met-

abolic stress, which serves as a driver for development of metabolic diseases [73]. In ad-

dition, stress, irregular and unhealthy eating patterns and sedentary lifestyle may also 

lead to disturbances in circadian processes (Figure 1). 

 

Figure 1. Different Stressors modify the normal diurnal rhythmicity. The circadian rhythm is controlled by the light/dark-

cycle that influences the rhythmicity of central pacemaker (black) and thus all peripheral processes (red) are synchronized 

with each other (a). Different external stressors can lead to disturbances in the highly complex interaction of the central 

and peripheral oscillators. Damped responses of peripheral pacemakers (b) are observed especially in insulin resistance 

or night eating. High fat meals lead to prolonged cycles (c) and thus a shift of the periods against each other. Irregular 

rhythms (d) may be caused by irregular meals or generally an irregular lifestyle. A decoupling of the sleep/wake cycle 

from the light/dark cycle, as seen in shift work or due to modern lifestyle prolonged waking times, can additionally shift 

the periods against each other (e). A combination of several factors can result in a partial or complete decoupling of the 

peripheral from the central pacemaker (f). 

3.2. Intermittent Fasting as a Lifestyle 

Intermittent fasting (IF) has become the center of public attention and, therefore, of 

more research in recent years [74–76]. IF means food deprivation in a daily or hourly time 
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window. Methods carried out on a daily basis are usually linked to the aims of caloric 

restriction and weight loss. Probably the foremost known forms of day-long fasts are the 

so-called Leangains and Warrior Diet, in which an 8 h or 4 h eating window is imple-

mented from lunch to dinner or at the end of the day. These fasting forms, also known as 

time restricted feeding (TRF), are intended to be suitable as a long-term form of nutrition 

and will therefore be discussed in more detail in the following section. 

3.2.1. Intermittent Fasting and its Influence on Central Clock Genes/Hormones 

Recent studies in humans reported that intermittent fasting (IF), especially when 

feeding time is early or in the middle of the day, results in decreased body weight and fat 

mass as well as improved blood pressure and insulin sensitivity [77–81]. Due to the time 

restricted food intake, the body uses less glucose and more lipids and ketones as energy 

resources [82], resulting in improved glucose and lipid homeostasis [83], preventing mi-

tochondrial ageing processes [84] and deoxyribonucleic acid (DNA) repair by enhancing 

ketone body levels, indicators for a healthier metabolic phenotype [85]. In addition, a stim-

ulated thermogenic activity in brown adipose tissue leads to a reduction in body fat [86]. 

Many effects of TRF on either hypothalamic, pituitary, or both, hormones have already 

been described in literature [18,87–89] so its influence on metabolic processes, whether in 

health or in disease, cannot be neglected. 

3.2.2. Intermittent Fasting and Hormonal Pathways 

The hypothalamus, part of the endocrine system and nervous system, forms the in-

terface between the nervous and hormonal regulation of metabolism [90,91]. The SCN 

influences metabolism in peripheral organs by transmitting the time information via cir-

cadian CCGs to target organs, but peripheral CGs also show autonomous regulation of 

metabolic processes and influences CCGs, underlining the bidirectional character of cir-

cadian control. The connection between both is described in the review of Mazzoccoli et 

al., showing that misalignment of the central circadian clock in SCN with unusual 

light/dark cycles, or alterations in peripheral metabolic processes can both lead to disturb-

ances in circadian rhythmicity [51]. The hormones produced in the hypothalamus can be 

divided into two different classes—releasing hormones (RH) and inhibiting hormones 

(IH)—according to their function. RH promotes the release of other hormones like corti-

cotropin releasing hormone (CRH) for secretion of ACTH, whereas IH mitigates their re-

lease, like CRH-induced secretion of somatostatin, resulting in suppression of the release 

of growth hormone (GH) [92–94]. After the secretion of RH and IH, they reach the anterior 

pituitary gland (adenohypophysis) via the portal system, transmitting the hormones to 

trope cells and stimulating or inhibiting the secretion of somatotropic and glandotropic 

hormones [95]. They control the hormone release in peripheral glands, like glucocorti-

coids, influencing cortisol, insulin and glucagon secretion [96]. The two hormones, gluca-

gon and insulin, secreted by the α-(glucagon) and β-(insulin) cells of the pancreas, mainly 

regulate blood glucose levels [97]. Plasma insulin secretion is increased when blood glu-

cose levels are elevated [98] for stimulating glucose transport to muscle and adipocytes, 

while gluconeogenesis in the liver is inhibited [99]. In contrast, during hypoglycemia, glu-

cagon secretion is promoted, which increases blood glucose levels by hepatic glucose pro-

duction [100]. The peak of the circadian insulin secretion is reached in the early morning. 

