
 

 
 

 

 
Biomolecules 2021, 11, 508. https://doi.org/10.3390/biom11040508 www.mdpi.com/journal/biomolecules 

Article 

Glycan Epitopes on 201B7 Human-Induced Pluripotent Stem 

Cells Using R-10G and R-17F Marker Antibodies 

Yuko Nagai 1, Hiromi Nakao 2, Aya Kojima 1, Yuka Komatsubara 1, Yuki Ohta 3, Nana Kawasaki 3,  

Nobuko Kawasaki 2, Hidenao Toyoda 1 and Toshisuke Kawasaki 2,* 

1 Laboratory of Bio-Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University,  

Shiga 525-8577, Japan; ph0011vi@gmail.com (Y.N.); sano.a1029@gmail.com (A.K.);  

ph0104ev@ed.ritsumei.ac.jp (Y.K.); hidenao@ph.ritsumei.ac.jp (H.T.) 
2 Glycobiotechnology Laboratory, Ritsumeikan University, Shiga 525-8577, Japan; 

15v00381@gst.ritsumei.ac.jp (H.N.); 14v00048@gst.ritsumei.ac.jp (N.K.) 
3 Department of Medical Life Science, Yokohama City University, Kanagawa 230-0045, Japan;  

yuki.ohta@hotmail.com (Y.O.); nana@yokohama-cu.ac.jp (N.K.) 

* Correspondence: tkawasak@fc.ritsumei.ac.jp; Tel.: +81-77-561-3444 

Abstract: We developed two human-induced pluripotent stem cell (hiPSC)/human embryonic stem 

cell (hESC)-specific glycan-recognizing mouse antibodies, R-10G and R-17F, using the Tic 

(JCRB1331) hiPSC line as an antigen. R-10G recognizes a low-sulfate keratan sulfate, and R-17F rec-

ognizes lacto-N-fucopentaose-1. To evaluate the general characteristics of stem cell glycans, we in-

vestigated the hiPSC line 201B7 (HPS0063), a prototype iPSC line. Using an R-10G affinity column, 

an R-10G-binding protein was isolated from 201B7 cells. The protein yielded a single but very broad 

band from 480 to 1236 kDa by blue native gel electrophoresis. After trypsin digestion, the protein 

was identified as podocalyxin by liquid chromatography/mass spectrometry. According to Western 

blotting, the protein reacted with R-10G and R-17F. The R-10G-positive band was resistant to diges-

tion with glycan-degrading enzymes, including peptide N-glycanase, but the intensity of the band 

was decreased significantly by digestion with keratanase, keratanase II, and endo-β-galactosidase, 

suggesting the R-10G epitope to be a keratan sulfate. These results suggest that keratan sulfate-type 

epitopes are shared by hiPSCs. However, the keratan sulfate from 201B7 cells contained a polylac-

tosamine disaccharide unit (Galβ1-4GlcNAc) at a significant frequency, whereas that from Tic cells 

consisted mostly of keratan sulfate disaccharide units (Galβ1-4GlcNAc(6S)). In addition, the abun-

dance of the R-10G epitope was significantly lower in 201B7 cells than in Tic cells. 

Keywords: human-induced pluripotent stem cells (hiPSCs); monoclonal antibodies; R-10G; R-17F; 

keratan sulfate; podocalyxin; keratanase II; endo-β-galactosidase 

 

1. Introduction 

In the last decade, many interesting findings have been reported in the field of stem 

cells. Human-induced pluripotent stem cells (hiPSCs) are already used as tools for drug 

development and disease modeling, and their most important potential application is the 

generation of cells and tissues that can be used for regenerative medicine [1]. Stem cell 

research is obviously one of the most fascinating and exciting areas of contemporary bi-

ology, including glycobiology [2]. 

Glycans attached to proteins (glycoproteins) and lipids (glycolipids) are mainly lo-

cated at the outermost surface of the cell. Significant alterations in the cellular glycoform 

may occur during differentiation and glycans could serve as specific stem cell markers 

and cellular differentiation biomarkers. At the time when hiPSCs were first generated 

from differentiated cells, SSEA4 [3,4] and TRA1-60 [5] were widely used as pluripotent 

cell markers. However, these traditional marker antibodies were generated against 
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human teratocarcinoma cells: 2102Ep for TRA-1-60 and GCTM2 for SSEA-4. In other 

words, these antibodies are not specific to hiPSCs/hESCs; rather, they recognize those gly-

cans that are common to hiPSCs/hESCs and human embryonal carcinoma cells (hECs). 

