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Abstract: The results of the qualitative composition analysis of the dried biomass extracts of in vitro
callus, cell suspension, and root cultures show that the main biologically active substances (BAS) in the
medicinal plant, Rhodiola rosea, are 6-C-(1-(4-hydroxyphenyl)ethyl)aromadendrin (25 mg, yield 0.21%),
2-(3,7-dihydroxy-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-yl)-6,7-dihydroxychroman-4-one
(23 mg, yield 0.2%), 2-(3,4-dimethoxyphenyl)-5,7-dimethoxychroman-4-one (175 mg, yield 1.5%), 5,7-
dihydroxy-2-(4-hydroxy-3-(2-(4-hydroxyphenyl)-4-oxo-4H-chromen-6-yl)phenyl)-4H-chromen-4-one
(45 mg, yield 0.5%), 5,6,7,8-tetrahydroxy-4-methoxyflavone (0.35 mg, 0.5%). BAS from the dried
biomass extracts of in vitro callus, cell suspension, and root cultures of Rhodiola rosea will be used
for the production of pharmaceuticals and dietary supplements with antitumor, antimicrobial, and
antioxidant effects.

Keywords: in vitro callus; cell suspension; root cultures; Rhodiola rosea; biologically-active substances;
HPLC; 1H NMR spectra

1. Introduction

Since the appearance of in vitro technology, the ability of plant cell, tissue, and organ
cultures to produce and store many valuable compounds has been recognized. Today’s
strong and growing demand for natural and renewable products has shifted its focus to
in vitro cell cultures as potential phytochemical factories [1,2]. The advantage of in vitro
production of plant metabolites is the capacity to better understand the biological character-
istics of their biosynthetic activity and, ultimately, to increase their biosynthetic activity by
regulating physical, chemical, nutritional, and genetic parameters. Medicinal compounds
located in specialized morphological tissues or organs of natural plants can be obtained not
only by induction of certain tissue cultures but also by using undifferentiated callus/cell
cultures in the culture system [3].

Advances in plant cell culture technology have made it possible to manufacture a
variety of drugs such as alkaloids, terpenoids, steroids, saponins, phenolic compounds,
flavonoids, and amino acids. The production of plant metabolites by cell culture has many
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advantages, such as the opportunity to select genotypes with a higher yield of secondary
metabolites, which can be continuously produced throughout the year in a controlled
environment. Plant cell culture removes potential political boundaries or geographic
barriers that can impede crop production, such as limiting natural rubber production
in the tropics or limiting anthocyanin production in the tropics in high light-intensity
climates [4,5].

Callus/cell suspension cultures have been the subject of various studies aimed at
obtaining phytochemicals that not only have medicinal value but also contain other indus-
trially important metabolites. The callus is a product of the proliferation of undifferentiated
cells and can be obtained in vitro from various explants of the same plant species on a
suitable nutrient medium. Callus obtained from explants producing a large number of
metabolites can be transferred into a liquid medium with constant stirring to obtain a
suspension culture. Zenk [6] has successfully created a variety of plant cell lines that can
produce secondary compounds in high yield in cell suspension cultures. Solanine, isolated
from the callus of Solanum, and methetin, isolated from the callus culture of cephalosporins,
were successfully produced [7]. Some well-known cell culture methods that have been
used for large-scale production of metabolites include the production of paclitaxel from
the suspension culture of Taxus chinensis cells [8]; the production of taxol and related tax-
anes from various yew species; the production of berberine using a suspension culture of
berberine cells; the production of vincristine and vinblastine from periwinkle [9,10]; taxane
compounds obtained from the yew cell suspension culture [11].

Recently, growing hairy roots has been considered a sustainable strategy for the
production of medically important plant metabolites, not only because root harvesting is
harmful to plants in nature, but also because hairy roots are easy to grow in the absence of
external hormones, lack of geophilicity, and strong root branching in a large number of
cultures [12,13]. Furthermore, compared to natural roots, hairy roots produce secondary
metabolites for a longer period [14,15]. Natural roots are not only limited in quantity
but can also be used only at certain times of the year. For these reasons, the transition
from growing natural plant organs to hairy roots is considered an attractive option for the
production of many valuable natural secondary metabolites [16,17].