Besides this internal rhythm, food intake has a great effect on insulin secretion, resulting 

in a postprandial increase of insulin and glucose levels [93]. In contrary, TRF reduces fast-

ing insulin levels when implementing in the morning, indicating an enhanced insulin sen-

sitivity [78,101]. Whole-body insulin sensitivity decreases throughout the day [102,103], 

which is why it seems that food intake at the beginning of the day is preferable, making 

early TRF the chosen method for improving and preventing metabolic diseases. Insulin 

and glucagon as the main hormones influencing glucose homoeostasis are regulated by 

SCN during fasting times but their secretion is sufficiently driven by tissue-specific CCGs 

during feeding cycles [104]. A change of the eating time from active to inactive phase, can 
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thereby lead to a reset of peripheral clock machinery, leading to shifted phases of periph-

eral and circadian clocks [105,106]. Organs involved in this complex process are the liver, 

pancreas, adipose and muscle tissue. The liver has a central role in maintaining glucose 

homeostasis and is governed by SCN control [107]. However, implementation of TRF has 

shown that alteration in the fasting/feeding time window results in complete decoupling 

of the liver clock from the hypothalamic clock. Many of the circadian transcripts found in 

the liver influence CG Per2 independently of the hepatocyte clock, highlighting the influ-

ence of additional external, hormonal or behavioral clocks [108]. Here, administration of 

insulin has been shown to induce a phase-advance of PER2. Conversely, a liver-specific 

Bmal1 knockout affects glucose homeostasis and Cry knockout alters glucagon-induced 

gluconeogenesis. Both lead to an improvement in glucose tolerance. [109,110]. In muscle, 

Rev-Erbα is the central CG. A deficiency in Rev-Erbα results in a deterioration of mitochon-

drial function [111], implying a deficiency in glucose metabolism, while a knockout of 

Bmal1 is associated with impaired muscle glucose uptake and metabolism [112]. Adipo-

cyte-specific Bmal1 knockout leads to obesity, displaying the increase in food consump-

tion when lacking Bmal1 [113]. However, in contrast to liver-specific knockout of Bmal1 

[109], no increase in insulin sensitivity could be detected. This finding is supported by 

results of Basse et al., which demonstrated a different diurnal rhythm of glucose uptake 

in skeletal muscle and adipose tissue compared to diurnal whole-body insulin tolerance 

in mice [114]. Metabolic processes in adipose tissue are also driven by other endogenous 

clocks like adipokines, with adiponectin regulating insulin sensitivity with a peak in the 

active phase [115]. Adipokines show a circadian rhythmicity but can also be altered with 

changes in sleep/wake and feeding/fasting cycles, which could explain the increased prev-

alence of metabolic disorders in shift workers [116]. Furthermore, in pancreatic cells, fur-

ther autonomous circadian rhythms have been found. Glucose-induced insulin secretion 

seems to be dependent on the two pancreatic-CGs, Bmal1 and Clock. This was demon-

strated in Clock and Bmal1 knockout mice, showing a disturbed glucose tolerance and de-

crease in insulin secretion [30]. Clock and Bmal1 are also involved in expression of some 

islet genes and therefore a normal pancreas-specific CG expression is required for suffi-

cient insulin release for glucose homoeostasis [117,118]. 