New antibodies that are capable of distinguishing between malignant and normal pheno-

type would be valuable. With this background, we generated antibodies by using the Tic 

(JCRB1331) hiPSC line as an antigen [6]. We first selected hiPSC (Tic)-positive hybridomas, 

from which hEC (2102Ep)-positive hybridomas were excluded. Most of the antibodies 

raised recognized both hiPSCs (Tic) and hECs (2l02Ep). But, fortunately, we obtained R-

10G and R-17F antibodies that were able to bind nearly specifically to hiPSC/hESC. The 

R-10G binding protein was isolated from Tic cell lysates using an R-10G affinity column 

and identified as podocalyxin by liquid chromatography–tandem mass spectrometry (LC-

MS/MS) after SDS-PAGE [6]. The minimum epitope structure of R-10G was indicated to 

be Galβ1-4GlcNAc(6S) β1-3 Galβ1-4GlcNAc(6S) β1 with ELISA by using synthetic oligo-

saccharides [7]. The R-17F antigen was initially isolated to homogeneity from total lipid 

extracts of Tic iPSC and identified as Fucα1-2Galβ1-3GlcNAβ1-3Galβ1-4Glc-Cer by ma-

trix-assisted laser desorption ionization–time of flight mass spectrometry [8]. Subse-

quently, R-17F epitope was also found to be expressed on the R-10G-binding protein [9]. 

On the other hand, SSEA4 recognizes Neu5Acα2-3Galβ1-3GalNAcβ1-3Gal-R [3] and the 

major epitope of TRA1-60 is Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ1 [7,10]. Thus, the 

glyco-epitopes of R-10G and R-17F antibodies are totally different from those of SSEA4 

and TRA1-60. The immuno-histochemical studies by laser confocal microscopy and 

flowcytometry demonstrated that R-10G and R-17F epitopes were expressed not only on 

two hiPSCs lines, Tic and 201B7, but also on two hESCs lines, H9 and KhES-3 [6,8], sug-

gesting that R-10G and R-17F epitopes can be marker molecules on the undifferentiated 

stage of hiPSCs. Another important observation was that the R-10G and R-17F epitopes 

are localized differentially on these cells: R-10G epitope appears to be distributed evenly 

on the whole surface of cells, while R-17F epitope appears to be selectively localized on 

cell membranes. 

The immuno-histochemical profiles described above strongly suggested that there 

are high similarities in glycan profiles on the surfaces of hiPSCs/hESCs. The present study 

aims to dissect these similarities from several aspects using 201B7hiPSC as a basis for com-

parison, which is a prototype of hiPSCs generated by Dr. Yamanaka [1] and is currently 

used as a kind of control or standard hiPSC. Subjects to be explored include: identification 

of specific glycoproteins carrying multiple glycan-epitopes, type of glycoprotein carrying 

major glyco-epitopes (N-glycans, O-glycans, or glycosaminoglycans), and biochemical 

characterization of keratan sulfate, which is an actively developing area in glycobiology. 

2. Materials and Methods  

2.1. Antibodies and Enzymes 

Anti-TRA-1-60 (clone TRA-1-60, mouse IgM) was obtained from R&D Systems Inc. 

(Minneapolis, MN, USA). Horseradish peroxidase (HRP)-conjugated rabbit anti-mouse Ig 

was obtained from Agilent Technology (Santa Clara, CA, USA). Polyclonal goat anti-po-

docalyxin IgG and HRP-conjugated rabbit anti-goat IgG secondary antibodies were ob-

tained from R&D Systems. Anti-human iPSC/ESC, R-10G (mouse IgG1), and R-17F 

(mouse IgG1) antibodies were prepared as described previously [6,8]. 

Peptide N-glycanase (PNGase F; recombinant protein from Escherichia coli) was ob-

tained from Roche Diagnostics GmbH (Mannheim, Germany), neuraminidase (Arthrobac-

ter ureafaciens) from Nacalai Tesque (Kyoto, Japan), α1-3/4 fucosidase from TaKaRa Bio, 

Inc. (Shiga, Japan), and α1-2 fucosidase from New England Biolabs (Ipswich, MA, USA). 

Chondroitinase ABC (Proteus vulgaris), heparinase mixture (heparinase, heparitinase I, 

and heparitinase II), keratanase (Pseudomonas sp.), keratanase II (Bacillus sp.), and endo-β-

galactosidase (Escherichia freundii) were obtained from Seikagaku Biobusiness (Tokyo, Ja-

pan). 
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2.2. Cell Culture  

The hiPSC line Tic (JCRB1331) was obtained from the Japanese Collection of Research 

Bioresources (JCRB) Cell Bank, National Institutes of Biomedical Innovation, Health and 

Nutrition (Osaka, Japan). 201B7 (HPS0063) cells were obtained from the Center for iPS 

Cell Research and Application, Kyoto University (Kyoto, Japan). These cells were pre-

pared after transfection of four defined factors (Oct3/4, Sox2, Klf4, and c-Myc) [1,6]. The 

cells were maintained in Knockout Serum Replacement medium (Invitrogen-Life Tech-

nologies, Carlsbad, CA, USA) on mitomycin C-inactivated mouse embryonic fibroblasts 

(Merck Millipore, Billerca, MA, USA) and harvested by treatment with 0.1% ethylenedia-

minetetraacetic acid (EDTA)-4Na/phosphate-buffered saline, as described previously [6]. 