To produce hairy root cultures, plants are infected with Agrobacterium rhizogenes, which
induce hairy root formation by transferring the transfer DNA (T-DNA) from the Ri plasmids
into the plant genome. This ability of Agrobacterium rhizogenes has led to research into its
use as a source for root drugs [18]. Important metabolites produced by hairy roots include
serpentine in Catharanthus roseus, absintin in Rauvolfia micrantha [19], and ginkgolides in
the hairy roots of Ginkgo biloba [20]. By optimizing the organic nutrient content of the
bioreactor to increase its yield, ginsenosides can be produced in large quantities from the
hairy roots of ginseng. Recent developments have shown that hairy-root-growing methods
have evolved from small laboratories to large-scale industrial production. For example,
the German company ROOTec uses hairy root cultures to produce camptothecin and
podophyllotoxin. In a co-culture system between species, it was found that flax hairy roots
increased podophyllotoxin production in cell suspension by 240%. Reportedly, secondary
metabolites accumulated in aerial plants also accumulate in hairy roots, for example,
artemisinin, which is believed to accumulate only in aerial parts of plants. Artemisia
annua also accumulates in the hairy roots. The use of various concentrations of auxin
and cytokinin and their combination may result in a higher level of forskolin in roots
transformed with callus [21]. According to available data, picroside-1 production in
Kulhua hairy root cultures is increasing [22].

This work aims to study the qualitative composition of biologically-active substances
(BAS) of extracts of in vitro callus, cell suspension, and root cultures of the medicinal plant
Rhodiola rosea.
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2. Materials and Methods
2.1. Research Objects

Complexes of biologically active substances (BAS complexes) isolated from extracts of
freeze-dried biomass of in vitro callus, cell suspension, and root cultures of the medicinal
plant Rhodiola rosea, collected in the Kemerovo region (Siberia, Russia) in 2020, were the
objects of this research. To obtain the biomass of in vitro callus, cell suspension, and root
cultures, the seeds of Rhodiola rosea were pre-washed with a detergent (hydrogen peroxide
3%), then immersed for 1 min in a 75% ethanol solution, transferred to a laminar box, and
sterilized for 15 min in a 20% sodium hypochlorite solution (5% active chlorine). After
sterilization, the sterilizing substance was washed off; the seeds were washed for 20 min in
distilled sterile water three times. Then, the explants were placed in a sterile 100 mL flask
with 30 mL of Murashige–Skoog culture medium containing 3% sucrose and 0.7% agar-agar,
without growth stimulants, and were illuminated by compact fluorescent lamps Economy
11W/865 11W E27 3U 6500K 6y CDL Philips 871150031502110 (Philips, Eindhoven, The
Netherlands), while maintaining a temperature of 25 ◦C. Seedlings aged 1.5 months old
were used for the transformation. Lyophilization of germinated biomass of in vitro callus,
cell suspension, and root cultures was carried out using a Triad freeze-dryer by Labconco
(Kansas City, MO, USA). Lyophilization conditions selected involved a vacuum 0.05 mbar
and a cooler temperature of −80 ◦C. The extracts were obtained as follows: a portion of the
studied biomass sample was weighed on an analytical balance (Oxaus PX85, New York,
NY, USA) and transferred into a polyethylene Falcon tube, an organic solvent (ethanol)
was added in an amount of 1:5 according to the experimental procedure, and the extraction
process was carried out. The duration and temperature of the experiment varied up to
360 min and from 25 ◦C to boiling, respectively. Further, the filtration process was carried
out, followed by centrifugation of the filtrate at a rotor speed of 3900 ± 100 rpm. The filtrate
was centrifuged in a PE-6900 centrifuge (Ekros, Moscow, Russia) to remove suspended
particles. The solvent was evaporated from the extract on an IKA RV 8 V rotary evaporator
(IKA, Staufen, Germany), under reduced pressure from a 100 mL flask pre-weighed on a
CAS CUW420H balance (CAS Corporation Ltd., Seoul, Korea). The flask was weighed,
and the yield of the extract was determined.

2.2. Drying of the BAS Complex

Drying of the BAS complex isolated from extracts of lyophilized biomass of in vitro
callus, cell suspension, and root cultures was also carried out by lyophilization. Lyophiliza-
tion was performed using a Triad freeze-dryer by Labconco (Kansas City, MO, USA).
Lyophilization conditions made it possible to optimize the temperature and drying time of
the samples. The following constant conditions for lyophilization were selected: vacuum
0.05 mbar and temperature of the cooler −80 ◦C. The temperature regime and duration of
the lyophilization process were individually selected for each sample. The residual solvent
content was the controlled parameter [23].

2.3. Separation and Identification of Individual BASs

The isolated BAS complexes from the lyophilized biomass extracts of in vitro callus,
cell suspension, and root cultures of Rhodiola rosea were additionally separated by prepara-
tive HPLC using a Shimadzu chromatograph (Shimadzu, Kyoto, Japan), with a flow rate of
10 mL/min, phase A–B gradient of 1–90% in 15 min, and phase A–0.1% trifluoroacetic acid
and B–acetonitrile [24].