During fasting, glucagon stimulates hepatic glucose production. Several studies sug-

gest that glucagon levels also influence the expression of central CGs [119,120]. The effect 

of restricted feeding on glucagon levels and its influence on CGs was demonstrated by 

Mukherji et al. They measured a starvation-induced increase in glucagon and free fatty 

acids (FFA), leading to activation of transcriptional factor cAMP response element-bind-

ing protein (CREB) through glucagon and peroxisome proliferator-activated receptor al-

pha (PPARα) activation through enhanced FFA levels. This results in activated Per1 and 

Per2 expression (glucagon) and an increase in Rev-Erbα expression activated by FFA-

liganded PPARα [121]. The interplay between peripheral pacemakers and CG expression 

was also investigated by Jakubowicz et al., who compared the influence of glucagon-like 

peptide 1, a peptide hormone regulating glucagon and insulin levels [122,123], on CG ex-

pression after a single omission of breakfast in healthy individuals compared to individ-

uals with type 2 diabetes. They detected large differences between both groups after 

breakfast and on fasting days, resulting in the expression of different CGs in healthy com-

pared to type 2 diabetes. In addition, a difference in gene expression was detected between 

breakfast and fasting in both groups. This shows that metabolism in type 2 diabetes is 

associated with specific changes in gene expression and breakfast skipping shows meta-

bolic effects in health and disease [124]. The highly complex relationship between feed-

ing/fasting cycles and CGs and CCGs and its positive effect for resetting the circadian 

clock and preventing chronic metabolic diseases was discussed in more detail in the liter-

ature [89,101,125–127]. 

Another metabolism influencing hormone is adiponectin, an adipokine expressed in 

adipose tissue like leptin, sensitizing the tissue to insulin [128]. Adiponectin level is lower 

at higher body weights and leads to insulin resistance, a higher fat mass and central fat 
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distribution [129–131]. TRF appears to be a valuable method for enhancing adiponectin 

levels, which was proven by Moro et al. [81]. They randomized 34 resistance-trained males 

to a regular diet group and to TRF (16 h fasting, 8 h eating). After 8 weeks of intervention 

they detected a highly significant increase in adiponectin levels whereas leptin levels were 

lowered, which is in accordance with other literature [132]. In non-obese mice with type 1 

diabetes, it was further shown that substitution of insulin with leptin or supplementation 

of leptin instead of insulin therapy can mimic the effect of insulin monotherapy [133]. 

Glycated hemoglobin (HbA1c), indicator of long-term glycemic control, normalization was 

achieved with significantly lower glucose fluctuations. Furthermore, a reduction in 

plasma and tissue lipids was demonstrated, showing the comprehensive effect of leptin 

on metabolism. 

3.3. Exercise as a Lifestyle 

Within the last decades, physical exercise shifted towards the center of attention due 

to its multifactorial properties [20,134]. It can be applied in nearly any population of any 

age-group to improve physiological and psychological parameters and general quality of 

life [135–138]. Due to these properties, medicine has started to apply exercise with a per-

sonalized approach and moved forward towards an adjuvant therapy in different cohorts 

[139–141]. Besides its features in treating disease, it has also become part of daily life in 

healthy populations [142,143]. The World Health Organization (WHO) recommends at 

least 150 min of moderate-intensity, or 75 min of vigorous intensity per week [144]. From 

this perspective, living a physically active lifestyle is desirable and the urge of physiolog-

ical improvement to remain healthy and live with a high quality of life has become present 

through all age groups by an increased application of physical activity trackers, food apps 

or sleep trackers [145–147]. 

Users of these applications receive plenty of information from their devices; however, 

it is not entirely clear how nutrition, exercise and sleep interact. Of course, it is well known 

that a certain number of calories with a specific composition should be consumed daily to 

perform well in any kind of physical activity. However, dependent on the goal of the in-

dividual, a calorie surplus or a reduction of calories is important. Furthermore, composi-

tion and meal timing play a major role in physiological performance. Since the manage-

ment of exercise timing, intensity, duration and frequency and consumption of food in a 

specific manner, calorie amount and composition of food has not been complex enough, 

sleep and recovery should also be incorporated. Lack of sleep is the cause of severe psy-

chosocial diseases and also the origin of metabolic diseases since the hormonal cycle is 

reliant on a regular sleep and wake cycle. Once this cycle is disturbed, our physiological 

performance decreases rapidly. 

As a consequence, it is of interest to shed some light onto a topic that might appear 

trivial, yet the fragility and complexity of the simple and popular mantra “eat, train, 

sleep—repeat” might lead us further away from what it is actually supposed to be—a 

retreat. 