2.3. Isolation of R-10G-Binding Protein from 201B7 Cells 

hiPSC lysates were prepared by sonicating 201B7 cells (2.4 mg protein/2.4 × 107 cells, 

pooled cells after 9, 11, and 15 numbers of passages) in complete radioimmunoprecipita-

tion assay (RIPA) buffer (1.25 mL; 6 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% Nonidet P-

40, 0.5% sodium deoxycholate, 0.1% SDS, 0.004% sodium azide) supplemented with phe-

nylmethylsulfonyl fluoride, sodium orthovanadate, and protease inhibitor cocktail (Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA, USA). The lysates were centrifuged to remove 

insoluble residues, and the supernatant was added to an R-10G Sepharose 4B column (gel 

volume, 0.4 mL), which had been prepared by coupling R-10G (4 mg protein) to BrCN-

activated Sepharose 4B (1.0 mL; GE Healthcare, Tokyo, Japan) in 0.1 M NaHCO3 buffer 

(pH 8.3)/0.5 M NaCl according to the manufacturer’s instructions. After washing the col-

umn with complete RIPA lysis buffer, bound proteins were eluted in elution buffer con-

sisting of 10 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.1 M diethylamine-HCl (pH 11.5), and 

0.1% Nonidet P-40. The eluate containing R-10G antigen was collected in microtubes (200 

µL/tube) and immediately neutralized by adding 1 M Tris-HCl buffer (pH 6.8) (40 

µL/tube).  

2.4. SDS-PAGE and Western Blotting 

SDS-PAGE and Western blotting were performed according to the methods of 

Laemmli [11] and Towbin [12], respectively. Briefly, samples were resolved by 4–15% gra-

dient SDS-PAGE (Mini-PROTEAN TGX gel; Bio-Rad, Hercules, CA, USA) under reducing 

conditions, followed by Western blotting or protein staining. For Western blotting, re-

solved proteins were transferred to Immobilon transfer membranes (Millipore, Billerica, 

MA, USA), followed by detection using specific Abs. For visualization, Immunostar Zeta 

(Fujifilm Wako Pure Chemical Corp., Osaka, Japan) was used with HRP-conjugated rabbit 

anti-mouse Ig or HRP-conjugated rabbit anti-goat IgG, followed by analysis using the Lu-

mino-Image Analyzer, Las 4000 Mini (GE Healthcare). Proteins on the membrane were 

stained with GelCode Blue (Thermo Fisher Scientific, Waltham, MA, USA), SilverQuest 

Silver Stain (Invitrogen), or SYPRO® Ruby Protein Gel Stain (Invitrogen) according to the 

manufacturers’ protocols.  

2.5. Identification of the R-10G-Binding Protein in 201B7 Cells  

Following SDS-PAGE of the purified R-10G-binding protein, the immunoreactive 

protein bands were excised from the gel and subjected to in-gel digestion. The peptides 

released were analyzed by LC-MS/MS using a hybrid quadrupole-Orbitrap mass spec-

trometer (Q-Exactive, Thermo Fisher Scientific) interfaced online with a nano-flow HPLC 

(EASY-nLC 1000, Thermo Fisher Scientific). The sample was loaded onto the trap column 

(0.075 mm i.d. × 20 mm, 3 µm, Acclaim PepMap 100, Thermo Fisher Scientific), and sepa-

ration was performed on a C18 column (0.075 mm i.d. × 125 mm, 3 µm, NTCC-360/75-3-

125, Nikkyo Technos, Tokyo, Japan) at a flow rate of 300 nL/min. The eluents consisted of 

0.1% formic acid (pump A) and 80% CH3CN and 0.1% formic acid (pump B), and peptides 

were eluted using a linear gradient of 0–35% B. Data-dependent MS/MS acquisitions were 
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performed for the most intense ions as precursors. Proteins were identified by searching 

the human protein database (UniProt) using the Discoverer v1.4 search engine (Thermo 

Fisher Scientific). 

2.6. Chemical Analysis of R-10G-Binding Protein in 201B7 Cells 

Determination of sialic acid content in R-10G-binding protein from 201B7 cells was 

performed as described previously [13]. R-10G-binding protein (5 µL, 8.5 ng) in 50 µL 50 

mM hydrochloric acid was heated at 80 °C for 1 h. The hydrolysate was applied to cen-

trifugal ultrafiltration membranes. The flow through (20 µL) was evaporated, and the 

sample was resuspended in 7.5 µL 75% acetonitrile. A 5 µL aliquot of the sample solution 

was subjected to HPLC using an InertSustain Amide Column (GL Sciences, Tokyo, Japan). 

Amino sugars were analyzed as described previously [14]. Briefly, samples were sub-

jected to hydrolysis in 6 N HCl at 100 °C for 2.5 h. Amino sugars released by hydrolysis 

were separated on a TSK gel SCX column (4.6 mm i.d. × 150 mm) and eluted with 0.35 M 

borate/NaOH buffer (pH 7.6) at 60 °C, with a high sensitivity achieved by a post-column 

reaction with 1% 2-cyanoacetamide. The oligosaccharides released from keratan sulfates 

upon keratanase II digestion or endo-β-galactosidase digestion were separated using a gel 

permeation HPLC system with fluorometric post-column detection [6]. 