To identify the BAS of in vitro callus, cell suspension, and root cultures extracts of
Rhodiola rosea, a mixed stock solution was prepared immediately before the experiment,
containing 1 mg/mL of each biologically active substance in ethanol. To construct a cali-
bration curve, standard solutions were prepared by sequential dilution of the mixed stock
solution with ethanol to final concentrations from 0.1 to 100.0 µg/mL. The solutions were
chromatographed and eluted. We used an H2O:MeCN eluent system with an acetonitrile
gradient of 0–20% with a step of 2%; trifluoroacetic acid was used as a modifier, which
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was added in an amount of 0.1%. The content of each BAS was calculated based on the
predetermined calibration curves between the peak regions and the concentrations of the
standard solutions.

Each fraction was evaporated to dryness, weighed, the yield determined, and the
structure of the compounds was identified by proton (1H) NMR spectrometry.

1H NMR spectra were obtained using a Bruker AVANCE NMR spectrometer (Bruker,
Leipzig, Germany) with an operating frequency of 500 MHz and with CDCl3 (chloroform-
d) used as a solvent for all compounds [25].

3. Results

The flavonoid fraction of in vitro callus, cell suspension, and root cultures of Rhodiola
rosea was separated by preparative HPLC to obtain individual compounds (Figure 1). The
structure of individual compounds was determined by 1H NMR spectrometry. Five differ-
ent flavonoids were isolated, and their structure and yield were established (Figures 2–6).
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Figure 2. Proton (1H) NMR (a) and high-resolution mass spectrometry (HRMS) (b) spectrum of 6-
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Figure 3. 1H NMR (a) and HRMS (b) spectrum of 2-(3,7-dihydroxy-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-yl)-
6,7-dihydroxychroman-4-one from extracts of callus, cell suspension, and root cultures of Rhodiola rosea.
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Figure 4. 1H NMR (a) nd HRMS (b) spectrum of 2-(3,4-dimethoxyphenyl)-5,7-dimethoxychroman-4-one from extracts of
callus, cell suspension, and root cultures of Rhodiola rosea.
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Figure 6. 1H NMR (a) and HRMS (b) spectrum of 5,6,7,8-tetrahydroxy-4-methoxyflavone from extracts of callus, cell
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Compound 1—6-C-[1-(4-hydroxyphenyl)ethyl]aromadendrin (Figure 7), 25 mg of the
compound was isolated: the yield was 0.21%.

1H NMR (500 MHz, Chloroform-d) 8.03 (s, 1H), 7.87 (d, J = 1.0 Hz, 1H), 7.65 (s, 1H),
7.37–7.30 (m, 3H), 7.15–7.09 (m, 2H), 6.84–6.77 (m, 2H), 6.70–6.64 (m, 2H), 6.57 (s, 1H),
5.14–5.08 (m, 1H), 4.53 (dd, J = 7.6, 6.7 Hz, 1H), 4.35–4.23 (m, 2H), 1.42 (d, J = 6.2 Hz, 3H).
13C (125 MHz, MeOD) δ 193.11, 160.64, 160.18, 158.28, 156.20, 138.66, 129.74, 128.95, 128.49,
127.91, 126.85, 115.79, 115.40, 114.09, 102.19, 82.91, 73.91, 39.07, 21.72.

HREIMS m/z 392.1268 (calculated for C23H20O6, 392.1260).
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Compound 4—5,7-dihydroxy-2-(4-hydroxy-3-(2- (4-hydroxyphenyl)-4-oxo-4H-chromen-
6-yl) phenyl)-4H-chromen-4-one (Figure 10), 45 mg of the compound was isolated: the
yield was 0.5%.
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1H NMR (500 MHz, Chloroform-d) δ 9.81 (s, 1H), 8.13 (s, 1H), 8.10–8.05 (m, 2H), 7.82–
7.76 (m, 3H), 7.60–7.54 (m, 2H), 7.36 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.05–6.99
(m, 2H), 6.75 (d, J = 18.3 Hz, 2H), 6.58 (d, J = 1.8 Hz, 1H), 6.16 (d, J = 1.8 Hz, 1H).