3.3.1. Macronutrient Timing 

Carbohydrates, mainly glucose, are used in particular by the brain and muscles dur-

ing physical activity [148,149]. A higher glucose tolerance in the morning [150] seems to 

make carbohydrate intake more reasonable in the early hours. This has been underpinned 

by a cross-over study in 10 healthy men that showed an increase in core body temperature 

(CBT) of up to 8 h and suppression of nocturnal melatonin production following a single 

carbohydrate-rich evening meal on 3 consecutive days [151], and thus, a shift in the circa-

dian clock. However, eating patterns must be considered in a differentiated way for ath-

letes when a performance limiting factor is the availability of carbohydrates [152]. More-

over, for short recovery times between training sessions (< 8 h), recommendations move 

towards immediate carbohydrate intake after the end of training whereas longer recovery 

times (> 24 h) allow a more flexible intake [153]. 
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Along with carbohydrates, fats represent the main energy reserve in the body. The 

influence of a nightly high-fat meal was studied in 25 healthy adults [154]. The postpran-

dial response was compared during the day (1:30 p.m.) and at night (1:30 a.m.), with sig-

nificantly higher circulating triacylglycerol (TAG) levels detected at night. In another trial, 

there was shown that TAG levels are lower after lunch as compared to breakfast [155], 

which could be explained by an increased uptake of TAGs into skeletal muscle and brown 

adipose tissue during the active phase [156]. Burdge et al. concluded that metabolic dis-

ease could possibly be prevented if high-fat meals were consumed sooner at lunch. 

After their breakdown into amino acids and peptides, proteins are taken up by pep-

tide transporters, mainly peptide transporter 1 (PEPT1), in the intestine [157]. Animal 

studies suggest that PEPT1 levels exhibit a diurnal rhythmicity, with increased levels at 

the beginning of the active phase [158]. This implies that protein intake, as well as carbo-

hydrate intake, should occur at the beginning of the day. 

3.3.2. Exercise Timing 

When it comes to the question of whether exercise should rather take place in the 

morning or evening, opinions differ tremendously. While some consider their training 

sessions to be a good way to end the day, others cannot get any rest after a late sports unit. 

Looking at the normal circadian rhythm, this seems surprising at first. For both strength 

and endurance training, maximum performance is observed in the afternoon and evening 

hours [159–161]. This is caused by the diurnal rhythm of the core body temperature (CBT). 

Rhythmicity is controlled by changes in blood flow, and thus, skin temperature of the 

distal limbs, which reaches its maximum in the late evening and its minimum in the morn-

ing [162]. The same processes controlling CBT are responsible for thermoregulation in ex-

ercise. This was demonstrated by comparing the initial response of temperature to mod-

erate activity at different times of the day (5:00 a.m., 11:00 a.m., 5:00 p.m. and 11:00 p.m.). 

Thus, the increase of about 0.75 °C in CBT in the morning is significantly larger than 0.45 

°C at the other experimental time points, whereas the increase in skin blood flow meas-

ured at the forearm was smaller [163], which is consistent with other literature [164,165]. 

This indicates that at times of most efficient thermoregulation, the greatest aerobic perfor-

mance can be observed. For example, in a ramp test performed in 11 cyclists, up to 95% of 

the maximum power (Pmax), the time to exhaustion (TTE) was determined [166]. Thus, TTE 

in the evening (6:00 p.m.) was on average 40 s (270 ± 105 s vs. 234 ± 85 s) longer than in the 

morning (6:00 a.m.). In contrast to 15% increase in power output (± 16%), no difference 

was measured in VO2mean and VO2peak. Similar results were obtained in a TTE (increase of 

3.66% VO2max/s to a maximum load of 95% of VO2max) in eight women. This is in agreement 

with other studies [167–169]. However, recent results highlight that large variations in 

performance can be observed between morning and evening types [170–172]. Thomas et 

al. concluded that exercise in the evening could lead to misalignments in early chrono-

types [173]. 

The results of anaerobic performance and muscle strength tests do not always show 

consistent results. However, the trend also shows that peak performance tends to be ele-

vated in the afternoon hours [174]. When comparing a force-velocity and a multi-jump 

test at three different times of the day (9:00 a.m., 2:00 p.m. and 6:00 p.m.; 23 subjects), a 

3% increase in performance was detected in the wheel test and 5–7% in the jump test [175]. 