3. Results 

3.1. Glycan-Epitope Profiles of 201B7 Cells 

We examined the glyco-epitope profiles of the crude extracts of 201B7 cells, as de-

scribed previously in Tic cells, which were used as antigens to raise anti-iPSCs in mice 

[6,8]. Upon Western blotting, R-10G, R-17F, and TRA-1-60 yielded a single major band at 

~250 kDa, similar to the result using an anti-podocalyxin antibody (Figure 1A). In addition 

to a single major band at 250 kDa, R-17F yielded second and third bands at ~100–150 and 

75 kDa. Gel Code Blue (protein) staining (Figure 1B) revealed a large number of bands 

between 20 and 150 kDa, in addition to two bands at ~250 kDa, in the crude extracts of 

201B7 cells. Therefore, the glycoproteins carrying these glycan epitopes (R-10G, R-17F, 

and TRA-1-60) might be present as high-molecular-weight proteins on the surface of hiP-

SCs (201B7). 

 

Figure 1. SDS-PAGE of iPSC lysates and Western blotting using the indicated antibodies. (A) 

Whole-cell lysates of 201B7 cells (8.0 × 104) and Tic cells (6.2 × 104) in complete RIPA buffer were 

resolved by SDS-PAGE on a 4–15% gradient gel under reducing conditions. The proteins were 

Western blotted using R-10G, R-17F, TRA-1-60, and anti-podocalyxin antibodies (3 µg pro-

tein/mL). (B) Gel Code Blue-stained gel of 201B7 (7.7 × 104) and Tic (5.2 × 104) cell lysates. 
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The glyco-epitope profiles of 201B7 cells were similar to those in our previous reports 

on Tic hiPSCs [6,8]. In addition, they were in agreement with the co-expression profiles of 

these epitopes revealed by flow cytometry and by confocal laser microscopy using the 

same antibodies ([6,8], Figure S4). Therefore, these epitopes are shared by hiPSCs. How-

ever, it is of note that the expression of R-10G epitope was higher in Tic cells than in 201B7 

cells (Figure 1A, lane 1 vs. 2, in which equal amounts of total cell proteins (6 µg) were 

loaded).  

3.2. Purification of the R-10G-Binding Protein from 201B7 Cells 

Next, we purified the R-10G-binding protein from 201B7 cells, as described for puri-

fication of R-10G from Tic cells. The 201B7 cell extracts were loaded onto an R-10G Se-

pharose 4B affinity column, and the bound proteins were eluted with 0.1 M diethylamine-

HCl (pH 11.5) [6]. After resolution by SDS-PAGE, proteins were subjected to Western blot-

ting using R-10G. All R-10G-binding proteins applied bound to the column and were 

eluted as a single major band at ~250 kDa (tubes 15–20, Supplementary Figure S1). How-

ever, this one-time purified R-10G-binding protein yielded numerous protein bands at 37–

150 kDa (data not shown) by silver staining, indicating that additional purification was 

required. Re-chromatography of the one-time purified R-10G-binding protein on the same 

R-10G Sepharose 4B column resulted in its complete retention and almost quantitative 

recovery of the eluate fraction (tubes 16–21, Supplementary Figure S2). After SDS-PAGE 

and silver staining, this two-time purified R-10G-binding protein yielded a single pre-

dominant protein band (Figure 2A, lane 1) and a predominant immunoreactive band with 

R-10G (lane 2) also at ~250 kDa, indicating the R-10G-binding protein to be of high purity. 

 

Figure 2. SDS-PAGE and blue native PAGE of R-10G-binding protein purified from 201B7 cells. 

(A) Purified R-10G-binding protein from 201B7 cells (1 ng protein) was resolved by SDS-PAGE on 

a 4–15% gradient gel under non-reducing conditions, followed by silver staining (lane 1) or West-

ern blotting using R-10G (3 µg protein/mL) (lane 2). (B) The purified R-10G-binding protein from 

201B7 cells (0.25 ng protein) was resolved by SDS-PAGE on a 4–15% gradient gel under non-re-

ducing conditions, followed by Western blotting with the following antibodies (3 µg protein/mL): 

R-10G (lane 1), R-17F (lane 2), TRA-1-60 (lane 3), and anti-podocalyxin (lane 4). (C) R-10G-binding 

protein purified from 201B7 cells (1 ng protein in lane 1, 0.3 ng in lanes 2 and 3) was resolved by 

blue native PAGE on a 3–12% gradient gel under non-reducing conditions, followed by silver 

staining (lane 1) or Western blotting using antibodies (3 µg protein/mL) against R-10G (lane 2) and 

R-17F (lane 3). 

