Supplementary Material

Dilignans with a chromanol motif discovered by molecular networking from the stem barks of *Magnolia obovata* and their proprotein convertase subtilisin/kexin type 9 expression inhibitory activity

Jongmin Ahn^a, Hee-Sung Chae^a, Pisey Pel^a, Young-Mi Kim^a, Young Hee Choi^b, Jinwoong Kim^a, Young-Won Chin^{*,a}

^aCollege of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea

^bCollege of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea

*Corresponding author: Phone: +82-2-880-7859; E-mail: ywchin@snu.ac.kr (Y. -W. Chin)

Table of contents

Figure S 1. Effect of fractions from <i>M. obovata</i> extract on PCSK9 in the HepG2 human
hepatocellular liver carcinoma cell line
Figure S 2. In silico dereplication of M. obovata extract using Network Annotation Propagation
(NAP)SError! Bookmark not defined.
Figure S 3. ¹ H NMR (600 MHz, in MeOD) spectrum of Obovatolin A (1)SError! Bookmark
not defined.
Figure S 4. ¹³ C NMR Spectrum of Obovatolin A (1) (150 MHz, in CD ₃ OD)SError!
Bookmark not defined.
Figure S 5. ¹ H- ¹ H COSY NMR Spectrum of Obovatolin A (1) (600 MHz, in CD ₃ OD)SError!
Bookmark not defined.
Figure S 6. HSQC NMR Spectrum of Obovatolin A (1) (600 MHz, in CD ₃ OD) SError!
Bookmark not defined.
Figure S 7. HMBC NMR Spectrum of Obovatolin A (1) (600 MHz, in CD ₃ OD) SError!
Bookmark not defined.
Figure S 8. ROESY NMR Spectrum of Obovatolin A (1) (600 MHz, in CD ₃ OD) SError!
Bookmark not defined.
Figure S 9. HRESIMS of Obovatolin A (1)SError! Bookmark not defined.
Figure S 10. UV and ECD Spectra of Obovatolin A (1) SError! Bookmark not defined.
Figure S 11. ¹ H NMR Spectrum of Obovatolin B (2) (600 MHz, in CD ₃ OD)SError!
Bookmark not defined.
Figure S 12. ¹³ C NMR Spectrum of Obovatolin B (2) (150 MHz, in CD ₃ OD) SError!
Bookmark not defined.

Figure S 13. ¹H-¹H COSY NMR Spectrum of Obovatolin B (2) (600 MHz, in CD₃OD)

Figure S 16. ROESY NMR Spectrum of Obovatolin B (2) (600 MHz, in CD₃OD)..... SError!

Bookmark not defined.

Figure S 17. HRESIMS of Obovatolin B (2)......SError! Bookmark not defined.
Figure S 18. UV and ECD Spectra of Obovatolin B (2)......SError! Bookmark not defined.
Table S 1. Effect of compound 1 on lipid metabolism-related genSe in the HepG2 cells. ...S19

Figure S 19. Pharmacokinetics and drug-likeness prediction for 1 by pkCSM......S21

Figure S 1. Effect of fractions from *M. obovata* extract on PCSK9 in the HepG2 human hepatocellular liver carcinoma cell line. Expression of PCSK9 mRNA was assayed by qRT-PCR in cells treated with fractions.

Figure S 2. *In silico* dereplication of *M. obovata* extract using Network Annotation Propagation (NAP). Chemical structures show the most possible candidates predicted by MetFrag; Detailed information on fragmentation pattern analysis can be found at:

https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=680053703c2b49f7ab438882c6badab1

Figure S 3. ¹H NMR (600 MHz, in MeOD) spectrum of Obovatolin A (1)

Figure S 4. ¹³C NMR Spectrum of Obovatolin A (1) (150 MHz, in CD₃OD)

Figure S 5. ¹H-¹H COSY NMR Spectrum of Obovatolin A (1) (600 MHz, in CD₃OD)

Figure S 6. HSQC NMR Spectrum of Obovatolin A (1) (600 MHz, in CD₃OD)