A further investigation on 19 subjects with extended test times (2:00 a.m., 6:00 a.m., 10:00 

a.m., 2:00 p.m., 6:00 p.m., 10:00 p.m.) demonstrated that for Pmax, an increase of 7% at the 

peak clock time at 17:10 ± 00:52 h was observed. Furthermore, Ppeak and Pmean, determined 

by Wingate test, resulted in an increase of 7.6% and 11.3% and a peak clock time at 5:24 

p.m. ± 00:36 h and 6:00 p.m. ± 01:01 h, respectively [176]. This is consistent with other 

research [177–179]. The peak performance in the afternoon hours can also be observed for 

muscle strength tests [180]. Thus, the research is clear for most types of exercise and indi-

cate that performance is critically influenced by intrinsic factors. This demonstrates that 

knowledge of chronotype and the general circadian rhythmicity of thermoregulation is an 
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important tool in exercise planning, especially if training sessions are to be performed at 

maximal load with the lowest possible risk of injury [181]. 

Besides the influence of normal circadian variations of CBT on exercise performance, 

the peripheral muscle clock might have a crucial impact on diurnal energy metabolism. 

Initial results on metabolomic and transcriptomic investigations demonstrated that exer-

cise in the early active phase influences other metabolic processes than exercise in the early 

rest phase [182]. Adenosine triphosphate (ATP) production and utilization are dependent 

of hypoxia-inducible factor 1α (HIF1α) production in exercising skeletal muscle under hy-

poxic conditions. Mason et al. demonstrated that a shift from glycolytic to oxidative met-

abolic processes can be observed in HIF1α knockout mice, resulting in increased exercise 

times in concentric and decreased times in eccentric exercise [183]. In this regard, a high 

HIF1α muscle content seems to be beneficial during exercise with a high content of glyco-

lytic metabolic processes, whereas low levels seem to be advantageous during aerobic ex-

ercise. Sato et al. found higher levels of HIF1α only during exercise in the early active 

phase and a reduction in the levels of transcripts involved in mitochondrial processes, 

whereas glycolysis-related transcripts were elevated. In addition, they were able to detect 

increased fat and protein utilization in the early active phase. On the other hand, an in-

crease in energy expenditure was only detected when exercising in the early rest phase. 

They concluded that energy depletion in skeletal muscle cells is highest in early active 

hours and thus leads to changes in metabolic processes between the different times of 

exercise. For this reason, it seems advisable that concentric exercise with high mitochon-

drial capacity is better performed in the late active phase [182]. 

3.3.3. Exercise and other Hormonal Pathways 

The effect of exercise on hormonal pathways has often been discussed in literature 

[184–187]. A central point of scientific research is the investigation of insulin-independent 

GLUT4 skeletal muscle expression while exercising [188,189]. GLUT4 is a glucose trans-

porter that regulates glucose uptake in skeletal, cardiac muscles and fat cells, increasing 

insulin sensitivity and improving glucose metabolism, making exercise an early treatment 

in insulin resistance and diabetes. 

Cortisol is a frequently studied hormone in connection with exercise. Its secretion in 

adrenal cortex is initiated through HPA axis after release of ACTH [92]. Besides its func-

tion as the primary stress hormone [190], cortisol levels also represent the response to 

metabolic processes by releasing glucocorticoids which increases macronutrient utiliza-

tion [191]. External factors influencing cortisol levels are meals, hydration and exercise. 

During exercise, hydration influences the cortisol concentrations, as shown by Maresh et 

al. Thus, in a dehydrated state (hypohydrated by 5% of body mass), cortisol concentra-

tions were higher than in euhydrated state. Furthermore, an increase in exercise intensity 

from 70% to 80% VO2max resulted in higher cortisol concentrations before and 20 min after 

exercise [192]. Cortisol secretion is particularly important during prolonged exercise, as it 

prevents the esterification of FFAs and stimulates glucose production in the liver 

[193,194]. Cortisol, which is elevated during chronic stress can lead to the development of 

disease, from chronic pain to cardiac diseases [190,195]. However, after exercise it falls 

rapidly and can lead to a decrease in basal cortisol levels during sleep. This was shown in 