SDS-PAGE of the purified R-10G-binding protein, followed by Western blotting us-

ing the R-10G, R-17F, and TRA-1-60 antibodies, yielded a single major band at ~250 kDa, 

similar to that yielded using the anti-podocalyxin antibody (Figure 2B), suggesting that 
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the R-10G, R-17F, and TRA-1-60 glycan epitopes are present on a common core protein, 

podocalyxin.  

Next, purified R-10G-binding protein was subjected to blue native PAGE and West-

ern blotting using R-10G and R-17F antibodies. Blue native PAGE is superior to SDS-

PAGE for separating large membrane proteins [15]. The purified R-10G-binding protein 

from 201B7 cells yielded a single broad band at 480–1236 kDa by protein staining (Figure 

2C, lane 1) and Western blotting using R-10G (Figure 2C, lane 2) or R-17F (Figure 2C, lane 

3). Note that the major parts of these two epitopes overlapped along the broad bands, but 

R-10G staining was stronger in the upper half of the band and R-17F staining in the lower 

half. Therefore, the purified R-10G-binding protein comprised a family of proteins bearing 

the R-10G and R-17F epitopes. The larger proteins contained more R-10G epitopes and the 

smaller proteins more R-17F epitopes.  

3.3. Identification of the Purified R-10G-Binding Protein as Podocalyxin 

The above results suggested that the R-10G-binding protein purified from 201B7 cells 

is a near-homogeneous family of highly purified proteins. Purified R-10G-binding protein 

was subjected to SDS-PAGE and Western blotting using R-10G and R-17F antibodies and 

staining with SYPRO Ruby (Figure 3A). 

 

Figure 3. Identification of the R-10G-binding protein as podocalyxin by LC-MS/MS. (A) Western blotting using R-10G and 

SYPRO Ruby staining. Purified R-10G-binding protein (3 ng protein in lanes 1 and 2, 10 ng protein in lane 3) was resolved 

by SDS-PAGE on a 4–15% gradient gel under reducing conditions. Lanes 1 and 2 show the results of Western blotting 

using R-10G and R-17F respectively, and lane 3 shows SYPRO Ruby staining. The protein bands a, b, and c were excised 

from the gel and analyzed by LC-MS/MS. Protein concentrations were estimated based on the SYPRO Ruby staining in-

tensity in comparison with two concentrations of standards from the High-Molecular-Weight SDS Calibration Kit for Elec-

trophoresis (Amersham Pharmacia Biotech). (B) Identification of R-10G antigen by LC-MS/MS. The identified peptides in 

band “a” are underlined in blue within the complete human podocalyxin sequence. Those in band “b” are underlined in 

orange and those in band “c” in green. N, potential N-glycosylation sites. 

R-10G and R-17F immunostaining and SYPRO Ruby staining indicated a broad band 

at ~250 kDa, although each lane consisted of several bands that did not completely over-

lap. Therefore, we divided these areas into three sections. Band “a” was at ~250 kDa and 

showed the same positivity for R-10G, R-17F, and SYPRO Ruby staining. Band “b” was 

above 250 kDa and was strongly positive for R-10G but less so for R-17F. Band “c” was 

just below 250 kDa, which was positive only for R-17F. The gels were excised into three 

fractions (a, b, c; SYPRO Ruby staining; Figure 3A) and subjected to in-gel digestion fol-

lowed by LC-MS/MS (Figure 3B). The three fractions of the major Western blot band gen-

erated several peptide sequences, all of which corresponded to partial sequences of podo-

calyxin. Also, podocalyxin was the only protein common to bands a–c and had the highest 

coverage of proteins from bands a and b.  

Podocalyxin is the major sialoprotein expressed on podocytes from rat kidney 

glomerulus and has a molecular weight of 140 kDa [16]. Human podocalyxin is a type 1 
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transmembrane protein belonging to the CD34 family of sialomucins (160–165 kDa) and 

its gene encodes a protein of 528 amino acids. The extracellular domain of podocalyxin is 

extensively glycosylated with sialylated O-linked carbohydrates and five potential sites 

for N-linked glycosylation [17–19]. Podocalyxin is expressed primarily in vascular endo-

thelia of adult vertebrates [20] and is required for maintaining the integrity of the blood–

brain barrier [21]. Podocalyxin is also a remarkable glyco-epitope carrier. The human stem 

cell marker epitopes TRA-1-60 and TRA-1-81 are contained within podocalyxin [22]. 

hiPSC-derived podocalyxin carries not only R-10G and R-17F [6,9] but also additional 

epitopes recognized by newly generated anti-hiPSC antibodies (R-6C and R-13E; manu-

scripts in preparation).  

3.4. Characterization of the Glycans of Purified R-10G-Binding Protein by Glycosidase Digestion 

Next, we digested the purified R-10G-binding protein with glycosidases prior to 

SDS-PAGE and determined the effects of digestion on the intensities and migration posi-

tions of the immunoreactive bands. 