HREIMS m/z 506.1006 (calculated for C30H18O8, 506.1002).
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4. Discussion

A fraction of the sum of flavonoids from in vitro callus, suspension cells, and root cul-
tures of Rhodiola rosea was isolated by HPLC. The total content of the sum of flavonoids was
2.32% from the sample weight of in vitro callus, cell suspension, and root cultures (Figure 1).
The results of the qualitative composition analysis of the dried biomass extracts of in vitro
callus, cell suspension, and root cultures showed that the main biologically active sub-
stances in the medicinal plant, Rhodiola rosea, are 6-C-[1-(4-hydroxyphenyl)ethyl]aromadendrin
(25 mg, yield 0.21%), 2-(3,7-dihydroxy-2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-
yl)-6,7-dihydroxychroman-4-one (23 mg, yield 0.2%), 2-(3,4-dimethoxyphenyl)-5,7-dimetho-
xychroman-4-one (175 mg, yield 1.5%), 5,7-dihydroxy-2-(4-hydroxy-3-(2-(4-hydroxyphenyl)-
4-oxo-4H-chromen-6-yl)phenyl)-4H-chromen-4-one (45 mg, yield 0.5%), and 5,6,7,8-tetrahy-
droxy-4-methoxyflavone (0.35 mg, 0.5%).

In Mendoza et al. [26], three new ecdysteroids were discovered: polypodine B
20,22-acetonide, 20-hydroxyecdysone 2,3; 20,22-diacetonide and isovitexiron, together
with 20-hydroxyecdysone, 20-hydroxyecdysone 2,3-acetonide, 20-hydroxyecdysone 20,22-
acetonide, ajugasterone C, macisterone A and polypodyne B, were isolated from root
cultures of Leuzea carthamoides. The described data confirm the presence of ecdysteroids
in the root cultures of Rhodiola rosea, which we found in our study. Identification of the
molecular structure for all individual compounds was carried out by NMR spectrometry
and high-resolution mass spectrometry (HRMS) analysis. In the results of this study, we
proposed a method for the isolation of individual compounds with high yield, selectivity,
and identification by NMR spectra, with a high-selectivity-characterized value of chemical
shift signal and multiplet structure.

The study by Dyshlyuk et al. [27] describes the BAS profiles of callus, cell suspension,
and root cultures of Thevetia peruviana, an ornamental shrub growing in many tropical
regions of the world. This plant produces BAS with biological properties of interest to
the pharmaceutical industry. Extracts were prepared in 50% aqueous ethanol and ethyl
acetate. Phytochemical analysis was performed using standard chemical tests and thin-
layer chromatography. Additionally, during the growth of callus, cell suspension, and
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root cultures, the total amount of phenolic and flavonoid compounds (TPC and TFC), the
total amount of cardiac glycosides (TCG), and the total antioxidant activity (TAA) were
determined. The phenolic chemical profile was also analyzed by high-performance liquid
chromatography (HPLC). Common BASs (alkaloids, amino acids, antioxidants, cardiac
glycosides, leukoanthocyanidins, flavonoids, phenols, sugars, and triterpenes) were found
in all samples. HPLC analysis revealed dihydroquercetin, a flavonoid with anti-cancer
properties. These results demonstrate the usefulness of T. peruviana callus, cell suspension,
and root cultures for the production of valuable pharmaceutical compounds. The data
presented in [27,28] confirm the high accumulation of flavonoids and ecdysteroids in vitro
callus, cell suspension, and root cultures of medicinal plants.

In [29], ginseng callus, cell suspension, and root cultures, as well as their extracts, were
studied. Biologically active substances were extracted with 30 to 70% ethanol. Organic
compounds were determined using thin-layer chromatography. Quercetin, magneferin,
luteolin, rutin, quercetin-2-D-glucoside, malvidin, as well as caffeic, cinnamic, ferulic, and
sinapic acids, were identified for each plant. The described results confirm the high accu-
mulation of flavonoids and ecdysteroids in the extracts of in vitro callus, cell suspension,
and root cultures of medicinal plants.

5. Conclusions

The qualitative composition analysis of extracts of callus, cell suspension, and root
cultures showed that ecdysteroids and flavonoids are the most promising BAS from the
perspective of industrial and technological production. These compounds make the greatest
contribution to the BAS complex of extracts of callus, cell suspension, and root cultures;
their biological activity has been established, and their technological production is cost-
effective since it allows these compounds to be sold on the existing market, thereby reducing
economic risk. Many people nowadays prefer natural dietary supplements to synthetic
medicines. Therefore, in vitro biotechnological production of callus, cell suspension, and
root cultures under controlled conditions represents a cost-effective way for the commercial
mass-production of phytochemicals. The studied extracts of callus, cell suspension, and
root cultures of the medicinal plant, Rhodiola rosea, are readily available and are considered
effective, with fewer side effects compared to modern drugs in the treatment of various
diseases. BASs of this plant are planned for use in the production of pharmaceuticals
and dietary supplements with antitumor, antimicrobial, and antioxidant effects. Further
research will be focused on the optimization of conditions for growing in vitro callus,
cell suspension, and root cultures of medicinal plants for the accelerated synthesis of
metabolites.
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