17 athletes in whom cortisol response to (1) a moderate training, (2) two high-intensity 

training sessions or (3) no training was measured at night [196]. This phenomenon, termed 

the exercise-glucocorticoid paradox by Chen et al. 2016 [197], shows that acute exercise 

induces a stress response, but the long-term effect leads to a reduction in stress hormone 

production. The cortisol response to exercise at different times of the day (7:00 a.m., 7:00 

p.m., 12:00 a.m.) was also studied and it resulted in different cortisol levels (highest corti-

sol levels at 7:00 a.m., suppression of cortisol release at 12:00 a.m.) [198]. The greatest in-

fluence on the increase in cortisol between rest days and exercise days was observed in 

the measurement at 12:00 a.m., since a lower basal cortisol concentration was determined 

here, due to the circadian rhythmicity of cortisol secretion (integrated cortisol 
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concentrations 07:00 a.m.: 127.64 ± 6.46 vs. 135.91 ± 12.23; 12:00 a.m.: 74.77 ± 14.29 vs. 103.94 

± 13.36 min·nmol/L on control vs. exercise days). Subsequently, in people with primary 

chronic insomnia, their condition was found to be associated with increased cortisol se-

cretion and increased HPA axis activity [199]; implementation of high-intensity exercise 

late in the evening could have a short-term negative effect on sleep quality. This issue has 

also been investigated by Buman et al. which used surveys to collect data on exercise be-

havior and sleep quality from 1000 individuals [200]. They distinguished between physi-

cal activity > 8 h, 4–8 h and < 4 h before bedtime and their influence on sleep quality. In 

their data, no significant difference between the groups was found, which could be asso-

ciated with a worsening in sleep quality when exercising in the evening. However, the 

low significance due to the subjectivity of the answers and the lack of physiological meas-

urement data must be viewed critically. Another point that should be considered when 

discussing exercise and associated cortisol levels, is the adrenal clock of cortisol produc-

tion. Cortisol concentrations peak in the early morning. This is mediated by adrenal CGs, 

triggered by light stimuli [93]. Cortisol, besides other glucocorticoids, was found to gen-

erate a catabolic status of muscle tissue [201,202]. Therefore, it seems, that especially an-

aerobic exercise and strength training should be performed in the afternoon, when cortisol 

levels decrease. This is supported by Bird and Tarpenning, as they showed that the corti-

sol response of 13 weight-trained men to heavy strength training was significantly lower, 

when performing at 6:00 p.m. compared to exercise at 6:00 a.m. [203]. 

As demonstrated in the previous sections, implementing normal day/night rhythm, 

exercise and time restricted feeding significantly influence metabolic processes and can 

thus help to rebalance circadian processes as also shown in Figure 2. 

 

Figure 2. Resetting the circadian clock. Sleep, time restricted feeding (TRF) and exercise affect circadian rhythmicity help-

ing to resynchronize the central with peripheral pacemakers by influencing different metabolic pathways. Exercise partic-

ularly affects peripheral processes in muscle and adipose tissues and influences glucose homeostasis. In addition, regular 

exercise can reduce stress levels by influencing cortisol levels. Besides, glucose homeostasis and hunger/satiety hormones 

are controlled by TRF. Despite these peripheral influences, sleep also affects central rhythmicity through a direct impact 

on melatonin and cortisol secretion. 

4. Discussion 

Since the circadian rhythm is already a highly complex system of central and periph-

erally controlled hormonal and metabolic processes, this system becomes even more com-

plex once TRF and exercise are incorporated [161,204,205]. TRF has been shown to be a 

tool in regulating glucose and lipid metabolism and increasing insulin sensitivity by di-

rectly regulating the blood glucose levels by means of hormones, insulin and glucagon, 

among others [78,101,119]. This is enhanced by the expression of adiponectin, sensitizing 

the adipose tissue to insulin and leptin, mimicking the effect of insulin monotherapy [133]. 

The blood glucose-lowering effect is also observed with the implementation of exercise, 

here the blood glucose-regulation runs through the peripheral insulin-independent 
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expression of GLUT4 in muscle cells [188,189]. Considering the normal circadian rhythm 

of macronutrient uptake, with an increased glucose tolerance and a peak activity of PEPT1 

for most efficient protein uptake in the morning and with an increased uptake of TAGs in 

the middle of the day, it seems that TRF with an early feeding phase is the most natural 

way of feeding, as metabolism is most efficient at this time and the ingested food can thus 

be best utilized. Some studies also showed more positive effects when feeding time fell in 

the morning hours compared to late feeding cycles. The late fasting cycle is therefore able 

to prevent the harmful effects of a nightly high fat diet and the associated increase in TAGs 

as well as an increased postprandial CBT after an excessive carbohydrate intake and thus 

a suppression of melatonin expression in the evening. Even though thermoregulatory pro-

cesses are more efficient in the afternoon and therefore maximal performance is usually 

maintained at this time, for recreational sports with mostly short durations or moderate 

intensities no or hardly any negative effect in performance should be noticed by switching 

exercise time from evening to morning hours. This allows a high flexibility in planning 

fasting/feeding cycles with exercise, especially for healthy individuals. The situation is 

different if TRF is used for health purposes like support in the treatment of type 2 diabetes. 