Figure S 7. HMBC NMR Spectrum of Obovatolin A (1) (600 MHz, in CD₃OD)

Figure S 8. ROESY NMR Spectrum of Obovatolin A (1) (600 MHz, in CD₃OD)

Figure S 9. HRESIMS of Obovatolin A (1)

Single Mass Analysis	
Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0	
Element prediction: Off	
Number of isotope peaks used for i-FIT = 3	
Monoisotopic Mass, Even Electron Ions	
162 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass)	
Elements Used:	

Mass	(Calc. Mass	mDa	PPM	DBE	Formula	I-FIT	i-FIT Norm	Fit Conf %	C	н	0	
577.22	33	577.2226	0.7	1.2	20.5	C36 H33 O7	100.8	0.005	99.46	36	33	7	_
		577.2191	4.2	7.3	-1.5	C18 H41 O20	106.0	5.217	0.54	18	41	20	

^

Figure S 10. UV and ECD Spectra of Obovatolin A (1)

S 10

Figure S 11. ¹H NMR Spectrum of Obovatolin B (2) (600 MHz, in CD₃OD)

Figure S 12. ¹³C NMR Spectrum of Obovatolin B (2) (150 MHz, in CD₃OD)

Figure S 13. ¹H-¹H COSY NMR Spectrum of Obovatolin B (2) (600 MHz, in CD₃OD)

Figure S 14. HSQC NMR Spectrum of Obovatolin B (2) (600 MHz, in CD₃OD)

Figure S 15. HMBC NMR Spectrum of Obovatolin B (2) (600 MHz, in CD₃OD)

Figure S 16. ROESY NMR Spectrum of Obovatolin B (2) (600 MHz, in CD₃OD)

Figure S 17. HRESIMS of Obovatolin B (2)

Single Tolerand Element Monoiso 154 form Element Mass 561.225	Comparison Compari	min = -1.5, m or i-FIT = 3 lons sults within lin PPM DBE 6.9 29.5 -3.6 20.5	max = 50.0 mits (up to 50 Formula C43 H29 (C36 H33 (best isotop i. O 1 O6 1	-FIT I-FIT N 144.1 0.372 144.9 1.169	each mass) orm Fit Conf % 68.93 31.07	C H 43 29 36 33	0 1 6											~
	561.2242 1.5	2.7 -1.5	C18 H41 (019 1	153.2 9.456	0.01	18 41	19											
100				561.22	257														2.09e+004
%- - - - - -	293.20 45.9971 265.1463	97 97.1524	435.2182 5	5	62.2293 ;63.2324 639.2015	663.1558 <mark>741.233</mark>	9 855.4485 8	89.4586	11(1123.4	586 125.4684 1159.4805	1279.3632	1385.5780	,1461.5933	*, *, 11, 11, 11, 1	1685,7090 1	769.1099	1893.6663 1935	2966

Figure S 18. UV and ECD Spectra of Obovatolin B (2)