First, we digested purified R-10G-binding protein with PNGase F prior to SDS-

PAGE, which released N-linked glycans from the core protein. The digestion resulted in 

essentially no decrease in R-10G-binding activity (Figure 4A, lane 1), indicating that N-

linked glycans are not the major epitopes. However, PNGase F digestion caused a shift of 

the predominant band from the middle to lowest position of the broad band, indicating 

the presence of a considerable number of N-linked glycans lacking R-10G-binding activ-

ity. Therefore, the glycan epitopes are likely present only on O-linked glycans. 

 

Figure 4. Characterization of the purified R-10G-binding protein by glycosidase digestion and Western blotting. Purified 

R-10G-binding protein (0.5–4 ng) incubated with (+) or without (−) glycosidases was subjected to SDS-PAGE on a 4–15% 

gradient polyacrylamide gel under non-reducing conditions. The exception was PNGase F digestion, which requires pre-

heating under reducing conditions. Western blotting using R-10G was subsequently conducted. (A) Purified R-10G-bind-

ing protein from 201B7 cells was digested with PNGase F (lane 1), chondroitinase ABC (lane 2), a heparinase mixture (lane 

3), α1-3/4 fucosidase (lane 4), α1-2 fucosidase (lane 5), neuraminidase (lane 6), and keratanase (lane 7), and the digests 

were analyzed by Western blotting using R-10G. (B) Purified R-10G-binding protein from 201B7 (lanes 1, 3) and Tic (lanes 

2, 4) cells incubated with (+) or without (−) endo-β-galactosidase (lanes 1, 2) or keratanase II (lanes 3, 4) was analyzed by 

Western blotting using R-10G. 

Next, we characterized the R-10G epitope by applying glycosaminoglycan-degrad-

ing enzymes. Chondroitinase ABC (lane 2), which degrades the chondroitin sulfate sub-

family, and a heparinase mixture (lane 3), which degrades various subtypes of heparan 

sulfates and heparins, did not decrease the R-10G-binding activity (Figure 4A). Indeed, 

reactivity was enhanced. Therefore, neither heparan sulfate/heparin nor chondroitin sul-

fates are major constituents of the epitope structure. Digestion of the R-10G-binding pro-

tein with either α1-3/4 fucosidase or α1-2 fucosidase did not yield a detectable change in 

the immunoreactive bands, excluding a major role of fucose residues in the R-10G epitope 

(lanes 4 and 5). Similarly, digestion with neuraminidase (lane 6) did not decrease binding 

activity, excluding a role of neuraminic acid. 
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However, keratanase (lane 7), which digests keratan sulfate when the C-6 of GlcNAc 

is sulfated but the C-6 of galactose is not [23], significantly decreased the R-10G-binding 

activity, suggesting that the epitope harbors a keratan sulfate. We next applied two other 

keratan sulfate-degrading enzymes: keratanase II (hydrolyzes the 1,3-β-glucosamine link-

ages in keratan sulfate to galactose when the 6-O-position of GlcNAc is sulfated [7,24]) 

and endo-β-galactosidase (hydrolyzes the 1,4-β-galactosidic linkage when the 6-O-posi-

tion of the Gal residue is not sulfated, irrespective of the presence of sulfate on the adjacent 

GlcNAc) [23,25]. As shown in Figure 4B, the Western blot band representing the R-10G-

binding protein from 201B7 cells disappeared completely after digestion with endo-β-ga-

lactosidase (lane 1) but was merely reduced in intensity after digestion with keratanase II 

(lane 3). This suggests that the R-10G epitope on the R-10G-binding protein from 201B7 

cells contains a few sulfated sugars. Similar results were obtained when the R-10G-bind-

ing protein from Tic cells was treated with these two glycosidases (lanes 2 and 4, respec-

tively). However, the R-10G band at >250 kDa protein disappeared after keratanase II di-

gestion (lane 4). It is possible that a part of the R-10G-binding protein in this high-molec-

ular-weight region was more sensitive to keratanase II digestion, likely because of a rela-

tively high local frequency of sulfated sugars. 

3.5. Chemical Analysis of the R-10G Epitope  

We next determined the sialic acid content of the R-10G-binding protein purified 

from 201B7 cells by HPLC (Figure 5A). This method involved separation and detection of 

N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) by hydro-

philic interaction liquid chromatography and a fluorometric post-column reaction using 

2-cyanoacetamide [13]. The purified R-10G-binding protein, following hydrolysis in 50 

mM HCl at 80 °C for 1 h, showed a single peak at the position of Neu5Ac and none at the 

position of Neu5Gc, indicating Neu5Ac to be the predominant constituent of the protein, 

in which it is present at 3.98 × 10−12 mol/ng protein. 

We also determined the amino sugar contents of the R-10G-binding protein purified 

from 201B7 cells (Figure 5B). Lyophilized proteins were hydrolyzed in 6 M HCl and 

heated at 100 °C for 2.5 h. The sample was subjected to hydrophobic interaction liquid 

chromatography using a TSK gel SCX column, and eluates were detected by fluorometric 

post-column reaction using 2-cyanoacetamide. GlcN (peak 1) and GalN (peak 2) were ef-

fectively separated, and the GlcN and GalN contents of R-10G-binding protein were 15.7 

and 3.92 × 10-12 mol/ng protein respectively, with a GlcN/GalN molar ratio of 4.00. Based 

on the sialic acid content of the protein, the GlcN/Neu5Ac molar ratio was 3.95. 