In this example, exercise should be performed before feeding time, as it results in a signif-

icantly higher improvement in blood glucose control [206] and lipid metabolism [207] in 

contrast to post-meal exercise. However, for other diseases or exercise types, the individ-

ual condition of the person must be taken into account. A differentiated metabolic re-

sponse to morning (fasting) and afternoon resistance exercise was observed in type 1 dia-

betics, in whom a greater incidence of hyperglycemia events occurred after morning than 

after afternoon exercise [208]. Summarizing these results, an early feeding time with ex-

ercise before feeding seems to result in the greatest improvements in metabolic processes 

and is preferable for the treatment of diseases, but must always be adjusted to the indi-

vidual. For athletes, a proper exercise timing as well as an adequate carbohydrate supply 

during either high-intensity, long duration, or both, exercises seemed to be essential as it 

could be a limiting factor in maintaining exercise performance [209,210]. Furthermore, re-

plenishing used glycogen immediately after training sessions for better regeneration is 

important [211]. A slower regeneration is not a problem in recreational exercise with a 

recommendation of 150 min of moderate-intensity, or 75 min of vigorous intensity per 

week, if a sufficient amount of carbohydrates is supplied within 24 h following exercise 

as suggested by Burke et al. However, this should be considered for ambitious recrea-

tional athletes as well as competitive athletes with several intensive training sessions per 

week or day. In that case it should be carefully weighed up whether the eating window 

should be placed in the midday and evening hours, or—preferably to be applied in the 

case of an early chronotype—the intensive units should be postponed to the morning 

hours. Depending on the goal—whether maximum physical performance or health pur-

poses—attention should also be given to a sufficient timeframe for the feeding period. 

Tinsley et al. showed that a limitation to 4 h of eating per day led to a reduced energy 

intake. This could be beneficial for health aspects, such as a reduction of body fat in over-

weight people, but could have a negative effect on athletes’ performances. TRF and exer-

cise have been shown to mainly influence peripheral hormonal processes in specific tis-

sues, such as adipose tissue, pancreas and muscle cells, with less influence on the central 

control mechanisms [15,18,78,81,89]. In contrast, the normal day/night rhythm may have 

an enormous influence on the central pacemaker—the SCN—and thus on the melatonin 

production controlled by the light/dark cycle [212]. Shifts in the circadian melatonin 

rhythmicity lead to shifts of the central and peripheral pacemaker against each other, 

which subsequently induces a suppression of the amplitude of the phase, or free running 

periods of hormone and gene expression [63,213,214]. These disturbances can be consid-

ered as the cause of metabolic diseases. Disturbances in the complex circadian system can 

be observed especially in shift workers since sleep deprivation increases disease risk fac-

tors. Furthermore, social jet-lag, in other words, the shift of the social clock against the 

normal circadian rhythm of the metabolism, as well as the excessive use of light-intensive 
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devices until late in the evening, lead to an increased prevalence of modern diseases 

[215,216]. 

5. Conclusions 

As shown in Figure 2, exercise and TRF are simple options implementable in daily 

life situations to potentially eliminate symptoms of sleep deprivation and other unhealthy 

lifestyle behaviors (Figure 1), leading to a disturbed circadian rhythm. However, the po-

tential cause of metabolic disease arising from sleep deprivation may not solely be elimi-

nated by the aforementioned implementation. Therefore, not only symptoms must be 

treated, but a holistic approach is necessary, which first identifies the disturbing factors 

on the sleep/wake cycles and successively eliminates them. Adding TRF and exercise is 

reasonable, and since for most people a significantly higher meal frequency than exercise 

frequency is achieved and more comprehensive processes can be regulated by TRF com-

pared to exercise, we should probably go from: eat, train, sleep—retreat to sleep, eat, 

train—retreat. 
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