UV Spectrum

ECD Spectrum

Target	Fold Change	P-Value	LEFT PRIMER	RIGHT PRIMER				
ABCA1	1.03	0.6113	GTGTTGTCAAGGAGGGGAGA	GCCATCCTAGTGCAAAGAGC				
ACSL6	-1.50	0.0038	GAACTACTGGGCCTGCAAAG	TCCGATGTCTCCAGTGTGAA				
APOA1	-1.01	0.8458	GAAAGCTGCGGTGCTGAC	TACACAGTGGCCAGGTCCTT				
APOA2	1.23	0.1244	GAGAAGGTCAAGAGCCCAGA	TGTGTTCCAAGTTCCACGAA				
APOA4	-1.14	0.0211	GGAACAGCTCAGGCAGAAAC	ACCTTGTCCCTCAGGTCCTT				
APOB	1.52	0.0222	GCTCCACAGTTTCCAAGAGG	ATTGGTGCCTGTGTTCCATT				
APOC2	1.25	0.0035	CCTCCCAGCTCTGTTTCTTG	GGCTAGGCATCTCATCTTGC				
APOC3	1.09	0.2196	CCGGGTACTCCTTGTTGTTG	TGTAACCCTGCATGAAGCTG				
APOE	1.31	0.0855	CACTGTCTGAGCAGGTGCAG	TCCAGTTCCGATTTGTAGGC				
CEBP	1.29	0.0388	GAGGAGGGGGAGAATTCTTGG	CATTTCCAAGGCACAAGGTT				
CLTC	1.25	0.0202	CAACAATCGCTGGAAACAGA	GCAGGAGTTCTTCAGCCAAT				
CPT1A	1.56	0.0365	CAGCAAGTGGAGCTGTTTGA	ACACACCATAGCCGTCATCA				
DAB2	-1.25	0.0072	CAGGAGAATGCAGACCATGA	TTGGTAACTGGCAGGGAAAC				
DHCR24	1.12	0.2539	ACCTTCCAAAACGACATCCA	GCTCTGCCTCATTTCCTTTG				
DHCR7	1.04	0.5414	CTGGACCCTCATCAACCTGT	AGGTACCAGGTTTCGTTCCA				
EGFR	-1.08	0.3067	GCCCTGATGGATGAAGAAGA	GGAATTGTTGCTGGTTGCAC				
FDPS	-1.16	0.0342	GGAGATGGGGGGAGTTCTTTC	GTCCCCAAAGAGGTCAAGGT				
FOXA2	-1.32	0.2841	ATGCACTCGGCTTCCAGTAT	GTTGCTCACGGAGGAGTAGC				
FZD4	-1.23	0.2999	CCTGGCCAGAGAGTCTGAAC	GTTGTGGTCGTTCTGTGGTG				
HIF1A	1.19	0.0396	TGCTGAAGACACAGAAGCAAA	TGGTGACAACTGATCGAAGG				
HMGCR	-1.10	0.1487	AAACATTGTCACCGCCATCT	GGGACCACTTGCTTCCATTA				
HNF1A	-1.12	0.6450	CGCAGACTATGCTCATCACC	CTGGAGGCCTCAGTGTCTG				
KLF6	1.24	0.2014	TCGGGAGAAAAAGGAGGAAT	AAAGTTCCTCGGAGCTGTCA				
LDLR	-1.09	0.4142	GACGTGGCGTGAACATCTG	CTGGCAGGCAATGCTTTGG				
LDLRAP1	1.51	0.0681	AAGACTGCACCCCCTCCTT	GGGCCTTAGCTGTCTCCTCT				
LIPC	1.14	0.0142	CCCACGACCACTACACCATC	ACCCAGGCTGTACCCAATTA				
NR1H3	1.33	0.0140	CTGCCCAGCAACAGTGTAAC	GATGGCCAGCTCAGTGAAGT				
MyLIP	-1.26	0.0255	GAAACTGCTCATTGGGGTTG	TTCCTTGGTGACCGTCAAAT				
NANOG	-1.12	0.6180	TACCTCAGCCTCCAGCAGAT	TTGCTATTCTTCGGCCAGTT				
PCSK9	-1.89	0.0321	AGGGGAGGACATCATTGGTG	CAGGTTGGGGGGTCAGTACC				
PPARa	1.31	0.0305	ATGGCATCCAGAACAAGGAG	GGCGAATATGGCCTCATAAA				
PPARr	-1.06	0.4150	GCTGGCCTCCTTGATGAATA	TTGGGCTCCATAAAGTCACC				
NR1I2	-1.34	0.1225	GAGACTGGAACCTGGGAGTG	TGGGCTCCAGTAGAAGTTGC				

Table S 1. Effect of compound 1 on lipid metabolism-related gene in the HepG2 cells.Expression of mRNA was assayed by qRT-PCR in cells (significant P value: p < 0.05)