Based on the different sensitivities to keratanase II digestion of the R-10G-binding 

proteins isolated from 201B7 and Tic cells (Figure 4B, lanes 2 and 4), we conducted a chem-

ical analysis of R-10G-binding protein purified from 201B7 cells. In our prior keratan sul-

fate analysis, the oligosaccharides released by keratanase II digestion were determined by 

reversed-phase ion-pair chromatography using a fluorometric post-column detector [6]. 

Here, we used a new method involving gel permeation chromatography using a fluoro-

metric post-column detector [7] and digestion with endo-β-galactosidase rather than 

keratanase II. This enabled analysis of keratan sulfate oligosaccharides with low or no 

sulfated sugars (i.e., polylactosamine). 

We first evaluated the procedure using bovine cornea keratan sulfate. As shown in 

Figure 5C(a), after endo-β-galactosidase digestion, GlcNAc(6S) β1-3Gal (peak 1) was ob-

tained as the predominant oligosaccharide and GlcNAcβ1-3Gal (peak 2) was also detected 

as a minor component, in agreement with a prior report [26]. 
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(GlcNAc(6S) β1-3Gal; 0.30). The underlying reasons are unclear but may be linked to the 

structural complexity of these glycans and/or differences in experimental conditions.  

Table 1. Chemical analysis of R-10G-binding protein from 201B7 cells. 

Carbohydrate Molar Ratio 

GalN (a) 1.00  

GlcN 4.00  

Neu5Ac 1.01  

GlcNAcβ1-3Gal 0.11  

GlcNAc(6S) β1-3Gal 0.30  

Galβ1-4GlcNAc(6S) 0.10  
(a) The amount of GalN is defined as 1.00. 

4. Discussion 

The R-10G-binding protein purified from 201B7 cells was identified as podocalyxin 

by LC-MS/MS, just like the case of Tic cells, as was expected, confirming that podocalyxin 

is a predominant glyco-epitope carrier on the cell surface of hiPSCs. Glycans attach to 

proteins (glycoproteins) and also to lipids (glycolipids). Glycoproteins are comprised of 

N-linked glycans, O-linked glycans, and glycosaminoglycans (GAGs). Interestingly, the 

predominant portion of these glyco-epitopes on podocalyxins isolated from Tic cells and 

201B7 cells appear to be expressed on O-linked glycans and/or glycosaminoglycans and 

not on N-linked glycans, although 5 potential N-glycosylation sites are present in the ma-

ture protein. Most of the R-17F epitopes appear to be expressed on O-linked glycans. On 

the other hands, the R-10G epitope appears to be on keratan sulfate. Keratan sulfate is a 

member of GAGs. GAGs are polysaccharides composed of negatively charged repeating 

disaccharide units. They are classified on the basis of structure into several groups such 

as chondroitin sulfate, heparin, heparan sulfate, hyaluronan (not sulfated), and keratan 

sulfate. Keratan sulfate disaccharide unit is Galβ1-4GlcNAc β1-3 and this backbone is al-

most always 6-O-sulfated on GlcNAc and, to a variable extent, on Gal. Keratan sulfate was 

initially identified in bovine cornea, followed by in cartilage, and a current active area of 

keratan sulfate research involves phosphocan in the central nervous system [27]. The de-

gree of sulfation at the C-6 position of the galactose residues differed among these samples 

in the following order: bovine cartilage > bovine cornea > brain > hiPSC (Tic) > hiPSC 

(201B7) [28]. Chemical analyses have revealed that the R-10G-binding protein of 201B7 

cells contained a polylactosamine disaccharide unit (Galβ1-4GlcNAc) at a significant fre-

quency. This is in contrast with the R-10G-binding protein derived from Tic cells, in which 

keratan sulfate disaccharides units mostly consisted of Galβ1-4GlcNAc(6S). This finding 

is an example of structural micro-diversity among hiPSCs-glycans. These structural dif-

ferences may affect the binding activity of R-10G to hiPSCs, because we showed previ-

ously that R-10G recognizes Galβ1-4GlcNAc(6S)β1-3Galβ1-4GlcNAc(6S)β1 as a minimum 

epitope, but it does not recognize Galβ1-4GlcNAcβ1-3 Galβ1-4GlcNAc β1 at all [7]. In-

deed, in a semi-quantitative analysis (Supplementary Figure S3a), the expression level of 

the R-10G epitope derived from 3 × 104 201B7 cells (lane 1) was most comparable with that 

derived from 3 × 103 Tic cells (middle in the lane 2), indicating that the amount of R-10G 

epitope present in one 201B7 cell was significantly lower than that in the Tic cell (Supple-

mentary Figure S5). On the other hand, the level of podocalyxin derived from 3 × 104 201B7 

cells (Supplementary Figure S3b, lane 1) was most comparable with that derived from 3 × 

104 Tic cells (middle in the lane 2). Thus, the number of podocalyxin molecules expressed 

on one cell appears to be similar between 201B7 and Tic cells. It would be interesting to 

know whether the Galβ1-4GlcNAc structure is distributed at random along the keratan 

sulfate chain or localized at some specific points in the chain. 

The R-17F epitope, another major epitope on the R-10G-binding protein, is proposed 

to be a blood group H type 1 oligosaccharide, Fucα1-2Galβ1-3GlcNAcβ1-3Gal. When 
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201B7 cell lysates were separated on an R-10G Sepharose 4B affinity column, a considera-

ble amount of R-17F epitope, but not R-10G epitope, was recovered in the flow-through 

fraction. Western blotting of this fraction using R-17F showed one major band at ~250 kDa, 

similar to that of the anti-podocalyxin antibody (data not shown). Therefore, a considera-

ble level of podocalyxin harbors an R-17F epitope but no R-10G epitope. These results are 

consistent with the semi-quantitative analysis of R-10G epitope expression described 

above and our prior co-expression studies of these epitopes on Tic cells [6] and also on 

201B7 cells (Supplementary Figure S4). The R-17F epitope is expressed strongly all over 

the cell membranes by a variety of types of hiPSCs and thus has potential as a marker of 

hiPSCs/hESCs, but expression of the R-10G epitope varies among cells even within the 

same colony. 

In the last decade, glycomic profiles of hPSCs/hESCs have been analyzed extensively, 

mainly by mass spectrometry [28,29]. However, very little light has been shed on keratan 

sulfate present on hiPSCs/hESCs. Several years ago, on the basis of the binding specificity 

of R-10G, we proposed that keratan sulfate lacking over-sulfated structures may be spe-

cifically expressed on the surface of hiPSCs/hESCs [30,31]. Very recently, Wu et al. as-

signed Galβ1-4GlcNAc(6S)β1-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAc as an R-10G epitope 

structure in bovine cornea keratan sulfate by a Beam Search approach [32]. At this mo-

ment, we have an ongoing project to analyze the whole glycans of the R-10G binding pro-

tein isolated from 201B7 cells in collaboration with a top scientist in the field of sulfated 

glycan analysis. This approach is expected to provide us with very useful information on 

the subject of glycan diversity, including the real sequences of epitope glycans, epitope 

locations on the glycan chains, frequencies of their appearances, and presence or absence 

of branching structures, as well as the number of sulfates on the glycan epitopes. 

5. Conclusions 

Podocalyxin was identified as the predominant glycan-epitope carrier protein com-

mon to hiPSCs. 

Keratan sulfate-type epitopes were shared by two hiPSC types. The keratan sulfate 

from 201B7 cells contained a polylactosamine disaccharide unit (Galβ1-4GlcNAc) at a sig-

nificant frequency, but that from Tic cells consisted mostly of keratan sulfate disaccharides 

(Galβ1-4GlcNAc(6S)). In addition, the abundance of R-10G epitope glycans was signifi-

cantly lower in 201B7 cells than that in Tic cells. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-

273X/11/4/508/s1, Figure S1, Elution profile obtained by first affinity chromatography of 201B7 cell 

crude extract using an R-10G column followed by Western blotting using R-10G; Figure S2, Elution 

profile obtained by re-affinity chromatography of the pooled bound fraction in Figure S1 using an 

R-10G column followed by Western blotting using R-10G; Figure S3, Semi-quantitative comparison 

of the expression level of the R-10G epitope and podocalyxin on 201B7 and Tic cells by Western 

blotting. (a) R-10G epitope derived from 3 × 104 201B7 cells (lane 1), those from 1.5, 3, or 6 × 103 Tic 

cells (left to right in lane 2), (b) podocalyxin epitope derived from 3 × 104 201B7 cells (lane 1), those 

from 1.5, 3, or 6 × 104 Tic cells (left to right in lane 2); Figure S4, Localization of G-10G (a) and R-17F 

(b) epitopes on cultured 201B7 cells visualized on laser confocal microscopy. 201B7 cells cultured 

on Millipore EZ slides were stained with (a) R-10G (10 µg/mL) or (b) R-17F (10 µg/mL) followed by 

Alexa Fluor 488-conjugated secondary (anti-mouse IgG1) antibody. Figure S5, Graphical presenta-

tion of summary. (1) Podocalyxin is the predominant R-10G and R-17F carrier protein common to 

hiPSCs. (2) Keratan sulfate is shared by Tic and 201B7 cells as the R-10G epitope. (3) The abundance 

of R-10G epitope is significantly higher in Tic cells than that in 201B7 cells. (4) Keratan sulfate in 

201B7 cells contains a polylactosamine disaccharide unit at a significant frequency. (5) The R-17F 

epitope is expressed ubiquitously on hiPSCs/hESCs and has potential as a marker of these cells. 
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