RXRa	1.33	0.1403	ACATGGCTTCCTTCACCAAG	GGTGTAGGTCAGGTCCTTGC
SCAP	-1.59	0.2731	CATGGAGACGTCACGCTGTA	GTAGAGGCAGAGCAGCAGCA
SP4	-1.22	0.2421	AATGGAATGCAGAATGCACA	ACGACTGTGGTGGAATAGCC
SQLE	1.08	0.1433	GGAAAAGCCTGGTCTCCAAT	GAGAACTGGACTCGGGTTAGC
SREBF1	-1.13	0.2303	CCTTGCATTTTCTGACACGCT	TCCCCATCCACGAAGAAACG
SREBF2	-1.16	0.1460	GACGCCAAGATGCACAAGTC	ACCAGACTGCCTAGGTCGAT
STON2	-1.01	0.9493	CCACCAGTCAGAATGGGTCT	GACTGGTCTGGGGAAGATGA
TFRC	1.35	0.0101	ATCCGGTTACTGGGCAATTT	AAGGAAAGGGAAAGCAGCAT
TM7SF2	-1.04	0.6155	GCGAATTCCCAGAAAAACAC	ACCCAGACACCAGCAGTTTC
GAPDH	-	-	ATGGGGAAGGTGAAGGTCG	GGGGTCATTGATGGCAACAATA

Molecule properties:

Descriptor	Value
Molecular Weight	578.661
LogP	7.6106
#Rotatable Bonds	11
#Acceptors	7
#Donors	4
Surface Area	250.425

Property	Model Name	Predicted Value	Unit
Absorption	Water solubility	-3.037	Numeric (log mol/L)
Absorption	Caco2 permeability	0.408	Numeric (log Papp in 10 ⁻⁶ cm/s)
Absorption	Intestinal absorption (human)	87.173	Numeric (% Absorbed)
Absorption	Skin Permeability	-2.735	Numeric (log Kp)
Absorption	P-glycoprotein substrate	No	Categorical (Yes/No)
Absorption	P-glycoprotein I inhibitor	Yes	Categorical (Yes/No)
Absorption	P-glycoprotein II inhibitor	Yes	Categorical (Yes/No)
Distribution	VDss (human)	-1.251	Numeric (log L/kg)
Distribution	Fraction unbound (human)	0.391	Numeric (Fu)
Distribution	BBB permeability	-1.219	Numeric (log BB)
Distribution	CNS permeability	-2.7	Numeric (log PS)
Metabolism	CYP2D6 substrate	No	Categorical (Yes/No)
Metabolism	CYP3A4 substrate	Yes	Categorical (Yes/No)
Metabolism	CYP1A2 inhibitior	No	Categorical (Yes/No)
Metabolism	CYP2C19 inhibitior	No	Categorical (Yes/No)
Metabolism	CYP2C9 inhibitior	Yes	Categorical (Yes/No)
Metabolism	CYP2D6 inhibitior	No	Categorical (Yes/No)
Metabolism	CYP3A4 inhibitior	Yes	Categorical (Yes/No)
Excretion	Total Clearance	0.44	Numeric (log ml/min/kg)
Excretion	Renal OCT2 substrate	No	Categorical (Yes/No)
Toxicity	AMES toxicity	No	Categorical (Yes/No)
Toxicity	Max. tolerated dose (human)	0.221	Numeric (log mg/kg/day)
Toxicity	hERG I inhibitor	No	Categorical (Yes/No)
Toxicity	hERG II inhibitor	Yes	Categorical (Yes/No)
Toxicity	Oral Rat Acute Toxicity (LD50)	2.523	Numeric (mol/kg)
Toxicity	Oral Rat Chronic Toxicity (LOAEL)	2.429	Numeric (log mg/kg_bw/day)
Toxicity	Hepatotoxicity	No	Categorical (Yes/No)
Toxicity	Skin Sensitisation	No	Categorical (Yes/No)
Toxicity	T.Pyriformis toxicity	0.285	Numeric (log ug/L)
Toxicity	Minnow toxicity	-2.072	Numeric (log mM)

Figure S 19. Pharmacokinetics and drug-likeness prediction for 1 by pkCSM.